September 29, 2020
Sent via email
Mr. Andrew R. Wheeler, EPA Administrator
Environmental Protection Agency
1200 Pennsylvania Avenue, N.W.
Mail Code 5304-P
Washington, DC 20460

Re: Coleto Creek Power Plant Alternative Closure Demonstration

Dear Administrator Wheeler:
Coleto Creek Power, LLC (CCP) hereby submits this request to the U.S. Environmental Protection Agency (EPA) for approval of a site-specific alternative deadline to initiate closure pursuant to 40 C.F.R. § $257.103(\mathrm{f})(1)$ for the Primary Ash Pond located at the Coleto Creek Power Plant near Fannin, Texas. CCP is requesting an extension pursuant to 40 C.F.R. § $257.103(f)(1)$ to allow the Primary Ash Pond to continue to receive CCR and non-CCR wastestreams after April 11, 2021, such that retrofits can be completed. The Primary Ash Pond is an eligible unlined CCR surface impoundment as defined under 40 C.F.R. § 257.53.

Enclosed is a demonstration prepared by Burns \& McDonnell that addresses all of the criteria in 40 C.F.R. § $257.103(\mathrm{f})(1)(\mathrm{i})$-(iii) and contains the documentation required by 40 C.F.R. § $257.103(\mathrm{f})(1)$ (iv). As allowed by the agency, in lieu of hard copies of these documents, electronic files were submitted to Kirsten Hillier, Frank Behan, and Richard Huggins via email. If you have any questions regarding this submittal, please contact Renee Collins at 214-875-8338 or renee.collins@luminant.com.

Sincerely,

Cynthia Vodopivec
VP - Environmental Health \& Safety
Enclosure
cc: Kirsten Hillier
Frank Behan
Richard Huggins

Coleto Creek CCR Surface Impoundment

 Demonstration for a Site-Specific Alternative to Initiation of Closure Deadline

Luminant

Coleto Creek Power, LLC

Coleto Creek Power Plant
Project No. 122702

Revision 0
September 28, 2020

Burns \& McDonnell
Engineering Firm F-845

Coleto Creek CCR Surface Impoundment Demonstration for a SiteSpecific Alternative to Initiation of Closure Deadline

Prepared for
Coleto Creek Power, LLC Coleto Creek Power Plant

Project No. 122702
Fannin, Texas

Revision 0
September 28, 2020

Prepared by
Burns \& McDonnell Engineering Company, Inc.
Kansas City, Missouri

INDEX AND CERTIFICATION

Coleto Creek Power, LLC
 Coleto Creek CCR Surface Impoundment
 Demonstration for a Site-Specific Alternative to Initiation of Closure Deadline

Report Index
Chapter Chapter Title Number
Number of Pages
1.0 Introduction 3
2.0 Documentation of No Alternative Disposal Capacity 15
4.0 Conclusion 1
Appendix A Site Plan and Water Balance Diagram 2
Appendix B Schedule 2

Certification

I hereby certify, as a Professional Engineer in the state of Texas, that the information in this document as noted in the above Report Index was assembled under my direct personal charge. This report is not intended or represented to be suitable for reuse by the Coleto Creek Power, LLC or others without specific verification or adaptation by the Engineer.

Randree zu bedlark
Randell Lee Sedlacek, P.E.
(Texas License No. 99506)
Date: September 28, 2020

TABLE OF CONTENTS

Page No.
1.0 INTRODUCTION 1-1
2.0 WORKPLAN 2-1
2.1 No Alternative Disposal Capacity and Approach to Obtain Alternative Capacity - § 257.103(f)(1)(iv)(A)(1) 2-1
2.1.1 CCR Wastestreams 2-1
2.1.2 Non-CCR Wastestreams 2-2
2.1.3 Site-Specific Conditions Supporting Alternative Capacity Approach - § 257.103(f)(1)(iv)(A)(1)(i) 2-3
2.1.4 Impact to Plant Operations if Alternative Capacity Not Obtained - § 257.103(f)(1)(iv)(A)(1)(ii) 2-4
2.1.5 Options Considered Both On and Off-Site to Obtain Alternative Capacity 2-5
2.1.6 Approach to Obtain Alternative Capacity 2-6
2.1.7 Technical Infeasibility of Obtaining Alternative Capacity prior to April 11, 2021 2-8
2.1.8 Justification for Time Needed to Complete Development of Alternative Capacity Approach - § 257.103(f)(1)(iv)(A)(1)(iii) 2-9
2.2 Detailed Schedule to Obtain Alternative Disposal Capacity - § 257.103(f)(1)(iv)(A)(2) 2-11
2.3 Narrative of Schedule and Visual Timeline - § 257.103(f)(1)(iv)(A)(3) 2-11
2.4 Progress Towards Obtaining Alternative Capacity - § 257.103(f)(1)(iv)(A)(4) 2-15
3.0 DOCUMENTATION AND CERTIFICATION OF COMPLIANCE 3-1
3.1 Owner's Certification of Compliance - § 257.103(f)(1)(iv)(B)(1) 3-1
3.2 Visual Representation of Hydrogeologic Information - § 257.103(f)(1)(iv)(B)(2) 3-1
3.3 Groundwater Monitoring Results - § 257.103(f)(1)(iv)(B)(3) 3-1
3.4 Description of Site Hydrogeology - § 257.103(f)(1)(iv)(B)(4) 3-2
3.5 Corrective Measures Assessment - § 257.103(f)(1)(iv)(B)(5) 3-2
3.6 Remedy Selection Progress Report - § 257.103(f)(1)(iv)(B)(6) 3-2
3.7 Structural Stability Assessment - § 257.103(f)(1)(iv)(B)(7) 3-2
3.8 Safety Factor Assessment - § 257.103(f)(1)(iv)(B)(8) 3-2
4.0 CONCLUSION 4-1
APPENDIX A - SITE PLAN AND WATER BALANCE DIAGRAM APPENDIX B - SCHEDULE

APPENDIX C - COMPLIANCE DOCUMENTS

LIST OF TABLES

Page No.
Table 2-1: Coleto Creek CCR Wastestreams...2-2
Table 2-2: Coleto Creek Non-CCR Wastestreams .. 2-3
Table 2-3: Alternatives for Disposal Capacity... 2-5
Table 2-4: Technology Alternatives Considered for CCR wastestreams 2-6
Table 2-5: Compliance Project Progress Milestones .. 2-10

LIST OF ABBREVIATIONS

Abbreviation	Term/Phrase/Name
BMcD	Burns \& McDonnell
BOP	Balance of Plant
B\&W	Babcock \& Wilcox
CCP	Coleto Creek Power, LLC
CCR	Coal Combustion Residual
CFR	Code of Federal Regulations
Coleto Creek	Compact Submerged Conveyors
CSC	Effluent Limitations Guidelines and Standards for the Steam Electric
ELG Rule	Environmental Protection Agency
EPA	Groundwater Protection Standards
GWPS	Mechanical Ash Extractor - Low Profile
MAX-LP	Resource Conservation and Recovery Act
RCRA	Sampling and Analysis Plan
SAP	Submerged Grind Conveyor Conveyor Corporation
SGC	Statistically Significant Increases Significant Levels
SSI(s)	UCC

1.0 INTRODUCTION

On April 17, 2015, the Environmental Protection Agency (EPA) issued the federal Coal Combustion Residual (CCR) Rule, 40 C.F.R. Part 257, Subpart D, to regulate the disposal of CCR materials generated at coal-fueled electric generating units. The rule is being administered under Subtitle D of the Resource Conservation and Recovery Act (RCRA, 42 U.S.C. § 6901 et seq.).

On August 28, 2020, the EPA Administrator issued revisions to the CCR Rule that require all unlined surface impoundments to cease receipt of CCR and non-CCR waste and initiate closure by April 11, 2021, unless an alternative deadline is requested and approved. 40 C.F.R. § 257.101(a)(1) (85 Fed. Reg. 53,516 (Aug. 28, 2020)). Specifically, owners and operators of a CCR surface impoundment may seek and obtain an alternative closure deadline by demonstrating that there is currently no alternative capacity available on or off-site and that it is not technically feasible to complete the development of alternative capacity prior to April 11, 2021. 40 C.F.R. $\S 257.103(\mathrm{f})(1)$. To make this demonstration, the facility is required to provide detailed information regarding the process the facility is undertaking to develop the alternative capacity. 40 C.F.R. § $257.103(\mathrm{f})(1)$. Any extensions granted cannot extend past October 15, 2023, except an extension can be granted until October 15, 2024, if the impoundment qualifies as an "eligible unlined CCR surface impoundment" as defined by the rule. 40 C.F.R. § 257.103(f)(1)(vi). Regardless of the maximum time allowed under the rule, EPA explains in the preamble to the Part A rule that each impoundment "must still cease receipt of waste as soon as feasible, and may only have the amount of time [the owner/operator] can demonstrate is genuinely necessary." 85 Fed. Reg. at 53,546.

This document serves as CCP's Demonstration for a site-specific alternative deadline to initiate closure pursuant to 40 C.F.R. § $257.103(\mathrm{f})(1)$ for the Primary Ash Pond at the Coleto Creek Power Plant (Coleto Creek), located near Fannin, Texas. The Primary Ash Pond qualifies as an "eligible unlined CCR surface impoundment" as defined under 40 C.F.R. § 257.53.

To obtain an alternative closure deadline under 40 C.F.R. § $257.103(\mathrm{f})(1)$, a facility must meet the following three criteria:
 increase in costs or the inconvenience of existing capacity is not sufficient to support qualification;
2. $\S \mathbf{2 5 7 . 1 0 3 (f) (1) (i i) ~ - ~ E a c h ~ C C R ~ a n d / o r ~ n o n - C C R ~ w a s t e s t r e a m ~ m u s t ~ c o n t i n u e ~ t o ~ b e ~ m a n a g e d ~ i n ~}$ that CCR surface impoundment because it was technical infeasible to complete the measures necessary to obtain alternative disposal capacity either on or off-site of the facility by April 11, 2021; and
3. $\S 257.103(f)(\mathbf{1})($ iii) - The facility is in compliance with all the requirements of the CCR Rule.

To demonstrate that the first two criteria above have been met, 40 C.F.R. § 257.103(f)(1)(iv)(A) requires the owner or operator to submit a work plan that contains the following elements:

- A written narrative discussing the options considered both on and off-site to obtain alternative capacity for each CCR and/or non-CCR wastestream, the technical infeasibility of obtaining alternative capacity prior to April 11, 2021, and the option selected and justification for the alternative capacity selected. The narrative must also include all of the following:
- An in-depth analysis of the site and any site-specific conditions that led to the decision to select the alternative capacity being developed;
- An analysis of the adverse impact to plant operations if the CCR surface impoundment in question were to no longer be available for use; and
- A detailed explanation and justification for the amount of time being requested and how it is the fastest technically feasible time to complete the development of the alternative capacity.
- A detailed schedule of the fastest technically feasible time to complete the measures necessary for alternative capacity to be available, including a visual timeline representation. The visual timeline must clearly show all of the following:
- How each phase and the steps within that phase interact with or are dependent on each other and the other phases;
- All of the steps and phases that can be completed concurrently;
- The total time needed to obtain the alternative capacity and how long each phase and step within each phase will take; and
- At a minimum, the following phases: engineering and design, contractor selection, equipment fabrication and delivery, construction, and start up and implementation.
- A narrative discussion of the schedule and visual timeline representation, which must discuss the following:
- Why the length of time for each phase and step is needed and a discussion of the tasks that occur during the specific step;
- Why each phase and step shown on the chart must happen in the order it is occurring;
- The tasks that occur during each of the steps within the phase; and
- Anticipated worker schedules.
- A narrative discussion of the progress the owner or operator has made to obtain alternative capacity for the CCR and/or non-CCR wastestreams. The narrative must discuss all the steps taken, starting from when the owner or operator initiated the design phase up to the steps occurring when the demonstration is being compiled. It must discuss where the facility currently is on the timeline and the efforts that are currently being undertaken to develop alternative capacity.

To demonstrate that the third criterion above has been met, 40 C.F.R. § 257.103(f)(1)(iv)(B) requires the owner or operator to submit the following information:

- A certification signed by the owner or operator that the facility is in compliance with all of the requirements of 40 C.F.R. Part 257, Subpart D;
- Visual representation of hydrogeologic information at and around the CCR unit(s) that supports the design, construction and installation of the groundwater monitoring system. This includes all of the following:
- Map(s) of groundwater monitoring well locations in relation to the CCR unit(s);
- Well construction diagrams and drilling logs for all groundwater monitoring wells; and
- Maps that characterize the direction of groundwater flow accounting for seasonal variations.
- Constituent concentrations, summarized in table form, at each groundwater monitoring well monitored during each sampling event;
- A description of site hydrogeology including stratigraphic cross-sections;
- Any corrective measures assessment conducted as required at § 257.96;
- Any progress reports on corrective action remedy selection and design and the report of final remedy selection required at § 257.97(a);
- The most recent structural stability assessment required at $\S 257.73(\mathrm{~d})$; and
- The most recent safety factor assessment required at § 257.73(e).

2.0 WORKPLAN

To demonstrate that the criteria in 40 C.F.R. § $257.103(\mathrm{f})(1)$ (i) and (ii) have been met, the following is a workplan, consisting of the elements required by § $257.103(\mathrm{f})(1)(\mathrm{iv})(\mathrm{A})$. Specifically, this workplan documents that there is no alternative capacity available on or off-site for each of the CCR and non-CCR wastestreams that CCP plans to continue to manage in the Primary Ash Pond and discusses the options considered for obtaining alternative disposal capacity. As discussed in more detail below, CCP has elected to convert to dry ash handling at Coleto Creek. The workplan provides a detailed schedule for the conversion project, including a narrative description of the schedule and an update on the progress already made toward obtaining the alternative capacity. In addition, the narrative includes an analysis of the sitespecific conditions that led to the decision to convert to dry handling and an analysis of the adverse impact to plant operations if Coleto Creek were no longer able to use the Primary Ash Pond.

2.1 No Alternative Disposal Capacity and Approach to Obtain Alternative Capacity - § 257.103(f)(1)(iv)(A)(1)

CCP owns and operates Coleto Creek, a single-unit, 650-megawatt coal-fired facility located in Fannin, Texas that burns Powder River Basin coal. Coleto Creek has one CCR surface impoundment, known as the Primary Ash Pond, which receives both CCR and non-CCR wastestreams. The pond was constructed between 1976 and 1977 during the initial development of the power plant and is approximately 190 acres in size with a storage volume of 2,700 acre-feet. The pond is considered unlined per the requirements of the CCR Rule but meets all location restriction requirements. A groundwater monitoring system was developed for the Primary Ash Pond in 2017 and Assessment Monitoring was initiated in June of 2018, but no statistically significant levels of Appendix IV constituents have been identified. As such, the Primary Ash Pond meets the definition of an eligible unlined CCR surface impoundment. A site plan can be found on Figure 1 in Appendix A and a site water balance diagram can be found on Figure 2 in Appendix A.

2.1.1 CCR Wastestreams

CCP evaluated each CCR wastestream placed in the Primary Ash Pond at Coleto Creek. For the reasons discussed below in Table 2-1, the following CCR wastestreams must continue to be placed in the Primary Ash Pond due to lack of alternative capacity both on and off-site.

Table 2-1: Coleto Creek CCR Wastestreams

CCR Wastestream	Average Flow (gpm)	Description	CCP Notes
Fly Ash	Dry Handled with Intermittent Sluices from Silo for Disposal	Fly ash is currently collected dry and conveyed to a storage silo near the Primary Ash Pond. Normally, the ash is hauled offsite for beneficial use. Periodically, the market will not accept the ash due to varying properties or seasonal demand, in which case the ash is sluiced from the silo to the Primary Ash Pond. No conditioning equipment is currently installed to allow for trucking the material offsite for disposal, and no additional CCR units exist onsite at Coleto.	For normal operation, fly ash will continue to be handled dry using the current system and hauled offsite for beneficial use based on market conditions. Equipment will be added at the silo storage area to allow for conditioning of non-marketable ash and offsite disposal in a nearby municipal landfill. The silo will need to be emptied to perform this work, and this will be completed during the same outage used to execute the bottom ash conversion. The existing silo sluice system will be eliminated prior to the requested April 20, 2023 sitespecific deadline to initiate closure.
Bottom Ash	Unknown	Bottom ash is currently sluiced to the Primary Ash Pond, where it is either removed for beneficial use or remains. The sluice water overflows from the Primary Ash Pond to the Secondary Settling Pond and is discharged via Outfall 003.	A new dry bottom ash system (CSC) will be installed. Bottom ash, economizer ash, and mill rejects will
$\underset{\text { Ash }}{\text { Economizer }}$	Unknown	Economizer ash is handled with the bottom ash.	beneficial use or transported to a nearby municipal landfill. This wastestream will cease flow to the Primary Ash Pond prior to the
Mill Rejects (non-CCR but handled with CCR wastestreams)	Unknown	Mill rejects are handled with the bottom ash.	deadline to initiate closure.

2.1.2 Non-CCR Wastestreams

CCP evaluated each non-CCR wastestream placed in the Primary Ash Pond at Coleto Creek. For the reasons discussed below in Table 2-2, each of the following non-CCR wastestreams must continue to be placed in the Primary Ash Pond due to lack of alternative capacity both on and off-site.

Table 2-2: Coleto Creek Non-CCR Wastestreams

Non-CCR Wastestream Flow (gpm)	Average Demineralizer Regeneration Flows and RO Reject	Unknown (Intermittent)	Collected in demineralizer sump and pumped to Primary Ash Pond.

Other site flows are currently directed either to the discharge canal or the Evaporation Pond. The existing site water balance is included in Appendix A of this Demonstration (see Figure 2).

2.1.3 Site-Specific Conditions Supporting Alternative Capacity Approach - § 257.103(f)(1)(iv)(A)(1)(i)

The plant has adequate space available for the installation of a compact submerged conveyor system and has selected this solution as the preferred alternative for compliance with both the ELG and CCR Rules. As shown on Figure 1 in Appendix A, Coleto Creek is bounded by the Coleto Creek Reservoir to the north and east and Perdido Creek to the south. The western boundary is formed by FM 2987 (farm to market road). The remaining impoundments onsite (the Secondary Pond, Evaporation Pond and Coal Pile Runoff Pond) are not authorized to receive CCR material. Consequently, in order to continue to operate and generate electricity, Coleto Creek must continue to use the Primary Ash Pond for treatment of both CCR and non-

CCR wastestreams until the plant can be retrofitted with a dry bottom ash handling system, modifications can be made to the fly ash handling system, and non-CCR process flows can be redirected away from the impoundment. As EPA explained in the preamble of the 2015 rule, it is not possible for sites that sluice CCR material to an impoundment to eliminate the impoundment and dispose of the material offsite. See 80 Fed. Reg. 21,301, 21,423 (Apr. 17, 2015) ("[W]hile it is possible to transport dry ash off-site to [an] alternate disposal facility that is simply not feasible for wet-generated CCR. Nor can facilities immediately convert to dry handling systems.").

2.1.4 Impact to Plant Operations if Alternative Capacity Not Obtained § 257.103(f)(1)(iv)(A)(1)(ii)

As described in Sections 2.1.1, 2.1.2, and 2.1.6 of this demonstration, in order to continue to operate, generate electricity, and comply with both the CCR Rule and the discharge permit conditions, Coleto Creek must continue to use the Primary Ash Pond for treatment of both CCR and non-CCR wastestreams until alternative disposal capacity can be developed. If the Primary Ash Pond were removed from service on April 11, 2021, Coleto Creek would be required to cease operation until the conversion project is completed.

Coal-fired generation from plants such as Coleto Creek has provided approximately 17% of the generating capacity in ERCOT in 2020 to date, and the reserve margins available are currently less than this percentage. If coal-fired generation were required to cease in Texas, the stability of the electric grid would be compromised. To continue operation of Coleto Creek, CCP must be allowed additional time to complete the following three primary activities in order to cease routing CCR and non-CCR wastestreams to the Primary Ash Pond:

- Installation of a compact submerged conveyor, storage bunker, and ancillary equipment (eliminates bottom ash, economizer, and pyrites sluice flows to the Primary Ash Pond).
- Installation of a pugmill to allow for conditioning of the fly ash and to allow for the potential offsite disposal in a municipal landfill when market conditions do not support beneficial use (eliminates intermittent fly ash sluice flows to the Primary Ash Pond).
- Reroute of all remaining non-CCR wastestreams to the Secondary Pond and/or Evaporation Pond, including adding piping and potentially replacing the demineralizer sump pumps (eliminates nonCCR flows to the Primary Ash Pond).

2.1.5 Options Considered Both On and Off-Site to Obtain Alternative Capacity

The options considered for alternative disposal capacity of the wastestreams currently routed to the Primary Ash Pond are summarized in Table 2-3. Additional details on the CCR and non-CCR wastestreams included in this demonstration request are found in Table 2-1 and Table 2-2, respectively.

Table 2-3: Alternatives for Disposal Capacity

Alternative Capacity Technology	Average Time to Construct (Months) ${ }^{1}$	Feasible at Coleto Creek?	Selected?	CCP Notes
Conversion to dry handling	33.8	Yes	Yes	A dry bottom ash conversion is being performed and design is underway for a CSC system. CCP will add a pugmill at the fly ash silo to eliminate fly ash sluicing as well. CCP expects to complete this project in a total of 33 months (the decision was made to proceed with the conversion in July 2020 and the project will complete in April 2023), primarily driven by the timing of the scheduled major outage for the unit with ERCOT.
Non-CCR wastewater basin	23.5	NA	No	These are not viable alternatives for CCP since the existing Secondary Pond and/or Evaporation Pond has the capacity to receive the non-CCR wastestreams (following permit modifications and redirection of these streams).
Wastewater treatment facility	22.3	NA	No	
$\begin{aligned} & \text { New CCR } \\ & \text { surface } \\ & \text { impoundment } \end{aligned}$	31	Yes	No	CCP believes construction of the dry ash handling systems will be completed within a similar timeframe. Nor would a new impoundment alone provide compliance with the ELG Rule.
Retrofit of a CCR surface impoundment	29.8	Yes	No	CCP believes construction of the dry ash handling systems will be completed within a similar timeframe and simultaneously allow for ELG compliance.
Multiple technology system	39.1	NA	No	This is not a viable alternative for CCP since the existing Secondary Pond and/or Evaporation Pond has the capacity to receive the non-CCR wastestreams (following permit modifications and redirection of these streams). Dry handling of the ash streams should provide the necessary compliance needs on the fastest feasible schedule for the site.

[^0]| Alternative
 Capacity
 Technology | Average
 Time to
 Construct
 (Months) | Feasible
 at Coleto
 Creek? | Selected? | CCP Notes |
| :---: | :---: | :---: | :---: | :---: |
| Temporary
 treatment
 system | Not
 defined | No | No | These systems would not realistically provide the
 required non-CCR wastewater storage capacity to
 replace the Primary Ash Pond. Rerouting flow to a
 temporary treatment system would require similar
 modifications to those required to reroute to the
 existing Secondary Pond and/or Evaporation Pond,
 and CCP has chosen to devote resources to
 completion of the selected project scope rather than a
 temporary solution. |

2.1.6 Approach to Obtain Alternative Capacity

CCP plans to convert to dry handling of all CCR at Coleto Creek. In May 2019, CCP hired Burns \& McDonnell (BMcD) to evaluate potential options for compliance with the Effluent Limitations Guidelines and Standards for the Steam Electric Power Generating Point Source Category (ELG Rule). The options considered are described in Table 2-4, below. BMcD followed this with a review of landfill disposal alternatives following release of the proposed Part A rule in December of 2019.

Table 2-4: Technology Alternatives Considered for CCR wastestreams

Technology	Practicability or Feasibility for Coleto Creek
Under boiler Drag Chain Conveyor System	Feasible
Remote Drag Chain Conveyor System	Feasible. Challenging to add remote pumps and power supply for recirculation not required with other options.
Dry Belt/Tray Conveying System	Feasible
Pneumatic Conveying System	Not practicable; high O\&M and not industry standard practice for bottom ash.
Vibratory Conveying System	Not practicable; high O\&M and both water balance and safety concern; challenging to add remote pumps and power supply for recirculation not required with other options.
Remote Settling Basins	Not practicable; high O\&M and no longer industry standard practice for bottom ash (replaced by remote conveyors for similar costs).
Remote Dewatering Bins	

As part of the review, BMcD recommended conversion to a "dry" bottom ash handling system based on the Babcock \& Wilcox (B\&W) Submerged Grind Conveyor (SGC) or United Conveyor Corporation (UCC) Mechanical Ash Extractor - Low Profile (MAX-LP) system. These systems are referred to as Compact Submerged Conveyors (CSC) herein. Of the feasible under boiler options presented in Table 2-4, this alternative should have the shortest equipment lead time and the shortest plant outage requirement as it will not require removal and replacement of the current bottom ash hoppers. For this and other business factors, CCP has selected this technology for implementation at Coleto Creek for compliance with the ELG rule requirements to eliminate discharge of ash transport water. Until the installation of the B\&W SGC or UCC MA-LP system is complete, the Primary Ash Pond will need to receive CCR and non-CCR wastestreams similar to the existing configuration; however, after the tie-in outage the Primary Ash Pond can be removed from service and closed.

For the dry bottom ash handling conversion at Coleto, a new CSC system would replace the boiler hopper ash sluicing system. During operation, bottom ash falls from the boiler into the hopper and is routed through the crusher. The crushed ash is removed by the conveyor, which consists of a chain with metal flight bars that drags ash along the bottom of the conveyor to the inclined "dewatering" section. The dewatering section contains a chain conveyor that pulls bottom ash up an inclined ramp while water gravity drains back into the CSC. The inclined ramp drops dewatered ash into a three-walled bottom ash bunker. Typically, ash collects in the bunker and is loaded into haul trucks with a front-end loader. Alternatively, the bunker can be configured so that haul trucks can back into the bunker and accept ash directly.

Economizer ash and mill rejects typically require a separate system. Economizer ash will likely be handled with a series of dry flight conveyors that route the ash from the existing economizer hoppers to the CSC in a dry condition, thus eliminating the use of ash transport water. This ash is comingled with bottom ash in the CSC and deposited in the bunker with the bottom ash. The economizer ash could potentially be incorporated with the fly ash system if additional testing indicates that this would not impact marketability of the fly ash for beneficial use. The existing bottom ash sluice pumps are replaced with smaller pumps dedicated to the mill rejects and hopper flushing system, which sluice mill rejects directly to the bottom ash hoppers. Sluice flows from the mill reject system are not considered ash transport water since mill rejects are considered pre-combustion waste (i.e. not CCR).

Seal trough and hopper makeup to the existing boiler are maintained using the existing service water connections. Discharge from these systems, and overflow from the mill rejects sluice cycles, continue to be removed by the existing bottom ash sump pumps near the hopper. This overflow is classified as quench water rather than transport water and may also be conveyed to a process pond.

Per the BMcD ELG compliance review and landfill alternatives assessment, conversion to a dry bottom ash handling system such as the CSC at Coleto Creek would include the following general scope:

- Install 4 submerged conveyors and 2 new clinker grinders.
- Install two new dry flight conveyors to capture economizer ash and route it to the new submerged bottom ash conveyor system.
- Install a new concrete bunker equipped with drainage trenches and sumps to route any contact stormwater or excess quench water to the boiler sump.
- Install an overflow tank and pumps to allow for the pyrites to be sluiced into the boiler hopper and comingled with the bottom ash, similar to current operations (where they are comingled at the pond). This water is not considered ash transport water since pyrites are a pre-combustion material. Any excess water from the overflow tank will be routed to the boiler sump through existing piping.
- All bottom ash produced will be removed by Boral and sent offsite for beneficial use, similar to current operations. Any material that cannot be marketed will likely be disposed of in an offsite municipal landfill.

BMcD also reviewed current fly ash operations and water handling. As noted above, fly ash stored in the existing fly ash silos may currently be sluiced to the Primary Ash Pond during periods which Boral is not able to market the fly ash for beneficial reuse. CCP will need to remove this system and install a pugmill so fly ash can instead be loaded onto trucks for disposal.

BMcD noted in their review that CCP plans to modify the discharge permit as part of the Primary Ash Pond closure (or earlier) to reroute flows from the from the Coal Pile Runoff Pond and Sewage Treatment Plant effluent from the Evaporation Pond directly to the condenser discharge canal. Additionally, CCP will need to redirect the remaining non-CCR process flows (Demin Sump and Boiler Sump discharges) to the Secondary Pond and/or Evaporation Pond concurrently with the elimination of the bottom ash transport water to allow for initiation of the Primary Ash Pond closure.

2.1.7 Technical Infeasibility of Obtaining Alternative Capacity prior to April 11, 2021

Based on the foregoing facts, CCP cannot cease all CCR and non-CCR wastestreams and initiate closure of the Primary Ash Pond until the wet-to-dry ash handling conversion project is complete. The Primary Ash Pond is an "eligible unlined CCR surface impoundment" under § 257.53 and not previously subject to closure. CCP began its selected compliance project execution for Coleto Creek with scoping studies in 2019
and is developing specifications to procure the necessary long-lead equipment items in 2021. CCP investigated the possibility for meeting the alternate liner demonstration allowed under the proposed Part B Rule. The final requirements for this are unknown at this time; however, CCP has since elected to proceed with modifying plant operations and installing the CSC dry handling technology at Coleto Creek. This work is in progress but has not yet completed. There is a 28 -day major outage scheduled for the Spring of 2021; however, it is not technically feasible to procure the equipment, perform the necessary detailed design, and complete the pre-outage construction activities over the course of the next six months. The conversion is forecasted to be completed in the Spring of 2023 as part of the next scheduled major outage (longer than 10 days). Consequently, it is not possible to implement the measures discussed above in a way that would likely be successful by April 11, 2021.

The conditions at Coleto Creek demonstrate that no alternative disposal capacity is available on-site or offsite, satisfying the requirement of 40 C.F.R. § $257.103(\mathrm{f})(1)(\mathrm{i})$, and CCP respectfully requests a site-specific extension of the deadline to initiate closure of the Primary Ash Pond until April 20, 2023.

2.1.8 Justification for Time Needed to Complete Development of Alternative Capacity Approach - § 257.103(f)(1)(iv)(A)(1)(iii)

The schedule for developing alternative disposal capacity is described in more detail in Sections 2.2 and 2.3. The schedule milestones and current progress are summarized in Table 2-5 below. CCP believes the schedule provided represents the fastest technically feasible timeframe for compliance at Coleto Creek, driven primarily by the need for a major outage to allow for removal of the current sluicing equipment and installation of the new crushers and conveyors. These outages are coordinated with ERCOT and are not easily modified due to the limited reserve generating capacity and resulting potential impacts to grid stability. Moreover, the project duration of approximately 33 months (after selection) including the current stage of scope development (including laser scanning and development of technical specifications for the procurement of the major equipment) until startup of the dry ash handling system is comparable to the average dry ash conversion timeline identified by EPA in the final Part A rule. See Table 3, 85 Fed. Reg. at 53,534 .

Table 2-5: Compliance Project Progress Milestones

Year or Progress Reporting Period	Status	Milestone Description	CCP Notes
2020	Completed	Selection of dry ash handling solution and preparation of request for alternative sitespecific deadline for initiation of closure of the Primary Ash Pond.	The bottom ash, economizer, fly ash, and pyrites wastestreams will be eliminated in the scheduled major outage in the Spring of 2023. Equipment must be procured to support the preoutage construction schedule.
2020	On Schedule	FEED study and detailed scope development and specifications for dry bottom ash equipment	
$\begin{gathered} \text { April 30, } \\ 2021 \end{gathered}$	Scheduled	Receive management approval for project based on budget estimate, issue conveyor specifications for bid, initiate permitting activities	Normal operation of the boiler sump discharge will be directed to the Evaporation Pond; however, outage flows will continue to
October 31, 2021	Scheduled	Award contract for conveyor design and submittal development, receive initial submittals, and initiate detailed engineering design for BOP systems	Detailed design for conveyors and BOP systems, and initiation of permitting activities will be occurring in 2021.

Year or Progress Reporting Period	Status	Milestone Description	CCP Notes
$\begin{gathered} \text { April 30, } \\ 2022 \end{gathered}$	Scheduled	Submit application for NPDES permit modifications, provide full notice to proceed to conveyor manufacturer to initiate fabrication of equipment	Fabrication released to support delivery dates during the scheduled pre-outage construction period.
October 31, 2022	Scheduled	Award construction contracts, perform site preparation activities (including necessary utility relocation), and initiate bunker construction	Allows contractors to procure necessary commodities to support pre-outage construction before the Spring 2023 major outage.
$\begin{gathered} \text { April 20, } \\ 2023 \end{gathered}$	Scheduled	Completion of dry bottom ash conversion, pugmill installation, and re-route of nonCCR wastestreams	Normal flows of CCR wastewater to the Primary Ash Pond will cease by this date. Non-CCR wastestreams will be routed to the Secondary Pond and/or Evaporation Pond as described in Table 2-2. Punchlist items will be underway, but the unit will be started up and operating the new dry ash handling system as of April 20, 2023. CCP will no longer be routing wastestreams to the Primary Ash Pond.

2.2 Detailed Schedule to Obtain Alternative Disposal Capacity § $257.103(\mathrm{f})(1)(\mathrm{iv})(\mathrm{A})(2)$

The required visual timeline representation of the schedule is included in Appendix B of this demonstration and described further in Section 2.3 below.

2.3 Narrative of Schedule and Visual Timeline - § 257.103(f)(1)(iv)(A)(3)

The third section for the workplan is a "detailed narrative of the schedule and the timeline discussing all the necessary phases and steps in the workplan, in addition to the overall timeframe that will be required to
obtain capacity and cease receipt of waste." 85 Fed. Reg. at 53,544. As EPA explained in the preamble to the Part A rule, this section of the workplan must discuss "why the length of time for each phase and step is needed, including a discussion of the tasks that occur during the specific stage of obtaining alternative capacity. It must also discuss the tasks that occur during each of the steps within the phase." 85 Fed. Reg. at 53,544 . In addition, the schedule should "explain why each phase and step shown on the chart must happen in the order it is occurring and include a justification for the overall length of the phase" and the "anticipated worker schedule." 85 Fed. Reg. at 53,544. EPA notes the overall "discussion of the schedule assists EPA in understanding why the time requested is accurate." 85 Fed. Reg. at 53,544

Outage: The primary activity impacting the project schedule is the outage time required for installation of the dry ash handling system. There is a significant amount of work that is scheduled to take place during the unit outage, including removing the existing ash sluicing equipment, installing the new ash and pyrites handling equipment, completing piping ties, completing electrical ties, and performing startup of the new equipment and tuning of the ash and pyrites handling systems. CCP has major outages scheduled for the Spring of every other year. Based on generation capacity in Texas, the grid operator (ERCOT) does not typically allow CCP to adjust these outages or perform them in the summer months. It is not feasible to procure the necessary equipment to meet the Spring 2021 outage given the steps required for internal project approvals, the permitting efforts required for the project, and the lead time required for the equipment (which has not yet been bid but typically takes 9-12 months from award to receipt). The current schedule in Appendix B allows for a longer lead time but is focused on completion of the design, delivery of the equipment, and completion of pre-outage construction in advance of the Spring 2023 outage.

Design, Procurement, and Permitting Activities: CCP hired BMcD to prepare an AACE Class 3 Budgetary and Feed Study to develop preliminary engineering, a Level 2 schedule, and budgetary cost data to support owner review of the proposed dry bottom ash conversion project. This effort typically requires three months to get budgetary quotes from equipment suppliers and local subcontractors and will include laser scanning to identify interferences and firm up project scope as well as preparing specifications to procure the necessary ash handling equipment (which is part of the critical path for the project). Following the completion of the project budget under the Feed Study, CCP has included a three-month period for review, modifications to the project scope, and management approval for the project. A portion of this period will be impacted by the year-end holidays. Following management approval, CCP will develop the commercial terms for the contracts and package them with the technical specifications. This work is anticipated to take four weeks based on CCP procurement experience. CCP will bid and award a contract for the engineering (under limited notice to proceed (LNTP)) and fabrication (under full notice to proceed (FNTP)) of the bottom ash, economizer ash, pyrites handling, and fly ash pugmill equipment. CCP has included four weeks
to bid the equipment contract and two months to select the preferred supplier and negotiate the contract terms for the LNTP.

The balance of plant (BOP) design will be completed by an engineering firm which will procure site survey and pilot trenching services to support detailed engineering while the equipment vendor prepares the initial submittals for their scope of supply. These submittals are usually received two to three months after equipment award and after these submittals are approved, the vendor typically starts with fabrication and the engineer begins the detailed design effort based on this information. Design will proceed, but the fabrication will be delayed slightly to support delivery of the equipment in the pre-outage construction period. The typical lead time on this equipment is $9-12$ months; however, CCP expects this lead time to increase in the coming months as much of the industry will be procuring similar equipment. CCP has included 11 months for fabrication from the FNTP date, which essentially extends the lead time to 16 months total but provides for delivery once the mechanical contractor is onsite to receive the equipment in the necessary pre-outage construction period. If the lead time grows beyond what is allotted due to increased demand from industry, it could affect CCP's ability to get the conveyors onsite in time to support preconstruction activities for the Spring 2023 outage. This risk is reduced by accelerating the engineering of the equipment (with LNTP) as shown in the current project schedule.

The BOP engineer will prepare bid documents for site preparation and below-grade construction, DCS equipment, above-grade mechanical/structural construction, and above-grade electrical construction. These contracts can be prepared following award of the CSC package since procurement of the CSC equipment will have the longest lead time and the design for these construction packages will hinge on the submittals received from the CSC vendor. The current schedule includes a total of ten months for this design based on BMcD's experience with similar projects, including overlapping activities of four months for civil and underground design, five months for structural design of the bunkers and mechanical design (including pipe routing and development of specifications for contractor-supplied materials), and five months for electrical design, including cable tray and conduit routing, lighting plans, grounding plans, etc. CCP has included three weeks to review, address comments, and issue each contract, and this overlaps as the last three weeks of the total 10 -month duration shown for engineering. The construction packages can be issued and awarded sequentially as allowed by the design process and will include a four-week bid period and eightweek selection and award period. This includes time to review bids, short-list the bidders, interview the short-listed firms, identify the preferred contractor, and negotiate the terms and conditions for the work. The bid and award of the construction contracts will be performed concurrently with acquiring the necessary permits for this project and must be completed as necessary to support the pre-outage construction. These construction contracts will purchase balance of plant items and commodities such as structural steel, piping,
valves, raceway, cable, and other commodities as necessary to support the construction, and these preplanning and mobilization activities are included in advance of the pre-outage construction period.

Construction Activities: The durations shown on the project are estimates by BMcD and are based on an average work schedule of five days per week, are subject to delays in procuring and delivering new equipment and construction labor, and are based on the following scope of work which may be performed in the sequence listed below:

- Consultant/surveyor(s) shall perform and transmit data from site survey (six weeks) and pilot trenching scope (six weeks).
- Contractors shall mobilize to the site as required per the schedule.
- Site Prep and Below-Ground Construction Contractor shall complete site preparation and belowgrade construction (e.g. utility reroutes, laydown, and parking areas as well as any road improvements required). This activity is expected to take two months.
- Above-Ground Mechanical/Structural Contractor shall perform structural excavation, bunker construction, and conveyor support foundations). This must be completed before mechanical erection can begin. This activity is expected to take two months.
- Above-Ground Mechanical/Structural Contractor shall install CSC system (estimated at four months of pre-outage work, followed by one month of work during the available outage duration) to include:
- Receipt of equipment from equipment vendor
- Installation of support steel and platforms to provide access for the new conveyors.
- Installation of submerged conveyors and clinker grinders.
- New dry flight conveyors to capture economizer ash and route it to the new CSC system.
- New bunker sump pumps and piping to route any contact stormwater or excess quench water to the boiler sump.
- An overflow tank and pumps to allow for the pyrites to be sluiced into the boiler hopper and comingled with the bottom ash.
- Installation of a new pugmill at the fly ash silo (two months of work finishing during the outage). Includes new water supply piping, support steel, and isolation valves.
- Redirect process flows from the Primary Ash Pond to the Secondary Pond and/or Evaporation Pond (two months of labor for piping installation after permit modifications and pump/power supply modifications).
- The Electrical Contractor will install new electrical equipment (if new motor control centers are required), cable tray, conduit, and cable in accessible areas prior to the outage, as well as install new lighting at the bunker area. During the outage, the Electrical Contractor will terminate the power feeds and finish routing to new equipment following behind the Mechanical Contractor. The current schedule shows three months of pre-outage electrical work and the electrical contractor should finish prior to the end of the unit outage.

CCP will provide ongoing schedule updates in the required semi-annual progress reports.

2.4 Progress Towards Obtaining Alternative Capacity - § 257.103(f)(1)(iv)(A)(4)

In the preamble to the final Part A rule, EPA explains that this "section [of the workplan] must discuss all of the steps taken, starting from when the owner or operator initiated the design phase all the way up to the current steps occurring while the workplan is being drafted." 85 Fed. Reg. at 53,544 . The discussion also "must indicate where the facility currently is on the timeline and the processes that are currently being undertaken at the facility to develop alternative capacity." 85 Fed. Reg. at 53,545.

As show in Appendix B and described in Section 2.1.6 and Table 2-5, CCP has made progress toward creating alternative disposal capacity for the CCR and non-CCR wastestreams at Coleto Creek. The conceptual design has been evaluated and the technical solution for compliance has been identified. As part of this process, a laser scan of the boiler area has been completed and transmitted to the equipment supplier(s). The equipment suppliers are providing budgetary quotes and three-dimensional modeling activities to identify potential interferences. BMcD will review the information received from the vendors to complete the preliminary design and develop the overall project scope and budget as well as the necessary equipment specifications. The remaining activities are provided in Appendix B and summarized in Table 2-5.

3.0 DOCUMENTATION AND CERTIFICATION OF COMPLIANCE

To demonstrate that the criteria in 40 C.F.R. § $257.103(\mathrm{f})(1)$ (iii) has been met, the following information and submissions are submitted pursuant to 40 C.F.R. § 257.103(f)(1)(iv)(B) to demonstrate that the Primary Ash Pond at Coleto Creek is in compliance with the CCR Rule.

3.1 Owner's Certification of Compliance - § 257.103(f)(1)(iv)(B)(1)

In accordance with 40 C.F.R. § $257.103(\mathrm{f})(1)(\mathrm{iv})(\mathrm{B})(1)$, I hereby certify that, based on my inquiry of those persons who are immediately responsible for compliance with environmental regulations for the CCR surface impoundments at Coleto Creek, the Primary Ash Pond is in compliance with all of the requirements contained in 40 C.F.R. Part 257, Subpart D - Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments. Coleto Creek's CCR compliance website is up-to-date and contains all the necessary documentation and notification postings.

COLETO CREEK POWER LDC

Cynthia Vodopivec
VP - Environmental Health \& Safety September 28, 2020

3.2 Visual Representation of Hydrogeologic Information § 257.103(f)(1)(iv)(B)(2)

Consistent with the requirements of § 257.103(f)(1)(iv)(B)(2)(i) - (iii), CCP has attached the following items to this demonstration:

- Maps) of groundwater monitoring well locations in relation to the CCR unit (Attachment C1)
- Well construction diagrams and drilling logs for all groundwater monitoring wells (Attachment C2)
- Maps that characterize the direction of groundwater flow accounting for seasonal variations (Attachment C3)

3.3 Groundwater Monitoring Results - § 257.103(f)(1)(iv)(B)(3)

Tables summarizing constituent concentrations at each groundwater monitoring well through the first 2020 semi-annual monitoring period are included as Attachment C4.

3.4 Description of Site Hydrogeology - § 257.103(f)(1)(iv)(B)(4)

A description of site hydrogeology and stratigraphic cross-sections of the site are included as Attachment C5.

3.5 Corrective Measures Assessment - § 257.103(f)(1)(iv)(B)(5)

Background sampling began at the Primary Ash Pond in March of 2017 and continued through July for eight rounds of background sampling. The first semiannual detection monitoring samples were collected in November 2017. The first assessment monitoring samples were collected in June 2018. The results, through the first 2020 semi-annual monitoring period, indicate the Primary Ash Pond is currently in assessment monitoring, with no exceedances recorded. Accordingly, an assessment of corrective measures is not currently required.

3.6 Remedy Selection Progress Report - § 257.103(f)(1)(iv)(B)(6)

As noted above, an assessment of corrective measures and the resulting remedy selection efforts are not currently required for the Primary Ash Pond.

3.7 Structural Stability Assessment - § 257.103(f)(1)(iv)(B)(7)

Pursuant to $\S 257.73(\mathrm{~d})$, the initial structural stability assessment report for the Primary Ash Pond was prepared in October 2016 and revised in January 2018 (to remove the Secondary Pond). The revised report is included as Attachment C6. As required for compliance, another stability assessment will be completed in October 2021.

3.8 Safety Factor Assessment - § 257.103(f)(1)(iv)(B)(8)

Pursuant to § 257.73(e), the initial safety factor assessment report for the Primary Ash Pond was prepared in October 2016 and revised in January 2018 (to remove the Secondary Pond). The revised report is included as Attachment C6. As required for compliance, another stability assessment will be completed in October 2021.

4.0 CONCLUSION

Based upon the information submitted in this demonstration, the Primary Ash Pond at Coleto Creek qualifies for a site-specific alternative deadline for the initiation of closure as allowed by 40 C.F.R. § 257.103(f)(1).

Therefore, CCP requests that EPA approve the demonstration and grant an alternative deadline of April 20, 2023 to complete the dry bottom ash conversion at Coleto Creek, cease routing all CCR and non-CCR wastestreams to the Primary Ash Pond which is subject to closure under 40 C.F.R. § 257.101(a), and initiate closure as required. As discussed previously, this date is subject to delays in procuring and delivering new bottom ash handling equipment and several other factors. CCP will update EPA on the project and any potential schedule impacts as part of the semi-annual progress reports required at 40 C.F.R. § $257.103(\mathrm{f})(1)(\mathrm{x})$, and if a need for a later compliance deadline is determined, CCP will seek additional time as described in $40 \mathrm{CFR} \S 257.103(\mathrm{f})(1)$ (vii).

APPENDIX B - SCHEDULE

APPENDIX C - COMPLIANCE DOCUMENTS

APPENDIX C1 - MAP OF GROUNDWATER MONITORING WELL LOCATIONS


```
LEGEND
    DOWNGRADIENT MONITORING WELL LOCATION
    UPGRADIENT MONITORING WELL LOCATION
I - - I CCR MONITORING UNIT
```

CLIENT
COLETO CREEK POWER LP

PROJECT

COLETO CREEK POWER STATION FANNIN, TEXAS

TITLE

DETAILED SITE PLAN - COLETO CREEK PRIMARY ASH POND

CONSULTANT	YYYY-MM-DD		2019-01-14	
	DESIGNED		AJD	
	PREPARED		AJD	
	REVIEWED		WFV	
	APPROVED		WFV	
$\begin{aligned} & \text { PROJECT NO. } \\ & 18106453 \end{aligned}$		$\begin{aligned} & \text { REV. } \\ & 0 \end{aligned}$		$\begin{array}{r} \text { FIGURE } \\ 1 \end{array}$

APPENDIX C2 - WELL CONSTRUCTION DIAGRAMS AND DRILLING LOGS

MONITORING WELL BORING LOGS

Appendix B: CCR Groundwater Monitoring Well System Boring Logs
Wells W-4 to W-6 and Well W-8
by Sargent \& Lundy Engineers (March and April 1978). These monitoring wells are also designated as MW-4 to MW-6 and MW-8, respectively.

Wells W-9 and W-10
by Bullock, Bennett \& Associates, LLC (May 2016). These monitoring wells are also designated as MW-9 and MW-10, respectively.

Well MW-11
by Bullock, Bennett \& Associates, LLC (April 2017)
Wells BV-5 and BV-21
by Black \& Veatch (August and September 2008)
13. 1N:

Bullock, Bennett \& Associates, LLC 165 N. Lampasas Street Bertram, TX 78605			LOG OF BORING W-10 $\begin{aligned} & \text { Renamed } \\ & \mathrm{MW}-10\end{aligned}$					
			(Page 1 of 1)					
COLETO CREEK POWER STATIONFANNIN, TX				Drilling Company Driller Drill Rig Drilling Method Sampling Method			: EnviroCore Craig Schena (Lic. \#4694) CME75 Hollow Stem Auger - 6 : Split-Spoon	
Project No. 15215								
	DESCRIPTION		0 0 9	O	景	WELL DIAGRAM/REMARKS		

PROJECT
PROJECT NO.

Internat
PROJECT LOCATION

Victoria, Texas
N 3286597^{1} SURFACE CONDITIONS
Level, loose, silty sand
SOIL SAMPLING

SAMPLE TYPE
SAMPLE NUMBER

 | ROCK CORING

CORE
SIZE

RUN

RUN
ENGTH

T

ROCK CORING											
						$\underset{\sim}{\mathrm{O}}$		$\begin{aligned} & \stackrel{r}{w} \\ & \frac{1}{n} \\ & \stackrel{a}{c} \\ & e \end{aligned}$			
SPT	1	1	2	5	7	0.9	0				

SAND; dark brown; loose; moist; fine grained; poorly
Boring advanced
Clayey SAND; light brown; medium dense; moist; fine
grained; poorly graded
$1 / 4$
hollow stem auger. SPT performed w/auto
grading light gray; some black motting \& trace roots
grading w/trace chalk nodules; roots grade out
grading w/frequent seams of chalk nodules hammer.

1/15/2009 4:19 PM Colelo Creek 2

MONITORING WELL CONSTRUCTION FORMS

	STATE OF TEXAS WELL REPORT for Tracking \#423117		
Owner:	IPA Operations, Inc.	Owner Well \#:	W-9Renamed MW-9
Address:	Coleto Creek Power LP PO Box 8 Fannin, TX 77960	Grid \#:	79-23-2
Well Location:	Coletto Creek Power Plant Fannin, TX 77960	Latitude:	
Well County:	Goliad	Longitude:	
Type of Work:	New Well	Elevation:	No Data

Drilling Start Date: 9/16/2015 Drilling End Date: 9/17/2015

	Diameter (in.)	Top Depth (ft.)	Bottom Depth (ft.)
Borehole:	$\mathbf{6}$	$\mathbf{0}$	$\mathbf{6 0}$

Drilling Method: Hollow Stem Auger
Borehole Completion: Filter Packed

Filter Pack Intervals:	Top Depth (ft.)	Bottom Depth (ft.)	Filter Material	Size
	38	60	Sand	16/30
	Top Depth (t.)	Bottom Depth (ft.)	Description (number of sacks \& material)	
Annular Seal Data:	0	2	Cement 1 Bags/Sacks	
	2	38	Bentonite 15 Bags/Sacks	
Seal Method: Hand Mixed Sealed By: Driller		Distance to Property Line (ft.): No Data		
		Distance to Septic Field or other concentrated contamination (ft.): No Data		
		Distance to Septic Tank (ft.): No Data		
		Method of Verification: No Data		
Surface Completion:	Surface Slab Installed		Surface Completion by Driller	

Water Level: $\quad 25.2 \mathrm{ft}$. below land surface on 2015-09-18 Measurement Method: water level meter
Packers: No Data
Type of Pump: No Data
Well Tests: No Test Data Specified

Water Quality:	Strata Depth (ft.)	Water Type
	No Data	No Data

Chemical Analysis Made: No
Did the driller knowingly penetrate any strata which contained injurious constituents?: No

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information: EnviroCore, Inc.

7525 Idle Hour Dr.

Corpus Christi, TX 78414
Driller Name: Craig Schena License Number: 4694
Comments: No Data
Report Amended on 5/26/2016 by Request \#17930

Lithology:
DESCRIPTION \& COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	2	fill material
2	5.5	silty clay/clayey sand;brownish gray to white
5.5	10	silty clay; dark gray
10	20.5	caliche and silty clay;light gray to white
20.5	22	silty sand;brownish gray
22	44	sand; light orangish brown
44	47	silty sand; light gray
47	54	silty clay/clayey sand; light gray
54	60	silty, clayey sand; gray

Casing:
BLANK PIPE \& WELL SCREEN DATA

Dla (in.)	Type	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
2	Riser	New Plastic (PVC)	$\mathbf{4 0}$	$\mathbf{- 3}$	$\mathbf{4 0}$
2	Screen	New Plastic (PVC)	$\mathbf{1 0}$	$\mathbf{4 0}$	$\mathbf{6 0}$

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.
Texas Department of Licensing and Regulation
P.O. Box 12157

Austin, TX 78711
(512) 463-7880

STATE OF TEXAS WELL REPORT for Tracking \#423118				
Owner:	IPA Operations, Inc.	Owner Well \#:	W-10Renamed MW-10	
Address:	Coleto Creek Power LP PO Box 8 Fannin, TX 77960	Grid \#: Latitude:	79-23-2	
Well Location:	Coletto Creek Power Plant Fannin, TX 77960	Longitude:		\square
Well County:	Goliad	Elevation:	No Data	
Type of Work:	New Well	Proposed Use:	Monitor	

Drilling Start Date: 9/15/2015 Drilling End Date: 9/15/2015

Borehole:

Diameter (in.)	Top Depth (ft.)	Bottom Depth (ft.)
$\mathbf{6}$	$\mathbf{0}$	$\mathbf{6 0}$

Drilling Method: Hollow Stem Auger
Borehole Completion: Filter Packed

Filter Pack Intervals:

Top Depth (ft.)	Bottom Depth (ft.)	Filter Material	Size
38	60	Sand	$16 / 30$

Annular Seal Data: No Data

Seal Method: Hand Mixed
Sealed By: Driller

> Distance to Property Line (ft.): No Data
> Distance to Septic Field or other concentrated contamination (ft.): No Data
> Distance to Septic Tank (ft.): No Data Method of Verification: No Data Surface Completion by Driller

Water Level:
Packers: No Data
Type of Pump: No Data
Well Tests: No Test Data Specified

Water Quality:	Strata Depth (ft.)	Water Type
	No Data	No Data

Chemical Analysis Made: No
Did the driller knowingly penetrate any strata which contained injurious constituents?: No

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information: EnviroCore, Inc.

7525 Idle Hour Dr.

Corpus Christi, TX 78414
Driller Name: Craig Schena License Number: 4694

Comments: No Data
Report Amended on 5/26/2016 by Request \#17931

Lithology:
DESCRIPTION \& COLOR OF FORMATION MATERIAL

Top (f.)	Bottom (ft.)	Description
0	2	fill material
2	8	silty sandy clay; orangish brown
8	11	silty clay/clayey sand; light gray
11	19	silty sand; light gray
19	30	sand; light gray
30	32	silty clay/clayey sand; light gray
32	34	clayey sand; brownish gray
34	36	silty sand; light gray
36	52	silty, clayey sand; light gray
52	60	silty sand; light gray

Casing:
BLANK PIPE \& WELL SCREEN DATA

Dla (in.)	Type	Material	Sch./Gage	Top (t.)	Bottom (tt.)
2	Riser	New Plastic (PVC)	$\mathbf{4 0}$	$\mathbf{- 3}$	$\mathbf{4 0}$
$\mathbf{2}$	Screen	New Plastic (PVC)	$\mathbf{1 0}$	$\mathbf{4 0}$	$\mathbf{6 0}$

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.
Texas Department of Licensing and Regulation
P.O. Box 12157

Austin, TX 78711
(512) 463-7880

STATE OF TEXAS WELL REPORT for Tracking \#462686			
Owner:	Dynegy Inc.	Owner Well \#:	MW-11
Address:	Coleto Creek Power Station PO Box 8 Fannin, TX 77960	Grid \#: Latitude:	79-23-2 28 43' $37.02{ }^{\prime \prime} \mathrm{N}$
Well Location:	Coleto Creek Power Station Fannin, TX	Longitude:	097 ${ }^{\circ} 12{ }^{\text {12 }}$ 18.36" W
Well County:	Goliad	Elevation:	No Data
Type of Work:	New Well	Proposed Use:	Monitor

Drilling Start Date: 4/25/2017 Drilling End Date: 4/25/2017

Borehole:

Diameter (in.)	Top Depth (ft.)	Bottom Depth (ft.)
$\mathbf{6}$	$\mathbf{0}$	$\mathbf{4 9}$

Drilling Method: Hollow Stem Auger
Borehole Completion: Filter Packed

Water Level:	No Data
Packers:	No Data
Type of Pump:	No Data
Well Tests:	No Test Data Specified

Water Quality:	Strata Depth (ft.)	Water Type
	No Data	No Data

Chemical Analysis Made: No
Did the driller knowingly penetrate any strata which contained injurious constituents?: No

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information: EnviroCore, Inc.
7525 Idle Hour Dr.
Corpus Christi, TX 78414
Driller Name: Craig Schena License Number: 4694
Comments: No Data

Lithology:
DESCRIPTION \& COLOR OF FORMATION MATERIAL

Top (tt.)	Bottom (ft.)	Description
0	1	0-1.0 - Silty CLAY
1	6.5	Predominately Caliche and Silty Clay
6.5	13.8	Silty Clayey Sand
13.8	28.5	Sand with abundant gravel
28.5	38	Silty Clayey Sand
38	40	Silty Clay/Clayey Sand
40	46	Silty Clayey Sand
46	49	Silty Clay/Clayey Sand

Casing:
BLANK PIPE \& WELL SCREEN DATA

Dla (in.)	Type	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
2	Riser	New Plastic (PVC)	$\mathbf{4 0}$	-3	29
2	Screen	New Plastic (PVC)	4010	29	49

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.
Texas Department of Licensing and Regulation
P.O. Box 12157

Austin, TX 78711
(512) 334-5540

PROJECT
PROJECT NO.

Internat
PROJECT LOCATION

Victoria, Texas
N 3286597^{1} SURFACE CONDITIONS
Level, loose, silty sand
SOIL SAMPLING

SAMPLE TYPE
SAMPLE NUMBER

 | ROCK CORING

CORE
SIZE

RUN

RUN
ENGTH

T

ROCK CORING											
						$\underset{\sim}{\mathrm{O}}$		$\begin{aligned} & \stackrel{r}{w} \\ & \frac{1}{n} \\ & \stackrel{a}{c} \\ & e \end{aligned}$			
SPT	1	1	2	5	7	0.9	0				

SAND; dark brown; loose; moist; fine grained; poorly
Boring advanced
Clayey SAND; light brown; medium dense; moist; fine
grained; poorly graded
$1 / 4$
hollow stem auger. SPT performed w/auto
grading light gray; some black motting \& trace roots
grading w/trace chalk nodules; roots grade out
grading w/frequent seams of chalk nodules hammer.

1/15/2009 4:19 PM Colelo Creek 2

STATE OF TEXAS
 WELL COMPLETION REPORTS

	STATE OF TEXAS WELL REPORT for Tracking \#423117		
Owner:	IPA Operations, Inc.	Owner Well \#:	W-9Renamed MW-9
Address:	Coleto Creek Power LP PO Box 8 Fannin, TX 77960	Grid \#:	79-23-2
Well Location:	Coletto Creek Power Plant Fannin, TX 77960	Latitude:	
Well County:	Goliad	Longitude:	
Type of Work:	New Well	Elevation:	No Data

Drilling Start Date: 9/16/2015 Drilling End Date: 9/17/2015

	Diameter (in.)	Top Depth (ft.)	Bottom Depth (ft.)
Borehole:	$\mathbf{6}$	$\mathbf{0}$	$\mathbf{6 0}$

Drilling Method: Hollow Stem Auger
Borehole Completion: Filter Packed

Filter Pack Intervals:	Top Depth (ft.)	Bottom Depth (ft.)	Filter Material	Size
	38	60	Sand	16/30
	Top Depth (t.)	Bottom Depth (ft.)	Description (number of sacks \& material)	
Annular Seal Data:	0	2	Cement 1 Bags/Sacks	
	2	38	Bentonite 15 Bags/Sacks	
Seal Method: Hand Mixed Sealed By: Driller		Distance to Property Line (ft.): No Data		
		Distance to Septic Field or other concentrated contamination (ft.): No Data		
		Distance to Septic Tank (ft.): No Data		
		Method of Verification: No Data		
Surface Completion:	Surface Slab Installed		Surface Completion by Driller	

Water Level: $\quad 25.2 \mathrm{ft}$. below land surface on 2015-09-18 Measurement Method: water level meter
Packers: No Data
Type of Pump: No Data
Well Tests: No Test Data Specified

Water Quality:	Strata Depth (ft.)	Water Type
	No Data	No Data

Chemical Analysis Made: No
Did the driller knowingly penetrate any strata which contained injurious constituents?: No

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information: EnviroCore, Inc.

7525 Idle Hour Dr.

Corpus Christi, TX 78414
Driller Name: Craig Schena License Number: 4694
Comments: No Data
Report Amended on 5/26/2016 by Request \#17930

Lithology:
DESCRIPTION \& COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	2	fill material
2	5.5	silty clay/clayey sand;brownish gray to white
5.5	10	silty clay; dark gray
10	20.5	caliche and silty clay;light gray to white
20.5	22	silty sand;brownish gray
22	44	sand; light orangish brown
44	47	silty sand; light gray
47	54	silty clay/clayey sand; light gray
54	60	silty, clayey sand; gray

Casing:
BLANK PIPE \& WELL SCREEN DATA

Dla (in.)	Type	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
2	Riser	New Plastic (PVC)	$\mathbf{4 0}$	$\mathbf{- 3}$	$\mathbf{4 0}$
2	Screen	New Plastic (PVC)	$\mathbf{1 0}$	$\mathbf{4 0}$	$\mathbf{6 0}$

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.
Texas Department of Licensing and Regulation
P.O. Box 12157

Austin, TX 78711
(512) 463-7880

STATE OF TEXAS WELL REPORT for Tracking \#423118				
Owner:	IPA Operations, Inc.	Owner Well \#:	W-10Renamed MW-10	
Address:	Coleto Creek Power LP PO Box 8 Fannin, TX 77960	Grid \#: Latitude:	79-23-2	
Well Location:	Coletto Creek Power Plant Fannin, TX 77960	Longitude:		\square
Well County:	Goliad	Elevation:	No Data	
Type of Work:	New Well	Proposed Use:	Monitor	

Drilling Start Date: 9/15/2015 Drilling End Date: 9/15/2015

Borehole:

Diameter (in.)	Top Depth (ft.)	Bottom Depth (ft.)
$\mathbf{6}$	$\mathbf{0}$	$\mathbf{6 0}$

Drilling Method: Hollow Stem Auger
Borehole Completion: Filter Packed

Filter Pack Intervals:

Top Depth (ft.)	Bottom Depth (ft.)	Filter Material	Size
38	60	Sand	$16 / 30$

Annular Seal Data: No Data

Seal Method: Hand Mixed
Sealed By: Driller

> Distance to Property Line (ft.): No Data
> Distance to Septic Field or other concentrated contamination (ft.): No Data
> Distance to Septic Tank (ft.): No Data Method of Verification: No Data Surface Completion by Driller

Water Level:
Packers: No Data
Type of Pump: No Data
Well Tests: No Test Data Specified

Water Quality:	Strata Depth (ft.)	Water Type
	No Data	No Data

Chemical Analysis Made: No
Did the driller knowingly penetrate any strata which contained injurious constituents?: No

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information: EnviroCore, Inc.

7525 Idle Hour Dr.

Corpus Christi, TX 78414
Driller Name: Craig Schena License Number: 4694

Comments: No Data
Report Amended on 5/26/2016 by Request \#17931

Lithology:
DESCRIPTION \& COLOR OF FORMATION MATERIAL

Top (f.)	Bottom (ft.)	Description
0	2	fill material
2	8	silty sandy clay; orangish brown
8	11	silty clay/clayey sand; light gray
11	19	silty sand; light gray
19	30	sand; light gray
30	32	silty clay/clayey sand; light gray
32	34	clayey sand; brownish gray
34	36	silty sand; light gray
36	52	silty, clayey sand; light gray
52	60	silty sand; light gray

Casing:
BLANK PIPE \& WELL SCREEN DATA

Dla (in.)	Type	Material	Sch./Gage	Top (t.)	Bottom (tt.)
2	Riser	New Plastic (PVC)	$\mathbf{4 0}$	$\mathbf{- 3}$	$\mathbf{4 0}$
$\mathbf{2}$	Screen	New Plastic (PVC)	$\mathbf{1 0}$	$\mathbf{4 0}$	$\mathbf{6 0}$

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.
Texas Department of Licensing and Regulation
P.O. Box 12157

Austin, TX 78711
(512) 463-7880

STATE OF TEXAS WELL REPORT for Tracking \#462686			
Owner:	Dynegy Inc.	Owner Well \#:	MW-11
Address:	Coleto Creek Power Station PO Box 8 Fannin, TX 77960	Grid \#: Latitude:	79-23-2 28 43' $37.02{ }^{\prime \prime} \mathrm{N}$
Well Location:	Coleto Creek Power Station Fannin, TX	Longitude:	097 ${ }^{\circ} 12{ }^{\text {12 }}$ 18.36" W
Well County:	Goliad	Elevation:	No Data
Type of Work:	New Well	Proposed Use:	Monitor

Drilling Start Date: 4/25/2017 Drilling End Date: 4/25/2017

Borehole:

Diameter (in.)	Top Depth (ft.)	Bottom Depth (ft.)
$\mathbf{6}$	$\mathbf{0}$	$\mathbf{4 9}$

Drilling Method: Hollow Stem Auger
Borehole Completion: Filter Packed

Water Level:	No Data
Packers:	No Data
Type of Pump:	No Data
Well Tests:	No Test Data Specified

Water Quality:	Strata Depth (ft.)	Water Type
	No Data	No Data

Chemical Analysis Made: No
Did the driller knowingly penetrate any strata which contained injurious constituents?: No

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information: EnviroCore, Inc.
7525 Idle Hour Dr.
Corpus Christi, TX 78414
Driller Name: Craig Schena License Number: 4694
Comments: No Data

Lithology:
DESCRIPTION \& COLOR OF FORMATION MATERIAL

Top (tt.)	Bottom (ft.)	Description
0	1	0-1.0 - Silty CLAY
1	6.5	Predominately Caliche and Silty Clay
6.5	13.8	Silty Clayey Sand
13.8	28.5	Sand with abundant gravel
28.5	38	Silty Clayey Sand
38	40	Silty Clay/Clayey Sand
40	46	Silty Clayey Sand
46	49	Silty Clay/Clayey Sand

Casing:
BLANK PIPE \& WELL SCREEN DATA

Dla (in.)	Type	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
2	Riser	New Plastic (PVC)	$\mathbf{4 0}$	-3	29
2	Screen	New Plastic (PVC)	4010	29	49

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.
Texas Department of Licensing and Regulation
P.O. Box 12157

Austin, TX 78711
(512) 334-5540

MONITORING WELL DEVELOPMENT DOCUMENTATION

APPENDIX C3 - MAPS OF THE DIRECTION OF GROUNDWATER FLOW

APPENDIX C4 - TABLES SUMMARIZING CONSTITUENT CONCENTRATIONS AT EACH MONITORING WELL

APPENDIX III ANALYTICAL RESULTS COLETO CREEK PRIMARY ASH POND

Sample Location	Date Sampled	B	Ca	Cl	FI	field pH	SO_{4}	TDS
Prediction Limit:		1.26	143	118	0.61	$\begin{aligned} & \hline 6.51 \\ & 7.33 \\ & \hline \end{aligned}$	148	966
Upgradient Wells								
BV-5	03/29/17	1.15	90.5	118	0.54	7.01	147	860
	05/11/17	1.03	81.6	106	0.57	6.89	148	862
	05/16/17	1.17	99	107	0.55	6.9	145	832
	06/07/17	1.11	88.8	109	0.56	6.64	147	810
	06/20/17	1.02	90.7	106	0.58	6.54	145	716
	06/27/17	1.14	100	114	0.55	6.76	144	743
	07/12/17	1.07	96.8	112	0.56	6.88	140	430
	07/18/17	1.17	143	117	0.56	6.68	142	817
	11/07/17	1.10	94.2	109	0.62	6.96	136	850
	06/19/18	1.18	56.4	112	0.97	--	147	775
	09/18/18	1.27	86.2	145	0.667	6.53	146	904
	06/05/19	1.26	82.9	123	0.769	6.89	146	828
	10/03/19	1.31	72.2	141	0.753	7.11	145	806
	06/09/20	1.35	90.4	171	0.498	6.97	159	951
BV-21	03/28/17	0.651	6.89	36	0.61	7.09	69	490
	05/09/17	0.687	65.2	38	0.61	7.04	55	410
	05/17/17	0.709	74.3	39	0.58	7.05	53	454
	06/06/17	0.657	69	40	0.59	7.11	49	452
	06/20/17	0.642	77	40	0.61	6.7	45	356
	06/27/17	0.727	84.9	40	0.6	6.97	46	420
	07/10/17	0.674	90.6	39	0.58	7.22	45	427
	07/18/17	0.618	84.4	39	0.6	6.91	44	380
	11/07/17	0.515	73.6	42	0.64	7.12	46	423
	06/25/18	0.543	69.3	38.4	0.62	--	38.4	380
	09/18/18	0.624	72.1	33.3	0.479	6.64	36.4	416
	06/05/19	0.576	61.3	30.3	0.602	7.1	34.2	379
	10/03/19	0.534	63.4	23.9	0.588	6.82	33.2	342
	06/09/20	0.447	72.5	34.2	0.522	6.96	18.5	362
MW-8	03/28/17	1.2	7.76	79	0.49	7.06	76	626
	05/09/17	1.21	77.5	77	0.44	7.15	79	564
	05/15/17	1.16	81.2	76	0.44	7.01	79	558
	06/06/17	1.26	78.1	72	0.45	6.92	83.5	570
	06/20/17	1.24	86.5	67	0.43	6.7	89	476
	06/27/17	1.23	89.6	66	0.44	6.85	97	533
	07/10/17	1.24	92.6	63	0.44	7.13	97	533
	07/18/17	1.25	92.9	61	0.46	6.91	100	533
	11/07/17	1.21	78.8	61	0.49	7.08	100	540
	06/25/18	1.25	80.3	65.9	0.52	--	95.2	565
	09/18/18	1.29	76.5	53.7	0.402	6.70	94.8	543
	06/05/19	1.11	65.2	51.4	0.497	7.10	79	515
	10/03/19	1.2	76.7	58.3	0.419	6.76	90.1	541
	06/09/20	1.33	73.1	46.4	0.392 J	7.04	72.3	511

APPENDIX III ANALYTICAL RESULTS COLETO CREEK PRIMARY ASH POND

Sample Location	Date Sampled	B	Ca	Cl	FI	field pH	$\mathbf{S O}_{4}$	TDS
Prediction Limit:		1.26	143	118	0.61	$\begin{aligned} & \hline 6.51 \\ & 7.33 \\ & \hline \end{aligned}$	148	966
Downgradient Wells								
MW-4	03/28/17	0.287	9.14	102	0.61	9.81	157	794
	05/09/17	0.395	88.7	101	0.61	7.27	156	668
	05/17/17	0.251	92.1	101	0.6	6.93	157	702
	06/06/17	0.243	90.7	101	0.63	7.13	157	728
	06/20/17	0.254	99.3	101	0.62	6.71	157	626
	06/27/17	0.254	102	101	0.63	6.87	157	690
	07/10/17	0.271	111	101	0.62	7.16	158	670
	07/18/17	0.292	108	101	0.63	6.82	157	717
	11/07/17	0.255	94.5	99	0.62	7.12	155	700
	06/21/18	0.267	92.5	104	0.6	--	159	665
	09/18/18	0.28	91.8	102	0.582	6.63	155	720
	06/05/19	0.379	85.3	108	0.67	6.92	161	718
	10/03/19	0.367	93.1	102	0.559	6.7	155	693
	06/09/20	0.241	94.9	24.6	0.205 J	6.88	26.8	400
MW-5	03/30/17	0.11	110	140	0.51	6.85	184	830
	05/10/17	0.115	114	139	0.54	6.86	183	900
	05/16/17	0.215	121	139	0.5	6.81	183	848
	06/08/17	0.122	118	139	0.55	6.8	182	862
	06/21/17	0.122	124	138	0.53	6.6	182	813
	06/26/17	0.121	129	139	0.54	6.79	184	900
	07/11/17	0.111	120	138	0.52	6.91	184	797
	07/19/17	0.001	0.005	137	0.53	6.84	181	857
	11/08/17	0.149	116	138	0.52	6.92	183	883
	06/25/18	0.119	114	140	0.56	--	183	820
	09/18/18	0.146	114	136	0.493	6.70	183	824
	06/03/19	0.146	113	143	0.596	7.06	187	864
	10/02/19	0.179	111	147	0.543	7.06	202	842
	09/06/20	0.152	117	138	0.370 J	6.84	182	858
MW-6	03/29/17	1.67	73.9	69	0.38	7.34	99	510
	05/11/17	1.94	70.6	70	0.37	7.1	110	490
	05/16/17	1.84	76.3	70	0.36	7.23	107	506
	06/07/17	1.8	73.8	70	0.37	6.97	103	492
	06/22/17	1.97	79.9	69	0.37	7.11	100	510
	06/28/17	1.74	81.8	69	0.37	7.16	99	570
	07/12/17	1.76	81.6	69	0.35	7.24	98	557
	07/20/17	0.005	0.0002	69	0.39	6.9	97	530
	11/07/17	1.72	76.4	69	0.39	7.41	101	483
	06/22/18	0.0171	76.6	70.7	0.41	--	107	490
	09/18/18	2.09	70.8	72.5	0.353 J	6.97	114	505
	06/03/19	1.9	73.9	73	0.043	7.31	103	514
	10/02/19	1.83	73.6	76.4	0.357 J	7.29	115	507
	06/09/20	2.51	69.7	80.9	0.4	6.95	122	507

APPENDIX III ANALYTICAL RESULTS COLETO CREEK PRIMARY ASH POND

Sample Location	Date Sampled	B	Ca	Cl	FI	field pH	SO ${ }_{4}$	TDS
Prediction Limit:		1.26	143	118	0.61	$\begin{aligned} & \hline 6.51 \\ & 7.33 \\ & \hline \end{aligned}$	148	966
MW-9	03/30/17	3.38	54.5	71	1.13	7.35	62	406
	05/10/17	3.16	52.7	66	1.29	7.48	59	410
	05/17/17	3.18	53.3	67	1.26	7.34	58	440
	06/07/17	3.12	52	67	1.26	7.03	57	380
	06/21/17	3.44	60.7	66	1.39	7.09	60	393
	06/26/17	3.31	60.6	67	1.4	7.23	61	407
	07/11/17	3.35	52.1	64	1.3	7.51	60	927
	07/19/17	3.4	50.2	63	1.4	7.29	62	407
	11/08/17	2.84	49.4	62	1.56	7.54	50	397
	06/21/18	2.94	46.9	71.5	1.5	--	35.7	370
	09/18/18	2.79	51.7	71.4	1.1	6.99	49.1	394
	06/05/19	4.26	48	74.7	1.38	7.4	66.3	421
	10/03/19	3.97	71.3	70.9	1.41	7.37	63.6	462
	09/06/20	4.10	47.4	63.7	1.58	7.21	54.9	397
MW-10	03/30/17	3.74	92.1	151	0.54	6.99	130	804
	05/10/17	7.32	56.1	82	0.83	7.23	96	582
	05/16/17	7.45	62.7	81	0.81	7.28	95	612
	06/08/17	7.54	58.1	77	0.84	7.23	92	604
	06/21/17	9.22	60.7	77	0.84	6.97	92	550
	06/26/17	8.21	63.4	78	0.84	7.14	92	530
	07/11/17	7.99	49.5	76	0.84	7.4	88	617
	07/19/17	8.74	56.6	74	0.86	7.25	86	533
	11/08/17	8.72	77.7	74	0.88	7.35	81	590
	06/22/18	8.47	84.4	76.7	0.88	--		550
	09/18/18	8.45	51.9	81.4	0.759	6.98	95.1	577
	06/03/19	8.28	43.1	87.2	0.953	7.52	97.7	587
	10/02/19	8.28	44.2	85.5	0.891	7.46	104	575
	06/09/20	7.58	46.9	76.9	0.818	7.13	96.5	575
MW-11	05/10/17	1.35	64.1	55	0.82	7.27	61	394
	05/16/17	1.39	62.3	52	0.85	7.29	58	362
	05/18/17	1.27	61.6	47.8	0.94		52.4	390
	06/07/17	1.23	59.8	48	0.93	7.25	50	372
	06/21/17	1.19	73.1	43.7	1.04	7.15	44	373
	06/26/17	1.15	82	44	1	7.3	43	407
	07/11/17	1.23	44.7	44	1	7.55	42	603
	07/19/17	1.17	48.6	43	1.01	7.21	42	360
	11/08/17	1.13	52.2	43	1.02	7.61	56	367
	06/21/18	1.07	69.6	44.3	0.96	--	61.4	355
	09/18/18	1.12	39.3	44.6	0.754	7.00	44.4	354
	06/03/19	1.27	43.4	42.2	0.837	7.55	44.8	372
	10/02/19	1.22	43.4	41.4	0.768	7.43	10.8	355
	06/09/20	1.20	56.6	44.4	0.571	6.88	67.7	414

Notes:

1. All concentrations in $\mathrm{mg} / \mathrm{L} . \mathrm{pH}$ in standard units.
2. J - concentration is below sample quantitation limit; result is an estimate.

Sample Location	Date Sampled	Sb	As	Ba	Be	Cd	Cr	Co	FI	Pb	Li	Hg	Mo	Se	TI	Ra 226	Ra 228	Ra 226/228 Combined
GWPS:		0.006	0.128	2	0.004	0.005	0.10	0.0499	4	0.015	0.04	0.002	0.10	0.05	0.002	--	--	5
Upgradient Wells																		
BV-5	03/29/17	<0.0025	0.00856	0.04510	<0.001	<0.001	<0.005	0.0497	0.540	<0.001	0.0206	<0.0002	0.00925	<0.005	<0.0015	--	--	1.503
	05/11/17	<0.0025	0.00786	0.03680	<0.001	<0.001	<0.005	0.0462	0.570	<0.001	0.018	<0.0002	0.0101	<0.005	<0.0015	--	--	1.555
	05/16/17	<0.0025	0.00885	0.04520	<0.001	<0.001	<0.005	0.0495	0.550	0.00151	0.0171	<0.0002	0.0102	<0.005	<0.0015	--	--	0.7550
	06/07/17	<0.0025	0.00829	0.03760	<0.001	<0.001	<0.005	0.0483	0.560	<0.001	0.0207	<0.0002	0.01	<0.005	<0.0015	--	--	1.457
	06/20/17	<0.0025	0.00841	0.04010	<0.001	<0.001	<0.005	0.0499	0.580	<0.001	0.0208	<0.0002	0.0114	<0.005	<0.0015	--	--	0.4920
	06/27/17	<0.0025	0.0083	0.04120	<0.001	<0.001	<0.005	0.046	0.550	<0.001	0.0198	<0.0002	0.00942	<0.005	<0.0015	--	--	2.247
	07/12/17	<0.0025	0.00849	0.04160	<0.001	<0.001	<0.005	0.0484	0.560	<0.001	0.0188	<0.0002	0.0096	<0.005	<0.0015	--	--	2.139
	07/18/17	<0.0025	0.00951	0.05780	<0.001	<0.001	0.00739	0.0453	0.560	0.00288	0.022	<0.0002	0.0083	<0.005	<0.0015	--	--	1.260
	06/19/18	<0.0025	0.0106	0.0336	<0.001	<0.001	0.0022 J	0.0513 J	0.970	<0.00074 J	0.016	<0.0002	0.0139	<0.005	<0.0015	0.327	<1.680	2.01
	09/18/18	NA	0.00949	0.0436	NA	NA	0.00228 J	0.0487	0.667	0.00039 J	0.0206	NA	0.0102	NA	NA	0.302	<0.608	0.91
	06/05/19	<0.0008	0.0092	0.042	<0.0003	0.0009 J	<0.002	0.0466	0.769	0.00144	0.0201	<0.00008	0.0109	<0.0020	<0.0005	<0.687	<1.130	<1.82
	10/03/19	<0.0008	0.00941	0.0441	<0.0003	<0.0003	0.00285 J	0.0437	0.753	0.0039	0.0172	<0.00008	0.0122	<0.0020	<0.0005	0.928	1.35	2.28
	06/09/20	<0.0008	0.00879	0.0462	<0.0003	<0.0003	0.00818	0.0486	0.498	0.00162	0.0201	<0.0000800	0.0120	<0.00200	<0.000500	0.363	0	0.363
BV-21	03/28/17	<0.0025	0.0954	0.09630	<0.001	<0.001	<0.005	0.0083	0.610	<0.001	<0.010	<0.0002	<0.005	<0.005	<0.0015	--	--	1.390
	05/09/17	<0.0025	0.108	0.09720	<0.001	<0.001	<0.005	0.00852	0.610	<0.001	<0.010	<0.0002	<0.005	<0.005	<0.0015	--	--	0.7460
	05/17/17	<0.0025	0.117	0.09440	<0.001	<0.001	<0.005	0.00878	0.580	<0.001	<0.010	<0.0002	<0.005	<0.005	<0.0015	--	--	0.9190
	06/06/17	<0.0025	0.118	0.09540	<0.001	<0.001	<0.005	0.00806	0.590	<0.001	<0.010	<0.0002	<0.005	<0.005	<0.0015	--	--	0.6710
	06/20/17	<0.0025	0.121	0.1010	<0.001	<0.001	<0.005	0.00744	0.610	<0.001	<0.010	<0.0002	<0.005	<0.005	<0.0015	--	--	1.672
	06/27/17	<0.0025	0.128	0.1040	<0.001	<0.001	<0.005	0.00841	0.600	<0.001	<0.010	<0.0002	<0.005	<0.005	<0.0015	--	--	0.5200
	07/10/17	<0.0025	0.123	0.1100	<0.001	<0.001	<0.005	0.0086	0.580	<0.001	<0.010	<0.0002	<0.005	<0.005	<0.0015	--	--	0.8050
	07/18/17	<0.0025	0.115	0.1010	<0.001	<0.001	<0.005	0.00784	0.600	<0.001	<0.010	<0.0002	<0.005	<0.005	<0.0015	--	--	4.812
	06/25/18	<0.0025	0.0697	0.104	<0.001	<0.001	<0.005	0.00682	0.620	<0.00074 J	0.00513 J	<0.0002	0.00428 J	<0.005	<0.0015	0.267	<1.417	1.68
	09/18/18	NA	0.0625	0.109	NA	NA	<0.002	0.0064	0.479	0.000555 J	0.00624 J	NA	0.00450 J	NA	NA	<0.31	<0.528	<0.838
	06/05/19	<0.0008	0.0531	0.105	<0.0003	<0.0003	<0.002	0.00574	0.602	0.000354	0.00558 J	<0.00008	0.00685	<0.0020	<0.0005	0.65	<0.687	1.337
	10/03/19	<0.0008	0.049	0.0963	<0.0003	<0.0003	<0.002	0.00542	0.588	0.000333 J	<0.005	<0.00008	0.00784	<0.0020	<0.0005	0.346	1.54	1.89
	06/09/20	<0.0008	0.0793	0.132	<0.0003	<0.0003	0.007	0.00437 J	0.522	0.00033 J	<0.005	<0.00008	0.00698	<0.0020	<0.0005	0.211	1.15	1.36
MW-8	03/28/17	<0.0025	0.00839	0.0623	<0.001	<0.001	<0.005	0.0236	0.490	<0.001	0.0111	<0.0002	0.0154	<0.005	<0.0015	--	--	0.4520
	05/09/17	<0.0025	0.00848	0.064	<0.001	<0.001	<0.005	0.0272	0.440	<0.001	0.0111	<0.0002	0.0157	<0.005	<0.0015	--	--	0.4740
	05/15/17	<0.0025	0.00926	0.064	<0.001	<0.001	<0.005	0.0311	0.440	<0.001	0.0112	<0.0002	0.016	<0.005	<0.0015	--	--	0.6140
	06/06/17	<0.0025	0.00912	0.0616	<0.001	<0.001	0.00744	0.0308	0.450	<0.001	0.0107	<0.0002	0.0157	<0.005	<0.0015	--	--	0.1320
	06/20/17	<0.0025	0.00885	0.0669	<0.001	<0.001	<0.005	0.0297	0.430	<0.001	0.0121	<0.0002	0.0171	<0.005	<0.0015	--	--	0.5380
	06/27/17	<0.0025	0.00939	0.0633	<0.001	<0.001	<0.005	0.0314	0.440	<0.001	0.0115	<0.0002	0.0163	<0.005	<0.0015	--	--	0.9390
	07/10/17	<0.0025	0.00902	0.0631	<0.001	<0.001	<0.005	0.031	0.440	<0.001	0.0112	<0.0002	0.0165	<0.005	<0.0015	--	--	0.8040
	07/18/17	<0.0025	0.00937	0.0635	<0.001	<0.001	<0.005	0.0352	0.460	<0.001	0.0118	<0.0002	0.0185	<0.005	<0.0015	--	--	2.113
	06/25/18	<0.0025	0.0101	0.0632	<0.001	<0.001	<0.005	0.029	0.520	0.0011	0.0107	<0.0002	0.017	<0.005	<0.0015	<0.234	<1.204	<1.44
	09/18/18	NA	0.00896	0.0582	NA	NA	<0.00200	0.0237	0.402	<0.0003	0.0117	NA	0.0178	NA	NA	<0.281	<0.558	<0.84
	06/05/19	<0.0008	0.00946	0.0596	<0.0003	<0.0003	<0.002	0.0217	0.497	0.000355 J	0.011	<0.00008	0.0156	<0.0020	<0.0005	0.528	<0.619	1.147
	10/03/19	<0.0008	0.0083	0.0607	<0.0003	<0.0003	<0.002	0.231	0.419	<0.0003	0.0106	<0.00008	0.0144	<0.0020	<0.0005	0.224	0.241	0.465
	06/09/20	<0.0008	0.00856	0.0599	<0.0003	<0.0003	<0.002	0.0174	0.392 J	0.000479 J	0.0104	<0.00008	0.0158	<0.002	<0.0005	0.304	2.64	2.94

$\begin{aligned} & \hline \hline \text { Sample } \\ & \text { Location } \end{aligned}$	Date Sampled	Sb	As	Ba	Be	Cd	Cr	Co	FI	Pb	Li	Hg	Mo	Se	TI	Ra 226	Ra 228	Ra 226/228 Combined
GWPS:		0.006	0.128	2	0.004	0.005	0.10	0.0499	4	0.015	0.04	0.002	0.10	0.05	0.002	--	--	5
Diowngradient Wells																		
MW-4	03/28/17	<0.0025	0.00738	0.0575	<0.001	<0.001	<0.005	0.007	0.610	<0.001	0.0192	<0.0002	<0.005	<0.005	<0.0015	--	--	0.4600
	05/09/17	<0.0025	0.00733	0.0576	<0.001	<0.001	<0.005	0.007	0.610	<0.001	0.0182	<0.0002	<0.005	<0.005	<0.0015	--	--	0.6940
	05/15/17	<0.0025	0.00794	0.0556	<0.001	<0.001	<0.005	0.007	0.600	<0.001	0.0166	<0.0002	<0.005	<0.005	<0.0015	--	--	1.451
	06/06/17	<0.0025	0.0077	0.0556	<0.001	<0.001	<0.005	0.007	0.630	<0.001	0.0179	<0.0002	<0.005	<0.005	<0.0015	--	--	0.1740
	06/20/17	<0.0025	0.0081	0.0596	<0.001	<0.001	0.00877	0.008	0.620	<0.001	0.0195	<0.0002	<0.005	<0.005	<0.0015	--	--	0.5430
	06/27/17	<0.0025	0.00786	0.0554	<0.001	<0.001	<0.005	0.007	0.630	<0.001	0.0185	<0.0002	<0.005	<0.005	<0.0015	--	--	0.6390
	07/10/17	<0.0025	0.00846	0.0582	<0.001	<0.001	<0.005	0.009	0.620	<0.001	0.0187	<0.0002	<0.005	<0.005	<0.0015	--	--	1.069
	07/18/17	<0.0025	0.00815	0.0549	<0.001	<0.001	<0.005	0.008	0.630	<0.001	0.0183	<0.0002	<0.005	<0.005	<0.0015	--	--	0.1910
	06/21/18	<0.0025	0.00843	0.0591	<0.001	<0.001	<0.005	0.00711	0.600	<0.00072 J	0.0175	<0.0002	<0.005	<0.005	<0.0015	0.370	1.705	2.08
	09/18/18	NA	0.00793	0.0577	NA	NA	<0.002	0.00673	0.582	<0.0003	0.019	NA	<0.002	NA	NA	1.610	<0.543	2.15
	06/05/19	<0.0008	0.0079	0.0571	<0.0003	<0.0003	<0.002	0.00729	0.670	<0.0003	0.0195	<0.00008	<0.002	<0.0020	<0.0005	0.436	<0.547	0.98
	10/03/19	<0.0008	0.00764	0.0532	<0.0003	<0.0003	<0.002	0.00699	0.559	0.00101	0.017	<0.00008	<0.002	<0.002	<0.0005	1.85	-0.102	1.85
	06/09/20	<0.0008	<0.002	0.0376	<0.0003	<0.0003	<0.002	<0.003	0.205 J	<0.0003	0.00751 J	<0.00008	0.0021 J	<0.002	<0.0005	0.0553	0.264	0.319
MW-5	03/30/17	<0.0025	0.00953	0.0748	<0.001	<0.001	<0.005	<0.005	0.510	<0.001	0.0192	<0.0002	<0.005	<0.005	<0.0015	--	--	1.443
	05/10/17	<0.0025	0.00955	0.0706	<0.001	<0.001	<0.005	<0.005	0.540	<0.001	0.0179	<0.0002	<0.005	<0.005	<0.0015	--	--	0.6150
	05/16/17	<0.0025	0.00967	0.0708	<0.001	<0.001	<0.005	<0.005	0.500	<0.001	0.0181	<0.0002	<0.005	<0.005	<0.0015	--	--	0.6410
	06/08/17	<0.0025	0.00908	0.0701	<0.001	<0.001	<0.005	<0.005	0.550	<0.001	0.0200	<0.0002	<0.005	<0.005	<0.0015	--	--	0.1790
	06/21/17	<0.0025	0.00917	0.0767	<0.001	<0.001	<0.005	<0.005	0.530	<0.001	0.0197	<0.0002	<0.005	<0.005	<0.0015	--	--	0.1060
	06/26/17	<0.0025	0.00955	0.0735	<0.001	<0.001	<0.005	<0.005	0.540	<0.001	0.0204	<0.0002	<0.005	<0.005	<0.0015	--	--	1.112
	07/11/17	<0.0025	0.00945	0.0712	<0.001	<0.001	<0.005	<0.005	0.520	<0.001	0.0183	<0.0002	<0.005	<0.005	<0.0015	--	--	0.5120
	07/19/17	<0.0025	0.00941	0.0735	<0.001	<0.001	<0.005	<0.005	0.530	<0.001	0.0186	<0.0002	<0.005	<0.005	<0.0015	--	--	0.1910
	06/25/18	<0.0025	0.00998	0.0733	<0.001	<0.001	<0.005	<0.005	0.560	<0.001	0.0182	<0.0002	<0.005	<0.005	<0.0015	<0.251	<1.369	<1.62
	09/18/18	NA	0.00945	0.0697	NA	NA	<0.002	<0.003	0.493	<0.0003	0.0195	NA	<0.002	NA	NA	<0.282	<0.606	<0.89
	06/03/19	<0.0008	0.00948	0.0678	<0.0003	<0.0003	<0.002	<0.003	0.596	<0.0003	0.0206	<0.00008	<0.002	<0.002	<0.0005	<0.619	<0.917	<1.54
	10/02/19	<0.0008	0.00918	0.067	<0.0003	<0.0003	<0.002	<0.003	0.543	<0.0003	0.0187	<0.00008	<0.002	<0.002	<0.0005	0.47	0.117	0.587
	06/09/20	<0.0008	0.00891	0.0689	<0.0003	<0.0003	<0.002	<0.003	0.370 J	<0.0003	0.0192	<0.00008	<0.002	<0.002	<0.0005	0.171	0.211	0.382
MW-6	03/29/17	<0.0025	0.00827	0.0900	<0.001	<0.001	<0.005	<0.005	0.380	<0.001	<0.010	<0.0002	0.00749	<0.005	<0.0015	--	--	1.009
	05/11/17	<0.0025	0.00738	0.0758	<0.001	<0.001	<0.005	<0.005	0.370	<0.001	0.0101	<0.0002	0.0176	<0.005	<0.0015	--	--	0.8250
	05/16/17	<0.0025	0.00803	0.0784	<0.001	<0.001	<0.005	<0.005	0.360	<0.001	<0.010	<0.0002	0.0131	<0.005	<0.0015	--	--	0.7740
	06/07/17	<0.0025	0.00772	0.0798	<0.001	<0.001	<0.005	<0.005	0.370	<0.001	<0.010	<0.0002	0.00949	<0.005	<0.0015	--	--	0.6640
	06/22/17	<0.0025	0.00764	0.083	<0.001	<0.001	<0.005	<0.005	0.370	<0.001	0.0109	<0.0002	0.0084	<0.005	<0.0015	--	--	0.2150
	06/28/17	<0.0025	0.00779	0.0842	<0.001	<0.001	<0.005	<0.005	0.370	<0.001	<0.010	<0.0002	0.00806	<0.005	<0.0015	--	--	1.730
	07/12/17	<0.0025	0.0077	0.0819	<0.001	<0.001	<0.005	<0.005	0.350	<0.001	<0.010	<0.0002	0.0076	<0.005	<0.0015	--	--	1.012
	07/20/17	<0.0025	0.001	0.0010	<0.001	<0.001	<0.005	<0.005	0.390	<0.001	<0.010	<0.0002	0.001	<0.005	<0.0015	--	--	0.3660
	06/22/18	<0.0025	0.00861	0.0912	<0.001	<0.001	<0.005	<0.005	0.410	<0.001	0.00924 J	<0.0002	0.00837	<0.005	<0.0015	<0.309	<1.243	<1.55
	09/18/18	NA	0.008	0.0828	NA	NA	<0.002	<0.003	0.353 J	0.000349 J	0.0107	NA	0.0274	NA	NA	<0.196	1.06	1.256
	06/03/19	<0.0008	0.00799	0.0894	<0.0003	<0.0003	<0.002	<0.003	0.438	<0.0003	0.00968 J	<0.00008	0.00884	<0.0020	<0.0005	<0.407	<0.623	<1.03
	10/02/19	<0.0008	0.00775	0.0876	<0.0003	<0.0003	<0.002	<0.003	0.357 J	<0.0003	0.00875 J	<0.00008	0.00875	<0.0020	<0.0005	0.715	1.23	1.94
	06/09/20	<0.0008	0.00799	0.078	<0.0003	<0.0003	<0.002	<0.003	0.4	<0.0003	0.0113	<0.00008	0.0357	<0.002	<0.0005	0.00643	0.127	0.134

$\begin{aligned} & \hline \hline \text { Sample } \\ & \text { Location } \end{aligned}$	Date Sampled	Sb	As	Ba	Be	Cd	Cr	Co	FI	Pb	Li	Hg	Mo	Se	TI	Ra 226	Ra 228	Ra 226/228 Combined
GWPS:		0.006	0.128	2	0.004	0.005	0.10	0.0499	4	0.015	0.04	0.002	0.10	0.05	0.002	--	--	5
MW゙-9	03/30/17	<0.0025	0.00909	0.121	<0.001	<0.001	<0.005	<0.005	1.130	0.00217	<0.010	<0.0002	0.0747	<0.005	<0.0015	--	--	1.353
	05/10/17	<0.0025	0.00996	0.105	<0.001	<0.001	<0.005	<0.005	1.290	0.00433	<0.010	<0.0002	0.0900	<0.005	<0.0015	--	--	0.4800
	05/17/17	<0.0025	0.00958	0.101	<0.001	<0.001	<0.005	<0.005	1.260	0.00377	<0.010	<0.0002	0.0899	<0.005	<0.0015	--	--	0.3600
	06/07/17	<0.0025	0.0093	0.100	<0.001	<0.001	<0.005	<0.005	1.260	<0.001000	<0.010	<0.0002	0.0926	<0.005	<0.0015	--	--	0.4760
	06/21/17	<0.0025	0.00937	0.119	<0.001	<0.001	<0.005	<0.005	1.390	0.00136	<0.010	<0.0002	0.1020	<0.005	<0.0015	--	--	1.579
	06/26/17	<0.0025	0.0107	0.114	<0.001	<0.001	0.0102	<0.005	1.400	0.00217	<0.010	<0.0002	0.1060	<0.005	<0.0015	--	--	1.023
	07/11/17	<0.0025	0.0105	0.103	<0.001	<0.001	0.00566	<0.005	1.300	0.00124	<0.010	<0.0002	0.1050	<0.005	<0.0015	--	--	0.8630
	07/19/17	<0.0025	0.0103	0.101	<0.001	<0.001	<0.005	<0.005	1.400	<0.001000	<0.010	<0.0002	0.1130	<0.005	<0.0015	--	--	0.5840
	06/21/18	<0.0025	0.0104	0.100	<0.001	<0.001	<0.005	<0.005	1.500	<0.00072 J	<0.01	<0.0002	0.0617	<0.005	<0.0015	0.608	<1.303	1.91
	09/18/18	NA	0.0103	0.0985	NA	NA	<0.002	<0.003	1.100	<0.000300	0.00639 J	NA	0.0502	NA	NA	0.618	<0.638	1.26
	06/05/19	<0.0008	0.0109	0.102	<0.0003	<0.0003	<0.002	<0.003	1.380	<0.0003	0.00545 J	<0.00008	0.0683	<0.002	<0.0005	<0.402	<0.683	<1.085
	10/03/19	<0.0008	0.0109	0.128	0.000689 J	<0.0003	<0.002	0.00337 J	1.410	0.00876	0.0064 J	<0.00008	0.0507	0.0041 J	<0.0005	0.577	0.747	1.32
	06/09/20	<0.0008	0.0126	0.0865	<0.0003	<0.0003	<0.002	<0.003	1.58	0.000577 J	<0.005	<0.00008	0.0774	<0.002	<0.0005	0.132	-0.0432	0.132
MW-10	03/30/17	<0.0025	0.0110	0.0844	<0.001	<0.001	<0.005	<0.005	0.540	<0.001	0.0179	<0.0002	0.0342	<0.005	<0.0015	--	--	1.439
	05/10/17	<0.0025	0.0146	0.0554	<0.001	<0.001	0.00533	<0.005	0.830	<0.001	0.0122	<0.0002	0.102	<0.005	<0.0015	--	--	0.8880
	05/16/17	<0.0025	0.0150	0.0598	<0.001	<0.001	<0.005	<0.005	0.810	<0.001	0.0123	<0.0002	0.0987	<0.005	<0.0015	--	--	0.1830
	06/08/17	<0.0025	0.0144	0.0544	<0.001	<0.001	<0.005	<0.005	0.840	<0.001	0.0115	<0.0002	0.106	<0.005	<0.0015	--	--	0.06700
	06/21/17	<0.0025	0.0149	0.054	<0.001	<0.001	<0.005	<0.005	0.840	<0.001	0.0133	<0.0002	0.113	<0.005	<0.0015	--	--	0.7090
	06/26/17	<0.0025	0.0160	0.0587	<0.001	<0.001	0.0177	<0.005	0.840	<0.001	0.0137	<0.0002	0.116	<0.005	<0.0015	--	--	0.7180
	07/11/17	<0.0025	0.0149	0.0508	<0.001	<0.001	<0.005	<0.005	0.840	<0.001	0.0119	<0.0002	0.114	<0.005	<0.0015	--	--	1.713
	07/19/17	<0.0025	0.0146	0.0633	<0.001	<0.001	0.00963	<0.005	0.860	<0.001	0.0127	<0.0002	0.121	<0.005	<0.0015	--	--	2.132
	06/22/18	<0.0025	0.0154	0.0692	<0.001	<0.001	<0.005	<0.005	0.88	<0.00095 J	0.0122	<0.0002	0.134	<0.005	<0.0015	<0.212	<1.192	<1.40
	09/18/18	NA	0.0140	0.0446	NA	NA	<0.002	<0.003	0.759	<0.0003	0.0141	NA	0.125	NA	NA	0.151	<0.848	0.999
	06/03/19	<0.0008	0.0142	0.0420	<0.0003	<0.0003	<0.002	<0.003	0.953	<0.0003	0.0139	<0.00008	0.109	<0.002	<0.0005	<0.203	0.814	1.017
	10/02/19	<0.0008	0.0139	0.0406	<0.0003	<0.0003	<0.002	<0.003	0.891	<0.0003	0.0127	<0.00008	0.106	<0.002	<0.0005	-0.0288	0.901	0.901
	06/09/20	<0.0008	0.014	0.0444	<0.0003	<0.0003	<0.002	0.00334 J	0.818	<0.0003	0.013	<0.00008	0.088	<0.002	<0.0005	0.0959	1.22	1.31
MW-11	05/10/17	<0.0025	0.0156	0.0899	<0.001	<0.001	<0.005	<0.005	0.82	0.00239	0.0125	<0.0002	0.0082	<0.005	<0.0015	--	--	0.4560
	05/16/17	<0.0025	0.018	0.0869	<0.001	<0.001	0.00731	<0.005	0.85	0.0113	0.0144	<0.0002	0.00841	<0.005	<0.0015	--	--	1.418
	05/18/17	<0.0025	0.0188	0.0779	<0.001	<0.001	<0.005	<0.005	0.94	0.00204	0.0122	<0.0002	0.00781	<0.005	<0.0015	--	--	0.6390
	06/07/17	<0.0025	0.0175	0.0835	<0.001	<0.001	<0.005	<0.005	0.93	0.00171	0.0137	<0.0002	0.00744	<0.005	<0.0015	--	--	0.5020
	06/21/17	<0.0025	0.0203	0.0822	<0.001	<0.001	<0.005	<0.005	1.04	0.00322	0.0136	<0.0002	0.00659	<0.005	<0.0015	--	--	1.084
	06/26/17	<0.0025	0.0237	0.0954	<0.001	<0.001	0.0131	<0.005	1.00	0.00593	0.0176	<0.0002	0.00796	<0.005	<0.0015	--	--	3.067
	07/11/17	<0.0025	0.0212	0.0725	<0.001	<0.001	<0.005	<0.005	1.00	<0.001	0.012	<0.0002	0.00765	<0.005	<0.0015	--	--	0.7530
	07/19/17	<0.0025	0.0224	0.0709	<0.001	<0.001	0.00762	<0.005	1.01	0.0018	0.0137	<0.0002	0.00783	<0.005	<0.0015	--	--	1.551
	06/21/18	<0.0025	0.0367	0.0805	<0.001	<0.001	<0.005	<0.005	0.96	0.00241	0.0135	<0.0002	0.00465	<0.005	<0.0015	<0.234	<1.312	<1.55
	09/18/18	NA	0.0382	0.0645	NA	NA	<0.002	<0.003	0.754	<0.0003	0.0139	NA	0.00445 J	NA	NA	<0.188	0.597	0.785
	06/03/19	<0.0008	0.0379	0.0834	<0.0003	<0.0003	<0.002	<0.003	0.0837	<0.0003	0.0154	<0.00008	0.00316 J	<0.002	<0.0005	<0.481	0.991	1.472
	10/02/19	<0.0008	0.0379	0.0744	<0.0003	<0.0003	<0.002	<0.003	0.768	0.000391 J	0.014	<0.00008	0.00259 J	<0.002	<0.0005	1.57	0.478	2.040
	06/09/20	<0.0008	0.0293	0.0948	<0.0003	<0.0003	<0.002	<0.003	0.571	0.000675 J	0.0156	<0.00008	0.00215 J	<0.002	<0.0005	0.163	1.31	1.480

Notes.

1. All concentrations in mg / L. $\mathrm{Ra} 226 / 228$ Combined in $\mathrm{pCli} / \mathrm{L}$
2. J - concentration is below sample quantitation limit; result is an estimate.
a
3. $N A=$ Not analyzed.

APPENDIX C5 - SITE HYDROGEOLOGY AND STRATIGRAPHIC CROSSSECTIONS OF THE SITE

CONCEPTUAL SITE MODEL AND DESCRIPTI ON OF SITE HYDROGEOLOGY (PRIMARY ASH POND)

The Coleto Creek conceptual site model (CSM) and Description of Site Hydrogeology for the Primary Ash Pond (PAP), located near Fannin, Texas are described in the following sections.

REGI ONAL SETTI NG

The Site is located on the Lissie Formation which is part of the Houston Group (BBA, 2017). The Lissie Formation is a deltaic plain that consists primarily of undifferentiated alluvium, fine-grained channel facies, and fine-grained overbank facies (Moore and Wermund, 1993). The Lissie Formation is middle Pleistocene in age and is described as primarily sands, silts, and clays containing iron and manganese nodules, calcareous concretions, and organic-rich lenses (Moore and Wermund, 1993). Below the Lissie Formation are the Goliad Formation, the Oakville Sandstone/Fleming Formation, and the Catahoula Formations which consist primarily of sand, clays, sands, and tuffs respectively (Nicot et. al, 2010).

Within the central coastal plain of Texas, the Lissie Formation's outcrop is a belt ranging from approximately 10 to 20 miles wide (Solis, 1981). Located within the western region of the Gulf Coast Basin, Lissie sediments extend into the subsurface, dipping southeast at 5 to 20 ft per mile (Doering, 1935). Maximum outcrop thickness is estimated to be about 600 ft in East Texas and 400 ft in South Texas (Plummer, 1932).

SITE GEOLOGY

The Site is located on the Lissie Formation described above (BBA, 2017). Surficial soils in the vicinity of the Site include the following (described in order from shallow to deep) based on Site soil borings (BBA, 2017):

- Upper Confining Unit (Unit 1) - a laterally continuous low permeability unit approximately 11 to 25 feet thick that contains primarily sandy clay and clayey sand with intermittent layers of silty clay.
- Intermediate Sand Unit (Unit 2, Uppermost Aquifer) - a laterally continuous sand and silty sand unit approximately 40 to 54 feet thick that contains discontinuous cohesive layers and variable mineralized zones.
- Lower Confining Unit (Unit 3) - a laterally continuous basal clay unit greater than 25 feet hick consisting primarily of clay and silty clay.
The geologic units discussed above are shown on cross-sections attached to this demonstration.

SITE HYDROGEOLOGY

The Site is located in the Coleto Creek Watershed, adjacent to Sulphur Creek, part of the Coleto Creek Reservoir. The Coleto Creek Reservoir was constructed in the 1970s for use as a cooling pond. The Uppermost Aquifer is monitored by nine monitoring wells surrounding the PAP as part of the CCR groundwater monitoring system. All wells included in the CCR monitoring system are screened in the intermediate sand unit (i.e., uppermost aquifer) at the Site (BBA, 2017).

The CCR groundwater monitoring system consists of nine monitoring wells installed in the Uppermost Aquifer and adjacent to the PAP (BV-5, BV-21, MW-4, MW-5, MW-6, MW-8, MW-9, MW10, and MW-11) (see Monitoring Well Location Map, and Well Construction Diagrams and Drilling Logs attached to this demonstration). The unit utilizes three background monitoring wells (BV-5, BV-21, and MW-8) as part of the CCR groundwater monitoring system.

RAMBCLL

Hydraulic Conductivity

Hydraulic conductivity results from field testing (i.e., slug tests) at monitoring wells BV-5, BV-21, BV-22, MW-9, MW-10, and MW-11 in the intermediate sand unit (Uppermost Aquifer) ranged from approximately 5.14×10^{-4} to 1.37×10^{-2} centimeters per second (cm / s), with a geometric mean of approximately $3.35 \times 10^{-5} \mathrm{~cm} / \mathrm{s}$ (BBA, 2017). Generally, hydraulic conductivities upgradient of the PAP were higher than hydraulic conductivities downgradient of the PAP, which was attributed to the varying clay and silt contents of the sandy soils (BBA, 2017).

Groundwater Elevations, Flow Direction and Velocity

Groundwater elevations adjacent to the Site for the eight CCR background monitoring events from March to July 2017 ranged from approximately 101.1 feet North American Vertical Datum of 1988 (NAVD88) to 113.5 feet NAVD88, corresponding to groundwater depths from approximately 14.3 to 29.9 feet below ground surface (BBA, 2017). Groundwater typically flows east to southeast across the PAP towards Sulphur Creek, part of the Coleto Creek Reservoir. During the background monitoring events, the average horizontal hydraulic gradient was calculated as 0.0027 feet per foot ($\mathrm{ft} / \mathrm{ft}$) and $0.0029 \mathrm{ft} / \mathrm{ft}$ across the northern and southern boundaries of the PAP. The average groundwater flow velocity was between 0.13 and 9.46 feet per day (ft/day) (BBA, 2017). These groundwater elevations, flow direction, and flow velocities are consistent with the groundwater potentiometric map for October 2,2019 provided as an attachment to this demonstration.

REFERENCES

Doering, JA. 1935. Post-Fleming surface formations of coastal southeast Texas and southern Louisiana: American Association of Petroleum Geologists Bulletin, v.19, no.5, p. 651-688.

Moore, David W. and Wermund, E.G., Jr. 1993. Quaternary Geologic Map of Austin $4^{\circ} \times 6^{\circ}$ Quadrangle, United States. Quaternary Geologic Atlas of the United States. Map I-1420 (NH-14). Scale 1: 1,000,000.

Nicot, Jean-Philippe, Bridget R Scanlon, Changbing Yang, and John B Gates. 2010. Geological and Geographical Attributes of the South Texas Uranium Province, Texas Commission on Environmental Quality and Bureau of Economic Geology. April 2010.

Plummer, FB. 1932. Cenozoic Systems in Texas, Part 3, in The Geology of Texas: University of Texas, Austin, Bulletin 3232, p.729-795.

Solis, Raul Fernando. 1981. Upper Tertiary and Quaternary Depositional Systems, Central Coastal Plain, Texas, University of Texas at Austin Bureau of Economic Geology Report of Investigations No. 108.

APPENDIX C6 - STRUCTURAL STABILITY AND SAFETY FACTOR ASSESSMENT

Coal Combustion Residuals
 Surface Impoundment
 History of Construction and
 Initial Hazard Potential Assessment, Structural Integrity Assessment, and Safety Factor Assessment

Coleto Creek Power Plant
Fannin, Texas

OCTOBER 13, 2016

Prepared for:

Coleto Creek Power, LP
Coleto Creek Power Plant
Fannin, Texas

Prepared by:
Bullock, Bennett \& Associates, LLC
Engineering and Geoscience
Registrations: Engineering F-8542, Geoscience 50127
165 N. Lampasas Street
Bertram, Texas 78605
(512) 355-9198

BBA Project No. 15214-5

Certification Statement 40 CFR § 257.73 - Structural Integrity Criteria for Existing CCR Surface Impoundments

CCR Unit: Coleto Creek Power, LP; Coleto Creek Power Station; Primary and Secondary Ash Ponds

I, Daniel Bullock, being a Registered Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this assessment report has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the information contained in the History of Construction and Initial Hazard Potential Assessment, Structural Integrity Assessment, and Safety Factor Assessment, dated October 13, 2016, meets the requirements of $40 C F R \S 257.73$.

Daniel B. Bullock, P.E. (TX 82596)

TABLE OF CONTENTS
LIST OF TABLES ii
LIST OF FIGURES ii
LIST OF APPENDICES ii
1.0 INTRODUCTION 1
2.0 HISTORY OF CONSTRUCTION. 2
2.1 Owner and Operator of CCR Unit 2
2.2 CCR Unit Location 2
2.3 Ash Pond Statement of Purpose 2
2.4 Watershed Description 3
2.5 Ash Pond Foundation and Abutment Material Description 4
2.6 Ash Pond Construction Summary 4
2.7 Ash Pond Drawings 7
2.8 Ash Pond Instrumentation 7
2.9 Ash Pond Area-Capacity Curves 7
2.10 Ash Pond Spillway and Diversion Design Features 7
2.11 Ash Pond Surveillance, Maintenance, and Repair Provisions 8
2.12 Ash Pond Structural Stability History 8
3.0 INITIAL POTENTIAL HAZARD CLASS ASSESSMENT 9
3.1 Dam Breach Analysis 10
3.2 Loss of Life Evaluation 11
3.3 Economic and/or Environmental Loss Evaluation 12
3.4 Hazard Potential Classification 13
4.0 INITIAL STRUCTURAL STABILITY ASSESSMENT 14
5.0 INITIAL SAFETY FACTOR ASSESSMENTS 17
5.1 Liquefaction Assessment 24
6.0 SUMMARY 27
7.0 REFERENCES 28

LIST OF TABLES

Table 5-1 Soil Strength Parameters used in Geotechnical Stability Analysis
Table 5-2 Required Factors of Safety
Table 5-3 Slope Stability Analysis Summary

LIST OF FIGURES

Figure 1-1A Site Location Map
Figure 1-1B Site Location Map
Figure 2-1 U.S.G.S. Area Map
Figure 2-2 Coleto Creek Watershed
Figure 2-3 Thickness Map of In-Situ Cohesive Soils
Figure 2-4 Surface Impoundment Configuration
Figure 2-5A Ash Pond Plan and Cross Sections
Figure 2-5B Bathymetric Survey Plan View
Figure 2-5C Bathymetric Survey Sections
Figure 2-6 Capacity for Primary Pond

LIST OF APPENDICES

Appendix A Geotechnical Borelogs
Appendix B Geotechnical Laboratory Data
Appendix C Slide 7.0 Stability Analysis Models
Appendix D Liquefaction Assessment Calculations
Appendix E Guadalupe-Blanco River Authority Lake Area-Capacity Summaries

1.0 INTRODUCTION

Coleto Creek Power Station is located at 45 FM 2987 just outside the city of Fannin in Goliad County, Texas. The power station consists of one coal-fired boiler. Bottom ash and fly ash, or coal combustion residuals (CCR), generated in the boiler are either shipped off-site for beneficial re-use or managed in on-site CCR surface impoundments that are divided into primary and secondary collection areas (Primary and Secondary Ash Ponds). Figures 1-1A and 1-1B provide site location maps showing the Primary and Secondary Ash Pond configuration.

In April 2015, the Environmental Protection Agency (EPA) enacted rules 40 CFR Part 257 to address potential risks associated with operating CCR surface impoundments at coal-fired power plants. This report has been prepared to specifically address the requirements identified in §257.73 Structural Integrity Criteria for Existing CCR Surface Impoundments. Section 2.0 of the report provides the History of Construction (\$257.73(c)(1)(i - xii)). Section 3.0 contains the Initial Potential Hazard Classification Assessment (\$257.73(a)(2)), Section 4.0 provides the Initial Structural Stability Assessment (§257.73(d)(1)), and Section 5.0 includes the Initial Safety Factor Assessment (§257.73(e)(1).

2.0 HISTORY OF CONSTRUCTION

The following History of Construction has been prepared in accordance with the requirements defined in §257.73 (c)(1)(i - xii).

2.1 Owner and Operator of CCR Unit

The Coleto Creek Power Station is owned and operated by Coleto Creek Power, LP. The address is as follows:

Coleto Creek Power Station
45 FM 2987
PO Box 8
Fannin, Texas 77960
Primary Ash Pond SWR No. 31911, Unit No. 001
Secondary Ash Pond SWR No. 31911, Unit No. 003

2.2 CCR Unit Location

The Coleto Creek Power Station and associated CCR surface impoundments (Primary and Secondary Ash Ponds, or collectively referred to as Ash Ponds) are located just outside the city of Fannin in Goliad County, Texas on approximately 8,000 total acres. The Primary Ash Pond is approximately 190 acres in surface area with a reported storage capacity of 2,700 acre-feet and the associated Secondary Ash Pond is approximately 10 acres in size with 300 acre-feet of storage capacity (S\&L, December 1978). Figure 2-1 (U.S.G.S. Area Map) shows the CCR surface impoundments on the most recent US Geological Survey (USGS) $71 / 2$ minute quadrangle topographic map.

2.3 Ash Pond Statement of Purpose

The Primary and Secondary Ash Ponds were constructed between 1976 and 1977 during the power plant site development. The ponds were designed and constructed to accommodate wastes from two coal-fired boilers (S\&L, December 1978). However, only one boiler has been constructed and operated at the facility.

Bottom ash is collected from the boiler, combined with water, and transferred in slurry form for disposal in the facility's surface impoundment. Fly ash is collected from the boiler exhaust using a baghouse. The fly ash is transported pneumatically to two storage silos. From there, the fly ash is loaded onto enclosed dry haul hoppers for off-site beneficial use. Fly ash not meeting required beneficial reuse specifications is combined with water and pumped to the facility's Primary Ash Pond for disposal. CCR solids settle out of the conveyance water in the Primary Ash Pond and the excess water then overflows a weir to the smaller Secondary Ash Pond for final settling of any remaining solids. Water from the Secondary Ash Pond can be recirculated to the ash sluice system or discharged in accordance with the facility's TPDES permit.

Other plant wastes may also reportedly be sluiced into the Ash Ponds including aqueous lab waste, boiler chemical cleaning rinseate, air preheater cleaning rinseate, air preheater cleaning residue, basin solids, de-ionizer regenerate wastewater, heat exchanger cleaning rinseate, waste de-ionizer resin beads, waste molybdate contaminated cooling water, waste filter media, boiler blowdown, demineralizer effluent, storm water, low volume waste, and effluent water/wastewater from plant processes (S\&L, 1981).

2.4 Watershed Description

Coleto Creek Power Station is located in the lower half of the Coleto Creek Watershed (Figure 2-2) which is maintained by the Guadalupe-Blanco River Authority (GBRA). Coleto Creek is approximately 27 miles long, beginning in DeWitt County and travels through Goliad and Victoria Counties before its confluence with the Guadalupe River (GBRA, 2013). Approximately 558 square miles drain into the Coleto Creek Watershed. Typical land uses in the watershed include farming, ranching, oil and gas production and more recently, in-situ uranium mining. The only urbanized area in the watershed is the small city of Yorktown located upstream of the power plant in DeWitt County.

Coleto Creek Reservoir Dam was constructed in the late 1970s to create the approximate 3,100 surface acre Coleto Creek Reservoir which serves as a cooling pond for the Coleto Creek power plant. The power plant discharges approximately 360,000 gallons per minute of water to the reservoir (GBRA, 2013). Perdido Creek, Turkey Creek, and Sulphur Creek also feed into the
reservoir. Although the reservoir is managed by the GBRA, it is reportedly wholly owned by Coleto Creek Power, LP up to an elevation of 104 feet MSL.

2.5 Ash Pond Foundation and Abutment Material Description

The Ash Ponds were designed and constructed under the guidance of Sargent \& Lundy Engineers (S\&L). As part of the design process, S\&L advanced 63 soil borings and installed eight monitoring wells in the immediate vicinity of the ponds. Based on the information collected, the ponds are constructed within a surface deposit of cohesive soils consisting of mostly clayey sand and silty clay with varying amounts of caliche. The soils are classified as CH, CL, and SC soils using the Unified Soil Classification System. These soils range in thickness from 4 to 20 feet, and average 13 feet (S\&L, December 1978). Figure 2-3 provides the Thickness Contour Map for In-Situ Cohesive Soils beneath the Ash Ponds. The impoundment dikes are continuous and do not include a conventional spillway, thus there are no abutments with other structures.

2.6 Ash Pond Construction Summary

As noted in Section 2.3, the CCR surface impoundments were constructed between 1976 and 1977 during overall site development. Construction was performed by H. B. Zachary Construction with full-time on-site inspection by S\&L. Field testing of site soils and construction materials was performed by Trinity Testing Laboratory, Inc. In general, the Primary and Secondary Ash Pond dikes have a total circumference of approximately 12,900 feet and a height ranging from approximately 4 feet up to 56 feet. The maximum reported storage volume is 2,700 acre-feet in the Primary Ash Pond and 300 acre-ft in the Secondary Ash Pond (S\&L, December 1978).

As further described below, a limited topographic and bathymetric survey was conducted for the Ash Ponds in July 2016. Results of that survey were combined with assumptions regarding the original base elevation of the pond (limited as-built base elevation data is available) to generate area-capacity estimates for use in subsequent assessments presented in this report. The area-capacity estimates generated using 2016 data indicate that the top of dike capacity is approximately 3,700 acre-ft, or nearly 1,000 acre-ft more than originally reported by $\mathrm{S} \& \mathrm{~L}$. The originally reported 2,700 acre-ft corresponds to an approximate elevation of 135 feet in the 2016
assessment, which is also the operating level identified in the S\&L report. For the purposes of this report, the larger capacity is used where appropriate.

In-situ cohesive soils were used as the pond lining and the geotechnical characteristics of those soils are documented in the S\&L construction summary report dated December, 1978. Laboratory geotechnical testing was performed on representative samples collected postconstruction from the borings advanced in the in-situ liner soils. The median laboratory permeability was reported as $3.8 \times 10^{-8} \mathrm{~cm} / \mathrm{sec}$. The average plasticity index, liquid limit, and fines content were listed as $23 \%, 42 \%$, and 40%, respectively. S\&L concluded that the soil liner as constructed overall either met or exceeded requirements for a 3-foot thick compacted clay liner of 1x10-7 cm/sec permeability in accordance with Texas Department of Water Resources technical guidelines for the design and construction of waste water ponds that were in place at the time of construction (S\&L, December 1978).

Ash pond dikes were constructed using controlled and compacted cohesive fill excavated from borrow areas around the Plant site (S\&L, December 1978). As noted previously, site soils generally consist of clayey sand and silty clay, with various amounts of caliche. The dikes were constructed with side slopes ranging from 2.5 and/or 3.0 horizontal to 1.0 vertical. This side slope was specified in accordance with the Bureau of Reclamation Design of Small Dams, 1974, for small homogenous dams constructed with cohesive fill on a stable foundation. Side slopes were reportedly seeded.

Dike fill was specified to be placed and compacted to a minimum of 95% of the maximum dry density as determined by ASTM D698. Four hundred and twenty field density tests conducted specifically on Ash Pond dike materials during construction reported densities ranging from a minimum of 92 percent up to 110 percent, with an average of 98 percent.

The exterior dikes for the Ash Ponds were constructed approximately 4 to 56 feet above the existing grade. The crest of the dike is reportedly 15 feet wide and includes a gravel perimeter access road. Typical cross-sections depicting the Ash Pond construction configuration are provided on Figure 2-5.

The Ash Ponds are separated by a dike that has side slopes of approximately 3.0 horizontal to 1.0 vertical and a height of approximately 40 feet above natural grade. This dike also has a crest that is approximately 15 feet wide and contains a gravel road (see Figure 2-5). A concrete
weir intersects the divider dike to allow the overflow of water from the Primary Ash Pond to the Secondary Ash Pond. The weir inlet is located in the Primary Ash Pond and consists of a 7 -feet wide by 9.5 -feet long concrete structure configured with stoplogs supported by a 12 -feet wide by 14.5 feet long foundation. The inlet structure is accessed by a walkway extending from the shared Primary and Secondary Ash pond dike into the Primary Ash Pond. The concrete inlet structure is intersected by a 30 -inch diameter corrugated metal pipe (CMP) with 7-feet by 7 -feet steel seepage collars at 28 feet on center. The CMP has an inlet elevation of El. 106 and an outlet elevation of El. 105 (CDM, March 2011).

Bottom ash and boiler slag are sluiced along the south embankment into the Primary Ash Pond via one 12 -inch-diameter high density polyethylene (HDPE) pipe and one 12-inch-diameter carbon steel pipe (CSP). The ash slurry is sluiced onto a screen processor to separate fine and coarse material. Demineralizer effluent is sluiced into the Primary Ash Pond along the southeast embankment through an 8-inch-diameter HDPE pipe.

A boiler area sump in the plant collects other liquid waste and sluices it through a 20 -inch diameter Class 200 polyvinyl chloride (PVC) pipe along the Primary Ash Pond west embankment adjacent to the groin with the evaporation pond. A valve in the pipeline also allows the boiler area sump water to be discharged directly into the evaporation pond. Flow to the Primary Ash Pond from the boiler area sump is regulated depending on water levels and weather conditions. The pipeline can also be used as a clean water decanting pipe.

A seep collection system was constructed in approximately 1982 along the southeastern boundary of the Secondary Ash Pond dike. This system included four drain lines consisting of 8inch diameter corrugated polyethylene pipes with $1 / 8$-inch diameter holes located at approximately 6 -inch intervals circumferentially and longitudinally. The pipes were wrapped with filter cloth to prevent infiltration of fine soils then installed with special equipment that cut a shallow trench and embedded the pipe in one continuous operation. Collected water flows to a sump and is pumped back into the Primary Ash Pond (URM, 1982).

In 2012, Coleto Creek Power, LLC contracted AECOM Technical Services, Inc. (AECOM) to prepare a hydraulic and geotechnical stability analysis of the Ash Pond (AECOM, March 2012). Under that study, AECOM conducted field and laboratory testing to evaluate the current geotechnical stability of the Ash Pond dike system. According to the report, AECOM found that
"the ash pond has adequate factor of safety under the steady-state, normal operating, maximum operating, rapid drawdown, and seismic conditions modeled."

2.7 Ash Pond Drawings

Figures 2-4 and 2-5A, -B, and -C provide dimensional drawings of the Ash Ponds as required in §257.73(c)(1)(vii).

2.8 Ash Pond Instrumentation

Ash Pond water levels are observed on a daily basis during site inspections using the pond staff gauge located on the inlet structure. The staff gauge has a maximum reading of +140 feet which approximately corresponds to the top of the dike embankment. Based on an on-site topographic survey conducted by Naismith Marine Services of Corpus Christi, Texas (Naismith) in July 2016, the elevation 140 reading on the staff gauge corresponds to approximate elevation 140.4 feet NAVD88. Furthermore, the plant datum (referred to as MSL) was surveyed and determined by Naismith to be equal to NAVD88. Water levels are normally maintained at an elevation of El. 136 feet (NAVD88) or lower. There is no other instrumentation used to monitor the Ash Ponds.

2.9 Ash Pond Area-Capacity Curves

Figure 2-6 provides the area-capacity curves for the Primary Ash Pond. Area capacity curves for the Secondary Ash Pond are not included because minimal solids accumulation is expected to occur relative to the Primary Ash Pond.

2.10 Ash Pond Spillway and Diversion Design Features

The Ash Ponds were not constructed with a conventional spillway. Original pond design documents indicate two, 20-inch-diameter CSPs on the east Secondary Ash Pond dike that would discharge water at an outfall into the "hot" side of Coleto Creek Reservoir. The discharge pipes have 6 -feet by 6 -feet steel seepage collars constructed at 25 feet on center. These pipes were subsequently replaced with two, 20 -inch-diameter Class 200 PVC pipes. Prior to the power plant going online, however, the recirculating pump station was constructed and the two 20 -inch pipes were connected to a 10 -inch diameter discharge pipe and the recirculating pump station (CDM,

March 2011). Water from the Ash Ponds is primarily lost through evaporation. Excess water that needs to be removed to maintain proper freeboard distances can either be discharged through Outfall 003 in accordance with the plant's Texas Pollutant Discharge Elimination System Permit No. WQ0002159000 or recirculated back to the plant for re-use.

Pond water levels are maintained to accommodate safe plant operations and are primarily dependent on plant water and ash loading rates as no storm water runoff from the surrounding area (other than run-off from the dike crest) enters the ponds. Water levels are monitored daily and the amount discharged to the outfall or recirculated to the plant can be adjusted to accommodate for expected rain events or draught conditions. The ponds are currently operated with approximately four feet of freeboard to allow removal of bottom ash and fly ash for off-site beneficial reuse.

2.11 Ash Pond Surveillance, Maintenance, and Repair Provisions

Formal and informal inspections of the ponds are conducted by qualified facility personnel for the purpose of ensuring proper and safe operation in accordance with the provisions defined in §257.83(a). Weekly inspections include observation of the static pond water level, vegetation control, and structural integrity evaluations of dike embankments and any noted issues are addressed as necessary. In addition to the weekly observational inspections performed by site personnel, formal inspections of the pond conditions are conducted by outside engineers annually in accordance with §257.83(b).

2.12 Ash Pond Structural Stability History

There is no record or knowledge of structural instability of either the Primary or Secondary Ash Ponds. The pond dikes have been maintained to minimize the potential for structural failure.

3.0 INITIAL POTENTIAL HAZARD CLASS ASSESSMENT

According to 40 CFR §257.73(a)(2), the owner and operator of a CCR surface impoundment must assign a hazard potential classification to each operating unit. For the purposes of the rule, hazard potential classification means "the possible adverse incremental consequences that result from the release of water or stored contents due to failure of the diked CCR surface impoundment or mis-operation of the diked CCR surface impoundment or its appurtenances." The impoundment must be classified as high hazard, significant hazard, or low hazard. Each hazard potential classification is defined as follows (§257.53):
(1) High hazard potential CCR surface impoundment means a diked surface impoundment where failure or mis-operation will probably cause loss of human life.
(2) Low hazard potential CCR surface impoundment means a diked surface impoundment where failure or mis-operation results in no probable loss of human life and low economic and/or environmental losses. Losses are principally limited to the surface impoundment owner's property.
(3) Significant hazard potential CCR surface impoundment means a diked surface impoundment where failure or mis-operation results in no probable loss of human life, but can cause economic loss, environmental damage, disruption of lifeline facilities, or impact other concerns.

In 2010 the United States Environmental Protection Agency (USEPA) contracted CDM to perform site assessments of selected CCR surface impoundments which included the Primary and Secondary Ash Ponds at the Coleto Creek Power Plant. As part of the assessment, CDM assigned each of the ponds with a Low Hazard classification (CDM, 2011).

Subsequent to the CDM report findings, Coleto Creek Power contracted AECOM Technical Services, Inc. (AECOM) to perform geotechnical studies to further evaluate the structural stability of the CCR surface impoundments. AECOM implemented a subsurface investigation and performed a geotechnical stability evaluation, a liquefaction assessment, and hydraulic analysis. AECOM also performed an independent hazard assessment of the Ash Ponds. The results of that assessment supported the initial CDM classification of Low Hazard.

3.1 Dam Breach Analysis

Bullock, Bennett \& Associates (BBA) performed a simplified dam breach analysis of the Ash Ponds to support the loss of life, and environmental and economic impact analyses. The Primary and Secondary Ash Ponds combined, as indicated by the most recent survey conducted in July 2016, have a maximum storage capacity of approximately 4,000 acre-ft and a maximum levee height for the Secondary Pond of approximately 39 feet above adjacent lake level of 101 feet MSL. Construction was complete in 1978 and the effective fluid storage capacity in the Primary Ash Pond has significantly diminished with the placement of CCR over time. According to topography and bathymetric survey data collected in July 2016, the fluid capacity in the Ash Ponds has been reduced to approximately 1,720 acre-ft at the maximum dike crest height.

The Ash Ponds are located next to the Coleto Creek Reservoir which was constructed to serve as a cooling pond for the power plant. The reservoir is divided into a "hot" side and a "cool" side. The ponds are located immediately adjacent to the hot side of the lake. The hot side of the lake is created from Sulphur Creek behind Dike No. 1 (Dike No. 1 Lake) which is connected to Turkey Creek behind Dike No. 2 (Dike No. 2 Lake) by a secondary flume. Water from these lakes then flows into Main Lake which is the cool side. Decant water from the Secondary Pond can be combined with other plant water then routed through TCEQ-approved Outfall 003 to the hot side of the lake. Cool water is pumped into the power plant from the Main Lake.

GBRA provided area-capacity tables for the Coleto Creek Reservoir and Dike Lake Nos. 1 and 2. These tables are presented as Attachments 3-1, 3-2, and 3-3 in Appendix E. Dike No. 1 Lake consists of approximately 164 acres at the normal operating elevation of 101 feet MSL. Dike No. 2 Lake is approximately 429 acres at the normal operating elevation of 101 feet MSL. The two Dike Lakes are separated from Coleto Creek Reservoir by splitter dikes with an approximate elevation of 102 feet MSL (GBRA, 2016). Coleto Creek Reservoir covers an area of approximately 2,652 acres at a normal operating elevation of 98 feet MSL (GBRA, 2016). Coleto Creek Power, LP reportedly controls the lake up to an elevation of 104 feet MSL. An area map showing the relative locations of the Ash Ponds, Dike Lakes, and Coleto Creek Reservoir is presented in the attachments as Figure 1-1.

For the purposes of this evaluation, a conservatively worst-case dam breach scenario was developed assuming that the breach was due to overtopping of the surface impoundment levees and that the breach occurs in the shared Primary and Secondary dike and subsequently in the Secondary Pond dike adjacent to Coleto Creek Reservoir, releasing the entire water contents of the Ash Ponds. This scenario allows for the greatest quantity of pond decant water to be released.

An evaluation of potential water and residual solids flow paths was performed to support the loss of life, environmental, and economic evaluations. Surface elevation cross-sections assembled from Google Earth ${ }^{\mathrm{TM}}$ profiles of the areas adjacent to the pond dikes were reviewed to estimate the potential flow path of the released water and solids. As shown in Figure 1-1A, the wet side of the ponds are bound by the evaporation pond followed by Dike No. 1 lake on the north-northwest, Dike No. 1 lake on the northeast corner, and the primary plant discharge flume on the east. The surface elevation of the terrain that bounds the east side of the discharge flume appears to extend to approximately elevation 132 feet. The flume channel, therefore, appears to be located within a larger basin bounded to the west by the Ash Pond dikes (approximate elevation 140 feet) and to the east by land mass (approximate elevation 132 feet). The distance between the dike on the west side of the basin and land mass high points on the east side appears to be approximately 300 feet. The flume channel and basin would route flow from an east-side breach of the dike to the hot side of the lake. Released water and solids, therefore, would initially flow to the hot side of the lake regardless of the location of the breach. From there, water levels would increase one foot (the amount of available freeboard behind Dike No. 1 and Dike No. 2 lakes) then flow into the Main lake. Eventually all water would be released into the Main lake.

Using the tables provided by GBRA, a one-foot increase in the Main lake elevation requires an additional approximately 2,720 acre-feet of water. The estimated maximum volume of discharge from the Ash Ponds is approximately 1,720 acre-feet of water, resulting in a water surface elevation change on the reservoir of approximately eight inches. An eight-inch change in water surface elevation is considered to be nominal and would not result in the loss of major infrastructure elements or disrupt lifeline facilities.

3.2 Loss of Life Evaluation

The Ash Ponds are located apart from the active industrial areas of the power plant. Two fly-ash silos are located adjacent to the western border of the surface impoundment and loading
of trucks for off-site transport and beneficial reuse of the fly ash regularly occurs at this location. These silos and truck loading operations are adjacent to the southwest half of the Primary Ash pond which is filled with dry and compact CCRs, and any catastrophic failure of the impoundment in this area is highly unlikely. If a failure were to occur, it would probably be located on the "wet" side of the pond, including the northern or eastern dikes for both the Primary and Secondary Ash Ponds (see Figure 1-1). There are no regular or active plant operations that occur downstream of those areas where personnel would be expected to be present in the event of a catastrophic failure of the dike. There are no residences or other off-site manned operations immediately downstream of the ponds. As noted in Section 3.1 the Dike 1, Dike 2, and Main Lakes would absorb the released water and raise reservoir levels a nominal amount (less than a foot). Loss of life in the event of a catastrophic failure of the surface impoundment dike system, therefore, is considered to be improbable.

3.3 Economic and/or Environmental Loss Evaluation

Additional consideration was given to the impacts of the water quality from a large volume discharge from the Ash Ponds into the Coleto Creek Reservoir. Using the volume ratio of Ash Pond water (approximately 1,720 acre-feet) that could potentially be discharged into the Coleto Creek Reservoir to the existing volume of water in the reservoir (approx. 31,280 acre-feet at elevation 98 feet msl), the impacts to the water quality are minimal (31,280 acre-feet/1,720 acrefeet $=\sim 18$ dilution factor of analytes in the Ash Pond water). Ash Pond water is currently discharged to the Coleto Creek Reservoir under Permit No. WQ002159000 (TCEQ, 2010).

Currently, the coal combustion by-products are sluiced into the Primary Ash Pond. The assumed ratio of solids-to-water is approximated at a 20%-to- 80%. The solids settle out of solution and the water decants to the surface. As the solids settle out of solution, they consolidate. Additionally, based on field observations the ash "sets up" similar to cement, becoming very hard and massive. The expected flow of any unconsolidated solids from the Ash Pond is believed to be minimal.

Additionally, approximately 90% of the approximate 90,000 cubic yards of ash produced annually is currently being sold and recycled rather than disposed in the Ash Pond (Coleto Creek Power, 2015). However, for the sake of conservatism, it is assumed that a volume of ash equivalent to six months of production (assuming no recycling) is disposed in the Primary Ash

Pond and may not be consolidated, and may flow should a breach occur. Under these assumptions, there is potential for approximately 45,000 cubic yards (approximately 28 acre-feet) of ash flow. The ash volume would be in solution with the decant water, displacing an equal volume of the decant water. This ash would be expected to be contained within the hot side of the lake. Impacts would therefore be primarily limited to the owner's property.

3.4 Hazard Potential Classification

Based on a review of previous studies, analytical data, ash production/recycling volumes, available impoundment capacities, available lake capacities, observed current conditions at the site, assumptions, and other factors, the Coleto Creek Ash Pond is classified as a Low Hazard Potential impoundment.

4.0 INITIAL STRUCTURAL STABILITY ASSESSMENT

According to §257.73(d), the owner or operator of the CCR surface impoundment "must conduct initial and periodic structural stability assessments and document whether the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices for the maximum volume of CCR and CCR wastewater which can be impounded therein."

This initial structural stability assessment addresses each of the seven structural elements that are specifically identified in the rule as follows:

Stable foundations and abutments. As noted in Section 2.5, the Ash Ponds were constructed on a foundation of in-place cohesive soils whose geotechnical characteristics either met or exceeded Texas Department of Water Resources technical guidelines for the design and construction of waste water ponds that were in force at the time of construction (S\&L, December 1978). The dikes are continuous, with no constructed abutments. A review of the geotechnical data collected at the time of construction confirms that the foundation for the ponds should continue to be stable over their operational life.

Adequate slope protection to protect against surface erosion, wave action, and adverse effects of sudden drawdown. The dikes were constructed with 2.5 to 3 horizontal to 1 vertical side slope. Outer slopes were seeded for slope protection but interior dike surfaces were not. Vegetation does naturally occur on these surfaces thus assisting in the control of erosion. The interior dike sections in areas impounding water are armored with rock riprap. The dikes are regularly inspected in accordance with $\S 257.83$ (a) and (b) and repaired as necessary to maintain their integrity. An engineering site inspection was performed in September 2015 in accordance with the requirements defined in $\S 257.83(b)$ which included an evaluation of the surface impoundment dikes. No additional slope protection was deemed to be necessary at that time. (BBA, 2015).

Dikes mechanically compacted to a density sufficient to withstand the range of loading conditions in the CCR unit. The dike system was engineered by S\&L and constructed in approximately 1978. As discussed in Section 2.6 - Ash Pond Construction Summary, dike fill material was placed in controlled, mechanically compacted lifts, averaging approximately 98%
maximum dry density as determined by ASTM D698. Full time field inspection was performed during construction, with approximately 420 field density tests performed on the dikes.

Vegetated slopes of dikes and surrounding areas not to exceed a height of six inches above the slope of the dike, except for slopes which have an alternate form or forms of slope protection. The slopes of the dikes and surrounding areas are vegetated as required. The slopes are reportedly mowed as necessary to comply with height of grass requirements.

A single spillway or a combination of spillways configured as specified in paragraph $(d)(1)(v)(A)$ of the section of the rule. As is common with surface impoundments of this type, the ponds were not constructed with a spillway. The results of the hydraulic analysis completed in support of the Inflow Design Flood Control System evaluation (BBA, September 2016) showed that the Primary and Secondary Ash Ponds, as configured without a spillway and when operated at a maximum storage operating elevation of 136.1 feet NAVD88, have sufficient capacity to manage the design flood. The design flood is designated by rule for a Low Hazard Potential surface impoundment (see Section 3.0) to equal the 100-year rainfall event. It is therefore not necessary for the surface impoundment to have a spillway.

Hydraulic structures underlying the base of the CCR unit or passing through the dike of the CCR unit that maintain structural integrity and are free of significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, and debris which may negatively affect the operation of the hydraulic structure. The weir system and pipe penetrations were visually inspected by a professional engineer in September of 2015 (BBA, 2015). There were no observations of conditions that would negatively impact operation of the structures. The inspection was limited to visual observations during a site visit, and did not include, for instance, use of a remote video camera in the weir outlet pipe for inspection of internal conditions.

For CCR units with downstream slopes which can be inundated by the pool of an adjacent water body, such as a river, stream or lake, downstream slopes that maintain structural stability during low pool of the adjacent water body or sudden drawdown of the adjacent water body. The Coleto Creek Reservoir is adjacent to the Secondary Pond, and a small portion of the pond exterior slope can be inundated by the reservoir. Therefore, the Secondary Pond exterior slope
was evaluated for stability in the event of inundation followed by a rapid drawdown of the reservoir, as further discussed in Section 5.0 Initial Safety Factor Assessments.

No structural stability deficiencies associated with the Primary and Secondary Ponds were identified in this initial Structural Stability Assessment that would require corrective measures. A certification from a qualified professional engineer stating that this initial assessment was conducted in accordance with the requirements of the rule is included in Appendix C.

5.0 INITIAL SAFETY FACTOR ASSESSMENTS

§257.63(e) requires that owners of existing and newly constructed CCR surface impoundments conduct initial and periodic safety factor assessments. The purpose of the safety factor assessment is to document that the as-constructed CCR surface impoundment configuration either meets or exceeds regulatory safety factor criteria under static end-of-construction loading conditions, long-term, maximum storage pool loading conditions, and maximum surcharge pool loading conditions. In addition, the liquefaction and seismic factor of safety must be estimated.

The rule requires that the safety factor evaluation be performed across the critical cross section of the impoundment dikes. For the purposes of this initial assessment, previous data collected as part of historical site assessments as noted in Section 4.0 were evaluated to determine whether it represented the critical cross section of the pond dikes that would be most susceptible to failure. The three critical cross sections for the primary pond dike, the secondary pond dike, and the divider dike between the two pond sections as shown in Figure 2-3 are in the areas of the pond that still contain water, are generally representative of the tallest sections of dikes and contain representative side slopes, and are where the highest potential impacts would be expected were a dike breach to occur.

Geotechnical sampling and analysis of as-constructed dike materials has been conducted during three different events. The first was performed by S\&L during and after construction of the pond in 1978. Subsequent studies were performed in 1981 by Underground Resource Management, Inc. (URM) (URM, July 29, 1981) and in 2012 by AECOM Technical Services, Inc. (AECOM, March 2012).

BBA reviewed the previous site geotechnical investigation data gathered by S\&L, URM and AECOM used in previously conducted stability analyses of the dikes and the data appears sufficient to provide a reliable estimation of current conditions, therefore no further geotechnical testing was required for the current analysis. Coleto Creek Power provided all previous investigation data to BBA for use in evaluation and preparation of an updated structural stability analysis. The most recent stability analysis, conducted by AECOM in 2012, summarizes previous evaluations by others. A brief summary of previous geotechnical investigations is provided below.

S\&L completed approximately 80 soil borings to document the subsurface soils in and around the Ash Ponds. All of the borings were reportedly completed prior to construction of the Ash Ponds, in support of Ash Ponds design. Following commissioning of Unit 1 and filling of the Ash Ponds to normal operating levels, seepage was observed west and adjacent to the Recirculating Pump House. URM was contracted to investigate the seeps and their potential impact to dike stability. URM completed a geotechnical investigation of the pond dikes near the seep location, and assessment of both the dike embankment stability and groundwater quality indicated no detrimental effects due to the seep at that time and that, based on site geotechnical investigation, laboratory data analysis, and slope stability modeling of the dike, short and longterm stability of the embankments in the study area were considered satisfactory (URM, July 29, 1981).

AECOM, upon reviewing previous geotechnical investigations from S\&L and URM, completed a supplemental geotechnical investigation program to evaluate stability of the dike system in 2012. While their review of previous data found the data to be acceptable for use in evaluation of dike stability of the ponds, they also identified critical areas of interest within the dike system for further evaluation, and implemented a geotechnical investigation of these critical areas (cross sections A, B and C, as shown in Figure 2-5A of the attachments). BBA agrees that these locations are the critical areas to evaluate for stability, given, cross section A is near a location of observed seepage at the outside toe of the Primary Pond dike, cross section B is located along the splitter dike that separates the Primary Pond and Secondary Pond, and cross section C is located along the small portion of the Secondary Pond that can be inundated by the Coleto Creek Reservoir. It should be noted that a seepage collection system is currently in design to address the seepage condition near the cross section A location. However, evaluation of stability at section A was completed based on current conditions.

AECOM field data gathering included construction of 8 geotechnical borings extending from depths ranging from 29.5 to 121.5 feet below ground surface (bgs). Five borings were completed from the top of the dikes and three borings were located along the exterior toe of dike. Laboratory testing included water content, dry unit weight, calibrated penetrometer, grain-size distribution, triaxial shear testing and direct shear testing. AECOM contracted with Subsurface Exploration Services, LLC of Green Bay, Wisconsin to complete the field work, and AECOM field staff observed the exploration work, assisted with collection of soil samples, and completed
field boring logs. Laboratory testing was conducted by AECOM geotechnical laboratory technicians. AECOM geotechnical laboratories are reportedly certified by multiple state and federal agencies to complete geotechnical testing in accordance with American Society for Testing and Materials (ASTM), United States Army Corp of Engineers, (USACE), and State Department of Transportation approved methods and standards (AECOM, 2012).

BBA reviewed the data available from the S\&L, URM, and the supplemental data gathered by AECOM including geotechnical data, cross sections, and methodology used by AECOM for modeling slope stability. The data and methods are suitable for evaluation of slope stability of the critical cross section locations. The geotechnical investigation data from the AECOM study, including soil bore logs and geotechnical laboratory data is included in Appendices A and B, respectively, of this report.

BBA contracted Naismith to complete an existing conditions topographic survey of these critical cross section areas, as well as topography of the entire perimeter dike system and bathymetry of the pond interiors. Using the 2016 existing conditions survey data, and geotechnical data obtained from the previous studies (including similar lithology as indicated in the AECOM study for the critical cross sections), BBA graphically reconstructed the cross section locations A, B, and C for completion of further analysis. Upon review of all data and methodologies used by AECOM in analysis of the critical cross section locations of the dike systems, BBA completed a similar analysis. BBA compared the 2016 as-built topographic survey cross sections at cross section locations A, B and C, to the design sections. Based on this review it appeared the as-built sections generally were slightly overbuilt when compared to the design sections, and contained slightly gentler slopes. Based on comparison of design versus as-built sections at each location it was determined that the design sections were likely worse case than the as-built sections in regards to analysis for slope stability, therefore only the design sections were evaluated.

Based on review of the AECOM bore logs and geotechnical laboratory test data, BBA generally agrees with the lithology and soil engineering strength properties used in the AECOM stability analysis. However, BBA's evaluation of field data and laboratory indices testing completed did result in minor changes in assumed soil properties - the reduction of the effective shear strength of caliche from 36 degrees to 34 degrees for cross sections B and C, the increase in unit weight from 120 pounds per cubic foot (pcf) to 130 pcf , and the increase of shear strength
from 32 degrees to 36 degrees for the medium dense to dense sands and silts in cross section C . BBA evaluated stability with both sets of data and observed that these changes do not alter the overall safety factor for these sections, however, the revised data set appear more appropriate based on review of field and indices test data and are therefore reported. Review of the data indicates that generally the AECOM engineering strength properties used in their analysis was conservative and representative of the field and laboratory data gathered.

Similar to the AECOM stability evaluation, BBA evaluated the dikes using two sets of time-dependent strength parameters, effective stress and total stress. Effective stress analysis was used to model drained, long-term, steady-state loading conditions where excess pore pressures have had time to dissipate. This would be the normal steady state operating conditions (maximum storage pool) of the pond. Total stress analysis was used to model undrained, shortterm loading conditions such as maximum surcharge pool, rapid drawdown, and seismic events, where excess pore water pressure could develop in fine grained silts clays and not have had time to dissipate. The rapid drawdown case is representative of the conditions that would occur immediately after a significant flood event.

The seismic conditions analyze the effect an earthquake would have on the stability of the dike. BBA selected a maximum probable earthquake for Coleto Creek based on the 2014 United States Geological Survey National Seismic Hazard Maps found at (http://earthquake.usgs.gov/hazards/products/conterminous/2014/2014pga2pct.pdf). The maximum probable earthquake has a peak ground acceleration of 0.03 g with a 2 percent Probability of Exceedance in 50 years.

Table 5-1 summarizes the effective and total stress soil strength parameters used for each soil layer in the analysis:

TABLE 5-1
Soil Strength Parameters used in Geotechnical Stability Analysis (color shading as shown in cross sections)
Cross Section A-A’

Soil Description	Unit Weight (pcf)	Effective Stress Strength Parameters		Total Stress Strength Parameters	
		c' (psf)	\emptyset	c (psf)	\emptyset
Clayey Sand Fill Material (SC)	130	150	29	3,000	0
Natural Silty Clay or Clayey Sand (CL, SC, CL-Caliche)	130	150	27	4,000	0
Natural Sands (SM, SP, SC)	130	0	36	0	36

Cross Section B-B ${ }^{\prime}$

Soil Description	Unit Weight (pcf)	Effective Stress Strength Parameters		Total Stress Strength Parameters	
		c' (psf)	\varnothing	c (psf)	\varnothing
Clayey Sand Fill Material (SC)	130	150	29	3,000	0
Caliche (SC)	135	250	34	250	0
Medium Dense to Dense Sands (SP)	132	0	36	0	36
Dense to Extremely Dense Sands (SP, SC, SM, SP-SM)	133	0	38	0	38
Very Stiff to Hard Silty Clay (CL, CL-ML, CH)	128	0	29	3,250	0

Cross Section C-C'

Soil Description	Unit Weight (pcf)	Effective Stress Strength Parameters		Total Stress Strength Parameters	
		\varnothing	$\mathrm{c}(\mathrm{psf})$	\varnothing	
Clayey Sand Fill Material (SC)	130	150	29	3,000	0
Caliche (SC)	135	250	34	250	0
Medium Dense to Dense Sands and Silts (SP, ML, CL)	130	0	36	0	36
Dense to Extremely Dense Sands (SM, SC, SP-SM, SP)	130	0	34	0	34
Very Stiff to Hard Silty Clay (CL, CL-ML, CH)	128	0	29	3250	0

Based on field observations, the ash located within the ponds tends to set up, much like cement, into a hard, blocky mass of material. However, as was assumed in the AECOM evaluation, for conservative modeling purposes the interior material was considered to be water, with no structural strength that would add a stabilizing force.

Four model conditions were evaluated at each cross section location, as deemed applicable, including: maximum storage pool (the highest normal operating level) and maximum surcharge pool (level reached during inundation from design storm) conditions, rapid drawdown, and the seismic condition. The normal operating water level, based on the Hydrologic and Hydraulic Capacity Requirements evaluation completed by BBA (BBA, 2016) is 136.1 (NAVD88). The water level projected in event of a design storm (the 100 year, 24-hour storm) is 138.0 (NAVD88). The lowest top of dike elevation observed in the 2016 survey was 139.7 (NAVD88).

Cross section A, located in the observed seep location near the southeast corner of the Primary Pond, was assumed to have a water table elevation at the ground surface along the exterior toe of slope, as observed in the field and as documented in the AECOM stability analysis as well as the BBA inspection report of 2015. Cross section B, located along the separator dike between the Primary and Secondary ponds, was modeled with the maximum storage and maximum surcharge pool elevations. And cross section C, located along the east side of the Secondary Pond where the reservoir inundates the exterior toe, was modeled with the maximum storage and maximum surcharge WSELs in the pond, and included elevation 101.0 (NAVD88) for the reservoir (normal operating level). Cross sections B \& C were also evaluated for the rapid draw down (RDD) condition. It is conservatively assumed the phreatic surface at cross section A exits the exterior dike surface at approximately $1 / 3$ the height of the dike (although the only field observations of wet soil occurred at the toe of slope, where the seep locations are located). The phreatic surface for cross section B is at the same elevation as the assumed pond water levels. The phreatic surface for cross section C is assumed to traverse from the interior pond WSEL to the exterior toe reservoir elevation.

Dikes should be designed with appropriate safety factors. Required safety factors per §257.73(e)(1)(i) through (e)(1)(iv) for critical embankment sections are as follows:

Table 5-2
Required Factors of Safety

Condition	Required Factor of Safety
End-of-Construction Loading Static Factor of Safety	1.3
Long-Term, Maximum Storage Pool Loading Static Factor of Safety	1.5
Maximum Surcharge Pool Loading Static Factor of Safety	1.4
Seismic Factor of Safety	1.0
Liquefaction Factor of Safety	1.2

BBA used the 2D limit equilibrium computer program SLIDE 7.0 by Rocscience to complete the slope stability analysis for the critical cross sections. A combination of the Simplified Bishop and the Morgenstern-Price method of slices, for both circular and block-type failures, was used to analyze the stability of the slopes. Thirty stability cases were evaluated for the critical cross sections as summarized in Table 5-3, and the lowest factor of safety generated for each case is reported:

Table 5-3
Slope Stability Analysis Summary

Cross Section	Conditions	Effective Stress Analysis Safety Factor		Total Stress Analysis Safety Factor	
		Block	Circular	Block	Circular
A-A'	Max Storage Pool/Static	$1.8(1)$	$1.9(2)$	$4.9(3)$	$5.5(4)$
A-A'	Max Surcharge Pool/Static	$1.7(5)$	$1.8(6)$	$4.9(7)$	$5.5(8)$
A-A'	Max Storage Pool/Seismic	NA	NA	$4.3(9)$	$4.8(10)$
B-B'	Max Storage Pool/Static	$2.8(11)$	$2.8(12)$	$3.7(13)$	$5.1(14)$
B-B'	Max Surcharge Pool, Rapid Drawdown	NA	NA	$2.0(15)$	$2.1(16)$
B-B'	Max Storage Pool/Seismic	NA	NA	$3.0(17)$	$4.1(18)$
C-C'	Max Storage Pool/Static	$1.5(19)$	$1.6(20)$	$2.1(21)$	$2.1(22)$
C-C'	Max Surcharge Pool/Static	$1.5(23)$	$1.5(24)$	$2.0(25)$	$2.1(26)$
C-C'	Max Surcharge Pool, Rapid Drawdown	NA	NA	$1.9(27)$	$1.8(28)$
C-C'	Max Storage Pool/Seismic	NA	NA	$1.9(29)$	$1.9(30)$

Note: $(\#)=$ Case Number (referenced on model output data in Appendix C).
Cross sections, bore logs, laboratory data, and SLIDE 7.0 stability model output data are included in Figure 2-5A and Appendices A, B, \& C, respectively of this report.

As shown in Table 5-3, thirty stability cases were modeled and all cases meet or exceed required factors of safety.

5.1 Liquefaction Assessment

BBA utilized the liquefaction assessment process outlined in the U.S. EPA guidance document titled RCRA Subtitle D (258) Seismic Design Guidance for Municipal Solid Waste Landfill Facilities, EPA/600/R-95/051, April 1995, published by the Office of Research and Development and other relevant source documents to perform this liquefaction factor of safety evaluation. As identified in those documents, the liquefaction assessment process begins by screening the subject site for its liquefaction potential using the following criteria.

- Geologic age and origin. If a soil layer is a fluvial, lacustrine or aeolian deposit of Holocene age, a greater potential for liquefaction exists than for till, residual deposits, or older deposits.
- Fines content and plasticity index. Liquefaction potential in a soil layer increases with decreasing fines content and plasticity of the soil. Cohesionless soils having less than 15 percent (by weight) of particles smaller than 0.005 mm , a liquid limit less than 35 percent, and an in situ water content greater than 0.9 times the liquid limit may be susceptible to liquefaction.
- Saturation. Although low water content soils have been reported to liquefy, at least 80 to 85 percent saturation is generally deemed to be a necessary condition for soil liquefaction.
- Depth below ground surface. If a soil layer is within 50 feet of the ground surface, it is more likely to liquefy than deeper layers.
- Soil Penetration Resistance. Soil layers with a normalized SPT blowcount $\left[\left(\mathrm{N}_{1}\right)_{60}\right]$ less than 22 have been known to liquefy. Other sources suggest an SPT value of $\left[\left(\mathrm{N}_{1}\right)_{60}\right]$ less than 30 as the threshold to use for suspecting liquefaction potential.

If three or more of the above criteria indicate that liquefaction is not likely, the potential for liquefaction is considered to be negligible. Otherwise, further evaluation of the liquefaction potential at a facility is required. The soils at the Coleto Creek Power facility generally meet at least three of the specified screening criteria and their liquefaction potential is unlikely. However, there are exceptions such as certain layers that are described in the soil borings logs as SP, or sandy soils, which would by definition have a low fines content. In addition, some liquid limits are below 35 percent. Therefore, further evaluation of the soil data has been completed, and factors of safety against liquefaction calculated for each critical layer, as further described below.

A review of existing data regarding site conditions, soil stratigraphy, soil properties, and potential critical layers as well as the methods used to develop that data indicate that the findings presented in the AECOM report (AECOM, 2012) are sufficient for use in this assessment. As noted in previous sections of this report, AECOM drilled eight borings through critical areas of the site to depths ranging from approximately 30 to 120 feet bgs. Standard penetrometer (SPT) blows per foot, plastic limit, water content, and liquid limit data were collected at two to five foot intervals. In addition, samples were collected and sent to an off-site laboratory for analyses of
general geotechnical properties. Copies of the boring logs and laboratory data used in this assessment are provided in Appendices A and B.

When available, site specific information such as SPT blow count and percent fines content (soils passing the \#200 sieve) was used in the evaluation of liquefaction potential. For strata with no site specific data, conservative estimates were used based on industry accepted references and engineering judgement. For example, earthquake potential maps and tables presented in the USEPA guidance document were used to estimate the worst-case earthquake magnitude and associated maximum ground acceleration. USGS references for low to mid-ranges of fines content for the reported soil types were used when no laboratory data existed.

A complete discussion of the methodology used and the calculation spreadsheets for each strata identified in the eight boring logs are presented in Appendix D. The findings of the liquefaction assessment indicate that the factor of safety is well above the 1.2 required. This finding is expected given the generally high fines content of most soil strata, the low water content, and low ground acceleration that would be observed in the unlikely event that an earthquake was to occur in this area.

6.0 SUMMARY

In accordance with §257.73, Structural Integrity Criteria for Existing CCR Surface Impoundments, the critical cross sections of the Primary and Secondary Ponds at the Coleto Creek facility have been evaluated for slope stability under appropriate loading conditions, including steady-state seepage, maximum surcharge pool, rapid drawdown, and seismic. In addition, a liquefaction assessment has been completed. Based on review of historic studies, geotechnical data that has been previously gathered, and on stability analysis evaluation, the Primary and Secondary Ponds have an adequate factor of safety for all evaluated loading conditions.

7.0 REFERENCES

AECOM. (March 2012). Geotechnical Stability and Hydraulic Analysis of the Coleto Creek Energy Facility Primary and Secondary Ash Ponds. Green Bay, Wisconsin: AECOM Technical Services, Inc.

BBA. (2015, November 24). Letter to Mr. Robert Stevens from Mr. Dan Bullock. Coleto-Creek Power - September 2015 Primary and Secondary Ash Ponds Dike Inspection. Bullock, Bennett \& Associates, LLC.

BBA. (September 2016). Initial Inflow Design Flood Control System Report. Bullock, Bennett \& Associates.

CDM. (March 2011). Assessment of Dam Safety of Coal Combustion Surface Impoundments Coleto LP, LLC Coleto Creek Power, LP.

GBRA. (2013). Coleto Creek Watershed River Secments, Descriptions and Concerns. (G.-B. R. Authority, Ed.) Retrieved from Guadalupe-Blanco River Authority Web site: http://www.gbra.org/documents/publications/basinsummary/2013j.pdf

S\&L. (1981). Waste Disposal Plan. Central Southwest Services, Inc. Central Power \& Light Company. Coleto Creek Power Station - Units 1 and 2. Sargent \& Lundy Engineers.

S\&L. (December 1978). Design and Construction Summary for Coal Pile and Wastewater Pond Facilities, Coleto Creek Power Station Unit 1, Report SL-3689. Sargent \& Lundy Engineers.

TCEQ. (January 2007). Hydrologic and Hydraulic Guidelines for Dams in Texas. Dam Safety Program, Texas Commission on Environmental Quality.

URM. (1982). Evaluation and Recommendations Regarding Subsurface Drainage System at Coleto Creek Power Station for Central Power \& Light Company. Underground Resource Management, Inc.

URM. (July 29, 1981). Investigation of Seepage from Primary and Secondary Settling Ponds at the Coleto Creek Power Station. Underground Resource Managment, Inc.

FIGURES

SOURCE: MAP PROVIDED BY SARGENT AND LUNDY ENGINEERS CHICAGO, IL.

Coleto Creek Power, LP

THICKNESS MAP OF IN-SITU COHESIVE SOILS
 Bullock, Bennett \& Associates, LLC Engineering and Geooscience

APPENDIX A: GEOTECHNICAL BORELOGS

(6) Comments

(7) Name of Person or Firm Doing Sealing Work AECOM Technical Services, Inc.			Date of Abandonment $11 / 6 / 11$
Signature of Person Doing Work		$\begin{aligned} & \text { Date Signed } \\ & 11 / 6 / 11 \end{aligned}$	
Street or Route 1035 Kepler Drive	$\begin{aligned} & \text { Telephone Number } \\ & 920-468-1978 \end{aligned}$		
City, State, Zip Code Green Bay, Wisconsin			

(6) Comments

(7) Name of Person or Firm Doing Sealing Work AECOM Technical Services, Inc.			Date of Abandonment $11 / 4 / 11$
Signature of Person Doing Work		$\begin{aligned} & \text { Date Signed } \\ & 11 / 4 / 11 \end{aligned}$	
Street or Route 1035 Kepler Drive	$\begin{aligned} & \text { Telephone Number } \\ & 920-468-1978 \end{aligned}$		
City, State, Zip Code Green Bay, Wisconsin 54311			

(6) Comments

(7) Name of Person or Firm Doing Sealing Work AECOM Technical Services, Inc.			Date of Abandonment $11 / 2 / 11$
Signature of Person Doing Work		$\begin{aligned} & \text { Date Signed } \\ & 11 / 2 / 11 \end{aligned}$	
Street or Route 1035 Kepler Drive	$\begin{aligned} & \text { Telephone Number } \\ & 920-468-1978 \end{aligned}$		
City, State, Zip Code Green Bay, Wisconsin			

(6) Comments

(7) Name of Person or Firm Doing Sealing Work AECOM Technical Services, Inc.			Date of Abandonment 11/8/11
Signature of Person Doing Work		$\begin{aligned} & \text { Date Signed } \\ & 11 / 8 / 11 \end{aligned}$	
Street or Route 1035 Kepler Drive	$\begin{aligned} & \text { Telephone Number } \\ & 920-468-1978 \end{aligned}$		
City, State, Zip Code Green Bay, Wisconsin 54311			

(6) Comments

(7) Name of Person or Firm Doing Sealing Work AECOM Technical Services, Inc.			Date of Abandonment $11 / 2 / 11$
Signature of Person Doing Work		$\begin{aligned} & \text { Date Signed } \\ & 11 / 2 / 11 \end{aligned}$	
Street or Route 1035 Kepler Drive	$\begin{aligned} & \text { Telephone Number } \\ & 920-468-1978 \end{aligned}$		
City, State, Zip Code Green Bay, Wisconsin			

(6) Comments

(7) Name of Person or Firm Doing Sealing Work AECOM Technical Services, Inc.	Work Date of Abandonment $11 / 7 / 11$
Signature of Person Doing Work	$\begin{aligned} & \hline \text { Date Signed } \\ & 11 / 7 / 11 \end{aligned}$
Street or Route 1035 Kepler Drive	$\begin{aligned} & \text { Telephone Number } \\ & 920-468-1978 \\ & \hline \end{aligned}$
City, State, Zip Code Green Bay, Wisconsin 54311	

(6) Comments

(7) Name of Person or Firm Doing Sealing Work AECOM Technical Services, Inc.			Date of Abandonment $11 / 2 / 11$
Signature of Person Doing Work		$\begin{aligned} & \text { Date Signed } \\ & 11 / 2 / 11 \end{aligned}$	
Street or Route 1035 Kepler Drive	$\begin{aligned} & \text { Telephone Number } \\ & 920-468-1978 \end{aligned}$		
City, State, Zip Code Green Bay, Wisconsin			

(6) Comments

(7) Name of Person or Firm Doing Sealing Work AECOM Technical Services, Inc.	Work Date of Abandonment $11 / 7 / 11$
Signature of Person Doing Work	$\begin{aligned} & \hline \text { Date Signed } \\ & 11 / 7 / 11 \end{aligned}$
Street or Route 1035 Kepler Drive	$\begin{aligned} & \text { Telephone Number } \\ & 920-468-1978 \\ & \hline \end{aligned}$
City, State, Zip Code Green Bay, Wisconsin 54311	

AECOM General Notes

Drilling and Sampling Symbols:

SS : Split Spoon-1-3/8" I.D. 2" O.D. (Unless otherwise noted)	HS : Hollow Stem Auger
ST : Shelby Tube-2" O.D. (Unless otherwise noted)	WS : Wash Sample
PA : Power Auger	FT : Fish Tail
DB : Diamond Bit-NX, BX, AX	RB : Rock Bit
AS : Auger Sample	BS : Bulk Sample
JS : Jar Sample	PM : Pressuremeter Test
VS : Vane Shear	GS : Giddings Sampler
OS : Osterberg Sampler	

Standard "N" Penetration: Blows per foot of a 140 pound hammer falling 30 inches on a 2 inch O.D. split spoon sampler, except where otherwise noted.

Water Level Measurement Symbols:

WL : Water Level	WCI : Wet Cave In
WS : While Sampling	DCI : Dry Cave In
WD : While Drilling	BCR: Before Casing Removal
AB : After Boring	ACR : After Casing Removal

Water levels indicated on the boring logs are the levels measured in the boring at the time indicated. In pervious soils, the indicated elevations are considered reliable groundwater levels. In impervious soils, the accurate determination of groundwater elevations may not be possible, even after several days of observations; additional evidence of groundwater elevations must be sought.

Gradation Description and Terminology:

Coarse grained or granular soils have more than 50% of their dry weight retained on a \#200 sieve; they are described as boulders, cobbles, gravel or sand. Fine grained soils have less than 50% of their dry weight retained on a \#200 sieve; they are described as clay or clayey silt if they are cohesive and silt if they are non-cohesive. In addition to gradation, granular soils are defined on the basis of their relative in-place density and fine grained soils on the basis of their strength or consistency and their plasticity.

Major Component of Sample	Size Range	Description of Other Components Present in Sample	Percent Dry Weight
Boulders	Over 8 in. (200 mm)	Trace	$1-9$
Cobbles	8 inches to 3 inches $(200 \mathrm{~mm}$ to 75 mm$)$	Little	$10-19$
Gravel	3 inches to \#4 sieve $(75 \mathrm{~mm}$ to 4.76 mm$)$	Some	$20-34$
Sand	$\# 4$ to $\# 200$ sieve $(4.76 \mathrm{~mm}$ to 0.074 mm$)$	And	$35-50$
Silt	Passing \#200 sieve $(0.074 \mathrm{~mm}$ to 0.005 mm$)$		
Clay	Smaller than 0.005 mm		

Consistency of Cohesive Soils:
Relative Density of Granular Soils:

Unconfined Compressive Strength, Qu, tsf	Consistency	N-Blows per foot	Relative Density	
<0.25	Very Soft	$0-3$	Very Loose	
$0.25-0.49$	Soft	$4-9$	Loose	
$0.50-0.99$	Medium (firm)	$10-29$	Medium Dense	
$1.00-1.99$	Stiff	$30-49$	Dense	
$2.00-3.99$	Very Stiff	$50-80$	Very Dense	
$4.00-8.00$	Hard	>80	Extremely Dense	
>8.00	Very Hard			

AECOM Field and Laboratory Procedures

Field Sampling Procedures

Auger Sampling (AS)

In this procedure, soil samples are collected from cuttings off of the auger flights as they are removed from the ground. Such samples provide a general indication of subsurface conditions; however, they do not provide undisturbed samples, nor do they provide samples from discrete depths.

Split-Barrel Sampling (SS) - (ASTM Standard D-1586-99)

In the split-barrel sampling procedure, a 2-inch O.D. split barrel sampler is driven into the soil a distance of 18 inches by means of a 140-pound hammer falling 30 inches. The value of the Standard Penetration Resistance is obtained by counting the number of blows of the hammer over the final 12 inches of driving. This value provides a qualitative indication of the in-place relative density of cohesionless soils. The indication is qualitative only, however, since many factors can significantly affect the Standard Penetration Resistance Value, and direct correlation of results obtained by drill crews using different rigs, drilling procedures, and hammer-rod-spoon assemblies should not be made. A portion of the recovered sample is placed in a sample jar and returned to the laboratory for further analysis and testing.

Shelby Tube Sampling Procedure (ST) - ASTM Standard D-1587-94

In the Shelby tube sampling procedure, a thin-walled steel seamless tube with a sharp cutting edge is pushed hydraulically into the soil and a relatively undisturbed sample is obtained. This procedure is generally employed in cohesive soils. The tubes are identified, sealed and carefully handled in the field to avoid excessive disturbance and are returned to the laboratory for extrusion and further analysis and testing.

Giddings Sampler (GS)

This type of sampling device consists of 5 -foot sections of thin-wall tubing which are capable of retrieving continuous columns of soil in 5 -foot maximum increments. Because of a continuous slot in the sampling tubes, the sampler allows field determination of stratification boundaries and containerization of soil samples from any sampling depth within the 5 -foot interval.

AECOM Field and Laboratory Procedures

Subsurface Exploration Procedures

Hand-Auger Drilling (HA)

In this procedure, a sampling device is driven into the soil by repeated blows of a sledge hammer or a drop hammer. When the sampler is driven to the desired sample depth, the soil sample is retrieved. The hole is then advanced by manually turning the hand auger until the next sampling depth increment is reached. The hand auger drilling between sampling intervals also helps to clean and enlarge the borehole in preparation for obtaining the next sample.

Power Auger Drilling (PA)

In this type of drilling procedure, continuous flight augers are used to advance the boreholes. They are turned and hydraulically advanced by a truck, trailer or track-mounted unit as site accessibility dictates. In auger drilling, casing and drilling mud are not required to maintain open boreholes.

Hollow Stem Auger Drilling (HS)

In this drilling procedure, continuous flight augers having open stems are used to advance the boreholes. The open stem allows the sampling tool to be used without removing the augers from the borehole. Hollow stem augers thus provide support to the sides of the borehole during the sampling operations.

Rotary Drilling (RB)

In employing rotary drilling methods, various cutting bits are used to advance the boreholes. In this process, surface casing and/or drilling fluids are used to maintain open boreholes.

Diamond Core Drilling (DB)

Diamond core drilling is used to sample cemented formations. In this procedure, a double tube (or triple tube) core barrel with a diamond bit cuts an annular space around a cylindrical prism of the material sampled. The sample is retrieved by a catcher just above the bit. Samples recovered by this procedure are placed in sturdy containers in sequential order.

AECOM Laboratory Procedures

Water Content (Wc)

The water content of a soil is the ratio of the weight of water in a given soil mass to the weight of the dry soil. Water content is generally expressed as a percentage.

Hand Penetrometer (Qp)

In the hand penetrometer test, the unconfined compressive strength of a soil is determined, to a maximum value of 4.5 tons per square foot (tsf) or 7.0 tsf depending on the testing device utilized, by measuring the resistance of the soil sample to penetration by a small, spring-calibrated cylinder. The hand penetrometer test has been carefully correlated with unconfined compressive strength tests, and thereby provides a useful and a relatively simple testing procedure in which soil strength can be quickly and easily estimated.

Unconfined Compression Tests (Qu)

In the unconfined compression strength test, an undisturbed prism of soil is loaded axially until failure or until 20% strain has been reached, whichever occurs first.

Dry Density (yd)

The dry density is a measure of the amount of solids in a unit volume of soil. Use of this value is often made when measuring the degree of compaction of a soil.

Classification of Samples

In conjunction with the sample testing program, all soil samples are examined in our laboratory and visually classified on the basis of their texture and plasticity in accordance with the AECOM Soil Classification System which is described on a separate sheet. The soil descriptions on the boring logs are derived from this system as well as the component gradation terminology, consistency of cohesive soils and relative density of granular soils as described on a separate sheet entitled "AECOM General Notes". The estimated group symbols included in parentheses following the soil descriptions on the boring logs are in general conformance with the Unified Soil Classification System (USCS) which serves as the basis of the AECOM Soil Classification System.

AECOM Standard Boring Log Procedures

In the process of obtaining and testing samples and preparing this report, standard procedures are followed regarding field logs, laboratory data sheets and samples.

Field logs are prepared during performance of the drilling and sampling operations and are intended to essentially portray field occurrences, sampling locations and procedures.

Samples obtained in the field are frequently subjected to additional testing and reclassification in the laboratory by experienced geotechnical engineers, and as such, differences between the field logs and the final logs may exist. The engineer preparing the report reviews the field logs, laboratory test data and classifications, and using judgment and experience in interpreting this data, may make further changes. It is common practice in the geotechnical engineering profession not to include field logs and laboratory data sheets in engineering reports, because they do not represent the engineer's final opinions as to appropriate descriptions for conditions encountered in the exploration and testing work. Results of laboratory tests are generally shown on the boring logs or are described in the text of the report, as appropriate.

Samples taken in the field, some of which are later subjected to laboratory tests, are retained in our laboratory for sixty days and are then discarded unless special disposition is requested by our client. Samples retained over a long period of time, even in sealed jars, are subject to moisture loss which changes the apparent strength of cohesive soil, generally increasing the strength from what was originally encountered in the field. Since they are then no longer representative of the moisture conditions initially encountered, observers of these samples should recognize this factor.

AECOM Soil Classification System ${ }^{(1)}$

1. See AECOM General Notes for component gradation terminology, consistency of cohesive soils and relative density of granular soils.
2. Reference: Unified Soil Classification Systems
3. Borderline classifications, used for soils possessing characteristics of two groups, are designated by combinations of group symbols. For example: GW-GC, well-graded gravel-sand mixture with clay binder.

APPENDIX B: GEOTECHNICAL LABORATORY DATA

Particle Size Distribution Report

SIEVE SIZE	PERCENT FINER	SPEC.* PERCENT	PASS? $(X=N O)$
$\begin{gathered} \# 10 \\ \# 40 \\ \# 100 \\ \# 200 \end{gathered}$	$\begin{array}{r} \hline 100.0 \\ 89.0 \\ 55.5 \\ 39.5 \end{array}$		

Material Description CLAYEY FINE TO MEDIUM SAND, BROWNISH GRAY		
$\mathrm{PL}=14$	Atterberg Limits $\mathrm{LL}=38$	$\mathrm{PI}=24$
$\begin{aligned} & \mathrm{D}_{90}=0.4902 \\ & \mathrm{D}_{50}=0.1036 \\ & \mathrm{D}_{10}= \end{aligned}$	$\begin{aligned} & \text { Coefficients } \\ & \mathrm{D}_{8}=0.3732 \\ & \mathrm{D}_{30}=0.3564 \\ & \mathrm{C}_{\mathrm{U}}= \end{aligned}$	$\begin{aligned} & \mathrm{D}_{60}=0.1816 \\ & \mathrm{D}_{15}= \\ & \mathrm{C}_{\mathrm{C}}= \end{aligned}$
USCS $=\mathrm{SC}$	Classification AASHTO	A-6(4)
	Remarks	

(no specification provided)
Source of Sample: B-1-1
Sample Number: B-1-1 S-11
Depth: 20'-22'
Date: 12/9/11
Client: IPR-GDF SUEZ
Project: COLETO CREEK
 (no specification provided)

Date: 12/15/11
Particle Size Distribution Report

$\begin{aligned} & \hline \text { SIEVE } \\ & \text { SIZE } \end{aligned}$	PERCENT FINER	SPEC.* PERCENT	$\begin{aligned} & \text { PASS? } \\ & (X=N O) \end{aligned}$
\#4	100.0		
\#10	99.9		
\#40	98.9		
\#100	94.7		
\#200	90.7		

(no specification provided)

Source of Sample: B-1-1 Sample Number: B-1-1 S-40

Depth: $120^{\prime}-121^{\prime}$

Client: 1PR-GDF SUEZ
AECOM

Particle Size Distribution Report

(no specification provided)

Client: 1PR-GDF SUEZ
AECOM

Tested By: BCM Checked By: WPQ \qquad

Particle Size Distribution Report

$\begin{aligned} & \text { SIEVE } \\ & \text { SIZE } \end{aligned}$	PERCENT FINER	SPEC. * PERCENT	$\begin{aligned} & \text { PASS? } \\ & (\mathrm{X}=\mathrm{NO}) \end{aligned}$
\#4	100.0		
\#10	99.6		
\#40	83.8		
\#100	51.4		
\#200	38.4		

(no specification provided)

Material Description

CLAYEY FINE TO MEDIUM SAND, GRAY

Atterberg Limits

$\mathrm{PL}=14$	$L L=29$	$\mathrm{PI}=15$
	Coefficients	
$\mathrm{D}_{90}=0.5414$	$\mathrm{D}_{85}=0.4433$	$\mathrm{D}_{60}=0.2165$
$\mathrm{D}_{50}=0.1251$	$\mathrm{D}_{30}=0.0637$	$\mathrm{D}_{15}=$
$\mathrm{D}_{10}=$	$\mathrm{C}_{\mathrm{u}}=$	$\mathrm{C}_{\mathrm{C}}=$
	Classification	
USCS $=$ SC	AASHT	A-6(2)

Remarks

Particle Size Distribution Report

(no specification provided)

Client: IPR-GDF SUEZ
Project: COLETO CREEK

Client: 1PR-GDF SUEZ
A=COM
Project: COLETO CREEK
Particle Size Distribution Report

SIEVE SIZE	PERCENT FINER	SPEC.* PERCENT	PASS? $(X=N O)$
$\begin{gathered} \# 4 \\ \# 10 \\ \# 40 \\ \# 100 \\ \# 200 \end{gathered}$	$\begin{array}{r} 100.0 \\ 99.6 \\ 79.5 \\ 46.5 \\ 34.8 \end{array}$		

(no speeification provided)
Source of Sample: B-3-1
Sample Number: B-3-1 S-10
Depth: $18^{\prime}-20^{\prime}$

Material Description

CLAYEY FINE TO MEDIUM SAND, DARK BROWN
$\mathrm{PL}=13 \quad$ Atterberg Limits
$\mathrm{PL}=13$
$\mathrm{D} 90=0.6299$
$\mathrm{D}_{50}=0.1856$
$\mathrm{D}_{10}=$
USCS $=\mathrm{SC}$
-

Client: 1PR-GDF SUEZ
Project: COLETO CREEK

Tested By: BCM \qquad Checked By: WPQ

Source of Sample: B-5-1
Sample Number: B-5-1 S-14

LIQUID AND PLASTIC LIMITS TEST REPORT

		SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT $(\%)$	PLASTIC LIMIT $(\%)$	LIQUID LIMIT $(\%)$	PLASTICITY INDEX $(\%)$
	B-1-1	B-1-1 S-5	$88^{\prime}-10^{\prime}$		USCS			
					14	22	8	CL

Client: IPR-GDF SUEZ
AECOM
Project: COLETO CREEK

LIQUID AND PLASTIC LIMITS TEST REPORT

			SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT $(\%)$	PLASTIC LIMIT $(\%)$	LIQUID LIMIT $(\%)$
	B-1-1	B-1-1 S-11	$20^{\prime}-22^{\prime}$		PLASTICITY INDEX $(\%)$	USCS		
					14	38	24	SC

LIQUID AND PLASTIC LIMITS TEST REPORT

			SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT $(\%)$	PLASTIC LIMIT $(\%)$	LIQUID LIMIT $(\%)$
	B-1-1	B-1-1 S-34	$90^{\prime}-90.4^{\prime}$		PLASTICITY INDEX $(\%)$	USCS		
					17	42	25	CL

Client: 1PR-GDF SUEZ
Project: COLETO CREEK
LIQUID AND PLASTIC LIMITS TEST REPORT

		SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT $(\%)$	PLASTIC LIMIT $(\%)$	LIQUID LIMIT $(\%)$	PLASTICITY INDEX $(\%)$
	B-1-1	B-1-1 S-40	$120^{\prime}-121^{\prime}$		28	79	51	USCS

LIQUID AND PLASTIC LIMITS TEST REPORT

LIQUID AND PLASTIC LIMITS TEST REPORT

		SOMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT $(\%)$	PLASTIC LIMIT $(\%)$	LIQUID LIMIT $(\%)$
	B-2-1	B-2-1 S-10	$18^{\prime}-20^{\prime}$		PLASTICITY INDEX $(\%)$	USCS		
					13	41	28	SC

LIQUID AND PLASTIC LIMITS TEST REPORT

		SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT $(\%)$	PLASTIC SYMBOL $(\%)$	LIQUID LIMIT $(\%)$	PLASTICITY INDEX $(\%)$
	B-2-1	B-2-1 S-17	$32^{\prime}-34^{\prime}$		14	29	15	USCS

LIQUID AND PLASTIC LIMITS TEST REPORT

SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (\%)	PLASTIC LIMIT (\%)	LIQUID LIMIT (\%)	PLASTICITY INDEX (\%)	USCS
-	B-2-1	B-2-1 S-27	55.0'-56.6'		17	28	11	SC

Client: IPR-GDF SUEZ
AECOM
Project: COLETO CREEK

LIQUID AND PLASTIC LIMITS TEST REPORT

			SOMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURALA WATER CONTENT $(\%)$	PLASTIC LIMIT $(\%)$
	B-2-1	B-2-1 S-33	$85.0^{\prime}-86.5$		LIQUID LIMIT $(\%)$	PLASTICITY INDEX $(\%)$	USCS	
					25	59	34	CH

Client: IPR-GDF SUEZ

LIQUID AND PLASTIC LIMITS TEST REPORT

			SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT $(\%)$	PLASTIC LIMIT $(\%)$	LIQUID LIMIT $(\%)$
	B-2-2	B-2-2 S-16	$59.0^{\prime}-60.5^{\prime}$		PLASTICITY INDEX $(\%)$	USCS		
					18	41	23	CL

Client: IPR-GDF SUEZ
AECOM
Project: COLETO CREEK

LIQUID AND PLASTIC LIMITS TEST REPORT

			SOMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURALA WATER CONTENT $(\%)$	PLASTIC LIMIT (\%)
	B-2-2	B-2-2 S-18	$69.0^{\prime}-70.5^{\prime}$		LIQUID LIMIT $(\%)$	PLASTICITY INDEX $(\%)$	USCS	
					26	63	37	CH

LIQUID AND PLASTIC LIMITS TEST REPORT

			SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (\%)	PLASTIC LIMIT $(\%)$	LIQUID LIMIT (\%)
	B-3-1	B-3-1 S-9	$16.0^{\prime}-17.8^{\prime}$		PLASTICITY INDEX (\%)	USCS		
					15	44	29	SC

LIQUID AND PLASTIC LIMITS TEST REPORT

		SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT $(\%)$	PLASTIC LIMIT $(\%)$	LIQUID LIMIT $(\%)$	PLASTICITY INDEX $(\%)$
	B-3-1	B-3-1 S-10	$18^{\prime}-20^{\prime}$		13	35	22	USCS

Client: IPR-GDF SUEZ
Project: COLETO CREEK

LIQUID AND PLASTIC LIMITS TEST ASTM D4318

LIQUID AND PLASTIC LIMITS TEST REPORT

SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (\%)	PLASTIC LIMIT (\%)	LIQUID LIMIT (\%)	PLASTICITY INDEX (\%)	USCS
-	B-5-1	B-5-1 S-14	26'-27'		18	30	12	CL

AECOM

$\overline{\text { Laboratory S }}$	Services Group	750 Corporate W		Vernon Hills, IL 60061	Phone: (847) 279-2500	Fax: (847) 279-2550	
	AECOM Project No.: 60225561				Test Date: 12/6/2011		
	Project Name:	Coleto Creek Facility IPR-GDP Suez					
	Boring/Source:	$1-1$		Boring/Source:	4-1		
	Sample No.:	16,17,18		Sample No.:	7		
	Depth (ft.):	30.0-36.7		Depth (ft.):	12.0-14.0		
	Description:	Caliche - White		Description:	F-M Sand Little Clay Traee Silt		
				- Brownish Gray SC			
			Test 1				Test 2
	Flask No.		SG-3	Flask No.		SG-10	
	Wt. Flask + Soil	+ Water (W2)	742.20	Wt. Flask + Soil	Water (W2)	742.38	
	Wt. Flask + W	ater (W3)	677.46	Wt. Flask + W	ater (W3)	668.44	
	Temperature (21.5	Temperature (21.5	
	Density of Wa	@ test Tem.	0.99789	9 Density of Wat	(a) test Tem.	0.99789	
	Tare No.		ED-4	Tare No.		ED-4	
	Wt. Tare		578.17	Wt. Tare		576.51	
	Wt. Tare + Soil		681.20	Wt. Tare + Soil		695.11	
	Wt. Soil (W2-W		103.03	Wt. Soil (W2-W		118.60	
	(k) Temp. Cor	ection	0.99968	8 (k) Temp. Corr	ection	0.99968	
	Specific Gravit	(Gs)	2.690	Specific Gravit	(Gs)	2.655	

Boring/Source: Sample No.: Depth (ft.): Description:	$\frac{2-1}{14}$
	$\frac{\text { Clayey F-M Sand Little Silt }}{}$

	Test 4
Flask No.	SG-2
Wt. Flask + Soil + Water (W2)	738.44
Wt. Flask + Water (W3)	668.48
Temperature (C)	21.5
Density of Water @ test Tem.	0.99789
Tare No.	ED-10
Wt. Tare	619.18
Wt. Tare + Soil	730.96
Wt. Soil (W2-W3)	111.78
(k) Temp. Correction	0.99968
Specific Gravity (Gs)	2.672

Technician	BCM	Calculated	BCM	Checked	WPQ
Date	12/2/11	Date	12/2/11	Date	12/6/11

AECOM Project No.:	60225561
Project Name:	Coleto Creek Facility - IPR-GDP Suez
Date Tested:	$12 / 6 / 2011$

Sample Information

Boring / Source:
Sample No.:
Depth (ft.):

B-4-1
13
24.0-26.0

Organic Content Test Data

Tare No.:
Tare Wt. (gm): T
Wet Wt. + Tare (gm): A+T
Dry Wt. + Tare (gm): B+T 44.70
Moisture Content (\%):

Wt. of Ash + Tare (gm): D+T 44.65
Percent Ash: $(D-T / B-T) \times 100=E$
99.81

Organic Content (\%):
0.19
** Note: Test performed by heating the sample to 440 degrees centigrade for a period of three hours.

Symbol		(1)	\triangle	\square	
Test No.		10.4 PSI	17.4 PSI	24.3 PSI	
$\frac{\overline{0}}{\frac{\bar{\rightharpoonup}}{\overline{5}}}$	Diameter, in	2.8362	2.8441	2.8457	
	Height, in	5.9134	6.0831	6.0173	
	Water Content, \%	21.81	14.93	13.70	
	Dry Density, pcf	105.5	115.9	120.2	
	Saturation, \%	100.17	90.88	94.34	
	Void Ratio	0.58172	0.4389	0.38805	
$\begin{gathered} \frac{1}{0} \\ \frac{1}{y} \\ \frac{1}{n} \\ \frac{0}{0} \\ \frac{0}{0} \\ 0 \end{gathered}$	Water Content, \%	21.39	15.80	14.06	
	Dry Density, pcf	106.1	117.3	121.3	
	Saturation, \%	100.00	100.00	100.00	
	Void Ratio	0.57165	0.42209	0.37567	
	Back Press., tsf	5.0449	5.0454	5.0404	
Minor Prin. Stress, tsf		0.74395	1.2474	1.7924	
Max. Dev. Stress, tsf		1.7444	3.0288	4.2889	
Time to Failure, min		1612.1	1613.1	1614.3	
Strain Rate, \%/min		0.02	0.02	0.03	
B-Value		. 98	. 97	. 95	
Measured Specific Gravity		2.67	2.67	2.67	
Liquid Limit		42	42	42	
Plastic Limit		24	24	24	
Plasticity Index		18	18	18	
Failure Sketch			$1 .$		\square 1 1 1 1 1

Project: COLETO CREEK FACILITY
Location: IPR-GDF SUEZ
Project No.: 60225561
Boring No.: $B-2-1 S-14$
Sample Type: 3" ST
Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Project: COLETO CREEK FACILITY	Location: IPR-GDF SUEZ	Project No.: 60225561
Boring No.: B-2-1 S-14	Tested By: BCM	Checked By: WPQ
Sample No.: S-14	Test Date: $12 / 5 / 11$	Depth: 26.0'-28.0'
Test No.: B-2-1 S-14	Sample Type: $3^{\prime \prime}$ ST	Elevation: ----
Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC		
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767		

Project: COLETO CREEK FACILITY Boring No.: B-2-1 S-14
Sample No.: S-14
Test No.: 10.4 PSI

Location: I PR-GDF SUEZ
Tested By: BCM
Test Date: 12/5/11
Sample Type: ${ }^{\prime \prime}$ ST

Project No.: 60225561
Checked By: WPQ
Depth: 26.0'-28.0
Elevation:

Soil Description: CLAYEY F-M SAND LITTLE SILT. BROWNI SH GRAY SC
Remarks: FAILURE CRITERIA = MAXI MUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

```
Specimen Height: 5.91 in
Specimen Area: 6.32 i n^2
Specimen Volume: 37.36 in^3
```

Liquid Limit: 42

Piston Area: 0.00 in^2
Piston Friction: 0.00 |b
Piston Weight: 0.00 lb

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 |b/in
Correction Type: Uniform

	Ti me mi n	$\begin{array}{r} \text { Vertical } \\ \text { Strain } \\ \% \end{array}$	$\begin{array}{r} \text { Corrected } \\ \text { Area } \\ \text { in^2 } \end{array}$	Deviator Load \| b	Deviator Stress t sf	$\begin{array}{r} \text { Pore } \\ \text { Pressure } \\ \text { tsf } \end{array}$	$\begin{array}{r} \text { Horizontal } \\ \text { Stress } \\ \text { tsf } \end{array}$	$\begin{array}{r} \text { Vertical } \\ \text { Stress } \\ \text { tsf } \end{array}$
1	0	0	6. 3179	0	0	5. 0449	5.7888	5.7888
2	5.0001	0.045204	6. 3207	31.887	0. 36323	5. 1097	5.7888	6.152
3	10	0.094782	6.3239	40.44	0.46042	5. 1704	5.7888	6. 2492
4	15	0.14144	6.3268	44.344	0.50464	5. 2061	5.7888	6.2934
5	20	0.18956	6. 3299	46.761	0.53189	5. 2306	5.7888	6.3207
6	25	0.23768	6. 3329	48.992	0.557	5. 2487	5. 7888	6. 3458
7	30.001	0.28726	6. 3361	51.038	0.57997	5. 2633	5.7888	6. 3688
8	35.001	0.33538	6. 3391	52.618	0.59764	5.275	5.7888	6. 3864
9	40.001	0.3835	6. 3422	54.012	0.61318	5. 2849	5.7888	6.402
10	45.001	0.43308	6. 3453	55.5	0.62975	5. 2931	5.7888	6.4186
11	50.001	0.4812	6. 3484	57.08	0.64737	5. 3001	5.7888	6.4362
12	55.001	0.53078	6. 3516	58.289	0.66075	5. 3066	5.7888	6.4495
13	60.001	0.5789	6. 3546	59.311	0.67202	5. 3112	5.7888	6.4608
14	70.001	0.6766	6.3609	61.636	0.69766	5. 3194	5.7888	6. 4865
15	80.001	0.77576	6. 3673	63.588	0.71904	5. 3258	5.7888	6. 5078
16	90.002	0.87346	6. 3735	65.633	0.74144	5. 3311	5.7888	6.5302
17	100	0.97115	6. 3798	67.213	0.75854	5. 3346	5.7888	6. 5473
18	110	1.0703	6. 3862	68.794	0.7756	5. 3369	5.7888	6. 5644
19	120	1. 1695	6. 3926	70.281	0.79158	5. 3387	5.7888	6. 5804
20	130	1. 2701	6. 3991	71.676	0.80646	5. 3404	5.7888	6. 5953
21	140	1. 3707	6.4057	72.605	0.81609	5.341	5.7888	6.6049
22	150	1.4699	6.4121	74.093	0.83197	5. 3428	5.7888	6.6208
23	160	1. 5676	6.4185	75.023	0.84157	5. 3428	5. 7888	6.6304
24	170	1. 6682	6.425	76.231	0.85426	5. 3428	5.7888	6. 6431
25	180	1. 7688	6.4316	77.254	0.86483	5. 3422	5.7888	6. 6536
26	190	1.8694	6.4382	78.462	0.87746	5. 3416	5.7888	6.6663
27	200	1. 9715	6.4449	79.95	0.89316	5. 3399	5.7888	6.682
28	210	2.0706	6. 4514	81.065	0.90471	5. 3381	5.7888	6.6935
29	220	2.1712	6. 4581	81.809	0.91207	5.3369	5.7888	6.7009
30	230	2. 2719	6.4647	82.553	0.91942	5.334	5.7888	6.7082
31	240	2. 3725	6.4714	83.575	0.92985	5. 3317	5.7888	6.7186
32	270	2. 6699	6.4912	86.457	0.95898	5. 3235	5.7888	6.7478
33	300	2. 9674	6. 5111	88.688	0.98072	5. 3142	5.7888	6.7695
34	330	3. 2678	6. 5313	91.198	1. 0054	5. 3036	5.7888	6.7942
35	360	3. 5609	6. 5511	93.244	1.0248	5. 2943	5.7888	6.8136
36	390	3. 8584	6. 5714	95.103	1. 042	5. 2849	5.7888	6.8308
37	420	4.1602	6. 5921	97.892	1. 0692	5. 2756	5.7888	6.858
38	450	4.4621	6.6129	99.658	1. 0851	5. 2668	5.7888	6.8739
39	480	4.761	6.6337	101.8	1. 1049	5. 2569	5.7888	6.8937
40	510	5. 0585	6.6545	104.03	1. 1256	5. 2476	5. 7888	6. 9144
41	540	5. 3574	6.6755	106.07	1.1441	5. 2376	5.7888	6.9329
42	570	5. 6505	6.6962	108.95	1.1715	5. 2289	5.7888	6.9603
43	600	5.9465	6.7173	111.93	1. 1997	5. 2184	5.7888	6. 9885
44	630	6. 244	6.7386	114.07	1. 2188	5. 2096	5.7888	7.0076
45	660	6. 5458	6.7604	115.28	1. 2277	5. 2008	5.7888	7. 0165
46	690	6.8477	6.7823	117.32	1. 2455	5. 1915	5.7888	7.0343
47	720	7. 1466	6.8041	119.46	1. 2641	5.1821	5.7888	7.0529
48	750	7. 4441	6.826	122.62	1. 2934	5.1734	5.7888	7. 0822
49	780	7. 7386	6.8478	124.67	1. 3108	5.164	5.7888	7.0996
50	810	8.0332	6.8697	127.73	1. 3387	5. 1547	5.7888	7.1275
51	840	8. 3306	6.892	128.57	1. 3432	5.1453	5.7888	7.132
52	870	8.6296	6. 9146	131.08	1. 3649	5.1372	5.7888	7.1537
53	900	8. 9329	6.9376	133.59	1. 3864	5.1284	5.7888	7. 1752
54	930	9. 2333	6. 9605	136.57	1.4126	5.1196	5.7888	7. 2014
55	960	9. 5336	6.9837	138.42	1.4271	5. 1109	5.7888	7.2159
56	990	9.8282	7.0065	139.35	1.432	5. 1033	5.7888	7.2208
57	1020	10.121	7.0293	141.59	1.4502	5.0951	5.7888	7.239
58	1050	10.419	7.0527	143.72	1.4673	5. 0869	5.7888	7.2561
59	1080	10.718	7.0763	145.68	1.4822	5. 0787	5.7888	7. 271
60	1110	11.017	7.1	147.72	1.498	5.0706	5.7888	7. 2868
61	1140	11.317	7. 1241	150.23	1. 5183	5.063	5.7888	7. 3071
62	1170	11.613	7. 148	151.9	1. 5301	5. 0548	5.7888	7. 3189
63	1200	11.91	7.1721	155.16	1. 5576	5. 0472	5.7888	7. 3464
64	1230	12.205	7. 1962	156.37	1. 5645	5. 0402	5.7888	7. 3533
65	1260	12.5	7. 2204	159.71	1. 5926	5. 0314	5.7888	7. 3814
66	1290	12.794	7. 2448	160.74	1. 5974	5.0238	5.7888	7. 3862
67	1320	13.092	7.2696	163.06	1.615	5.0168	5.7888	7.4038
68	1350	13.395	7.295	164.18	1.6204	5. 0098	5.7888	7.4092
69	1380	13.697	7.3205	166.87	1.6412	5.0022	5.7888	7.43
70	1410	13.996	7.346	168.08	1.6474	4.9958	5.7888	7.4362
71	1440	14.293	7. 3715	169.66	1.6571	4.9894	5.7888	7.4459
72	1470	14.589	7.397	172.36	1.6777	4.9829	5.7888	7.4665
73	1500	14.881	7.4224	173.75	1. 6855	4.9759	5.7888	7.4743
74	1530	15.174	7.448	176.63	1.7075	4.9689	5.7888	7.4963
75	1560	15.473	7.4744	178.03	1.7149	4.9625	5.7888	7. 5037
76	1590	15.773	7. 501	181	1.7374	4.9549	5.7888	7. 5262
77	1612.1	15.995	7. 5208	182.21	1. 7444	4.9502	5.7888	7. 5332

Project: COLETO CREEK FACILITY Boring No.: B-2-1 S-14
Sample No.: S-14
Test No.: 10.4 PSI

Location: I PR-GDF SUEZ
Tested By: BCM
Test Date: 12/5/11

Project No.: 60225561
Checked By: WPQ
Depth: 26.0'-28.0
El evation:....

Soil Description: CLAYEY F-M SAND LITTLE SILT. BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXI MUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

```
Specimen Height: 5,91 in
Specimen Area: 6.32 i n^2
Specimen Volume: }37.36\mathrm{ i n^^3
```

Piston Area: 0.00 in^2
Piston Friction: 0.00 |b
Piston Weight: 0.00 lb

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 |b/in
Correction Type: Uniform

	$\begin{array}{r} \text { Vertical } \\ \text { Strail } \\ \% \end{array}$	$\begin{array}{r} \text { Total } \\ \text { Vertical } \\ \text { Stress } \\ \text { ts } \end{array}$	$\begin{array}{r} \text { Total } \\ \text { Horizontal } \\ \text { Stress } \\ \text { tss } \end{array}$	$\begin{array}{r} \text { Excess } \\ \text { Pore } \\ \text { Pressure } \\ \text { tssf } \end{array}$	Parameter ${ }^{\text {A }}$	$\begin{array}{r} \text { Effective } \\ \text { Vertical } \\ \text { Stress } \\ \text { ts } \end{array}$	Effective Horizontal Stress tsf	Stress Ratio	$\begin{array}{r} \text { Effective } \\ \text { p } \end{array}$	ts ${ }^{9}$
1	0.00	5.7888	5.7888	0	0.000	0.74395	0.74395	1. 000	0.74395	0
2	0.05	6.152	5.7888	0.064842	0.179	1. 0423	0.6791	1. 535	0.86072	0.18161
3	0.09	6.2492	5.7888	0.1256	0.273	1. 0788	0.61835	1. 745	0.84856	0. 23021
4	0.14	6.2934	5.7888	0.16123	0.319	1. 0874	0.58272	1.866	0.83504	0.25232
5	0.19	6. 3207	5.7888	0.18576	0.349	1. 0901	0. 55818	1. 953	0.82413	0.26595
6	0.24	6. 3458	5.7888	0.20387	0.366	1. 0971	0.54007	2. 031	0.81857	0.2785
7	0.29	6. 3688	5.7888	0.21848	0.377	1. 1054	0.52547	2. 104	0.81545	0.28998
8	0.34	6. 3864	5.7888	0.23016	0.385	1.1114	0.51379	2. 163	0.8126	0. 29882
9	0.38	6.402	5.7888	0.24009	0. 392	1.117	0.50385	2. 217	0.81044	0.30659
10	0.43	6.4186	5.7888	0.24827	0.394	1.1254	0.49568	2. 270	0.81055	0. 31488
11	0.48	6.4362	5.7888	0.25528	0.394	1.136	0.48867	2. 325	0.81235	0.32369
12	0.53	6.4495	5.7888	0.26171	0.396	1.143	0.48224	2. 370	0.81262	0.33037
13	0.58	6.4608	5.7888	0.26638	0.396	1. 1496	0.47757	2.407	0.81358	0.33601
14	0.68	6.4865	5.7888	0.27456	0. 394	1. 1671	0.46939	2.486	0.81822	0. 34883
15	0.78	6. 5078	5.7888	0.28098	0.391	1. 182	0.46296	2. 553	0.82248	0. 35952
16	0.87	6. 5302	5.7888	0.28624	0.386	1. 1991	0.45771	2. 620	0.82842	0.37072
17	0.97	6. 5473	5.7888	0.28975	0.382	1. 2127	0.4542	2.670	0.83347	0.37927
18	1. 07	6. 5644	5.7888	0.29208	0.377	1. 2275	0.45186	2. 716	0.83966	0.3878
19	1. 17	6. 5804	5.7888	0.29384	0.371	1. 2417	0.45011	2.759	0.8459	0.39579
20	1. 27	6. 5953	5.7888	0.29559	0.367	1. 2548	0.44836	2. 799	0.85159	0.40323
21	1. 37	6.6049	5.7888	0.29617	0.363	1. 2639	0.44777	2.823	0.85582	0.40804
22	1.47	6.6208	5.7888	0.29792	0.358	1.278	0.44602	2. 865	0.86201	0.41599
23	1. 57	6.6304	5.7888	0.29792	0.354	1. 2876	0.44602	2. 887	0.86681	0.42079
24	1.67	6. 6431	5.7888	0.29792	0.349	1. 3003	0.44602	2. 915	0.87315	0.42713
25	1.77	6. 6536	5. 7888	0.29734	0. 344	1. 3114	0.44661	2.936	0.87902	0.43242
26	1.87	6.6663	5. 7888	0.29676	0.338	1. 3247	0.44719	2. 962	0.88592	0.43873
27	1.97	6.682	5. 7888	0.295	0.330	1. 3421	0.44894	2.989	0.89553	0.44658
28	2.07	6.6935	5.7888	0.29325	0. 324	1. 3554	0.4507	3.007	0.90305	0.45236
29	2.17	6.7009	5.7888	0.29208	0.320	1. 3639	0.45186	3.018	0.9079	0.45604
30	2.27	6.7082	5.7888	0.28916	0.315	1. 3742	0.45478	3.022	0.91449	0.45971
31	2. 37	6.7186	5. 7888	0.28683	0. 308	1.387	0.45712	3.034	0.92205	0.46492
32	2.67	6.7478	5.7888	0.27865	0. 291	1. 4243	0.4653	3.061	0.94479	0.47949
33	2.97	6.7695	5. 7888	0.2693	0.275	1. 4554	0.47465	3.066	0.96501	0.49036
34	3.27	6.7942	5.7888	0.25879	0.257	1. 4905	0.48516	3.072	0.98784	0. 50268
35	3.56	6.8136	5.7888	0.24944	0.243	1. 5193	0.49451	3.072	1. 0069	0. 51239
36	3.86	6.8308	5.7888	0.24009	0.230	1. 5459	0.50385	3.068	1. 0249	0.521
37	4.16	6.858	5.7888	0.23075	0.216	1. 5824	0.5132	3.083	1. 0478	0.5346
38	4.46	6.8739	5.7888	0.22198	0.205	1.607	0.52196	3.079	1. 0645	0. 54253
39	4.76	6.8937	5.7888	0.21205	0.192	1. 6368	0.53189	3.077	1. 0843	0. 55243
40	5.06	6. 9144	5.7888	0.20271	0.180	1. 6668	0.54124	3.080	1. 104	0. 56278
41	5. 36	6.9329	5.7888	0.19277	0.168	1.6952	0.55117	3.076	1.1232	0. 57204
42	5.65	6.9603	5.7888	0.18401	0.157	1. 7314	0.55993	3.092	1. 1457	0. 58576
43	5. 95	6. 9885	5.7888	0.1735	0.145	1.7702	0.57045	3.103	1.1703	0. 59986
44	6. 24	7.0076	5.7888	0.16473	0.135	1.798	0.57921	3.104	1.1886	0.60939
45	6. 55	7.0165	5.7888	0.15597	0.127	1.8157	0.58797	3.088	1. 2018	0.61386
46	6.85	7.0343	5.7888	0.14663	0.118	1.8428	0.59732	3. 085	1. 2201	0.62274
47	7.15	7.0529	5.7888	0.13728	0.109	1.8708	0.60667	3.084	1. 2387	0.63205
48	7.44	7. 0822	5.7888	0.12852	0.099	1. 9088	0.61543	3. 102	1. 2621	0.6467
49	7.74	7.0996	5.7888	0.11917	0.091	1. 9356	0.62478	3.098	1. 2802	0.65539
50	8.03	7.1275	5.7888	0.10982	0.082	1. 9729	0.63412	3.111	1. 3035	0.66937
51	8. 33	7.132	5.7888	0.10048	0.075	1.9866	0.64347	3.087	1.315	0.67158
52	8.63	7. 1537	5.7888	0.092298	0.068	2. 0166	0.65165	3.095	1. 3341	0.68246
53	8. 93	7. 1752	5.7888	0.083536	0.060	2. 0468	0.66041	3.099	1. 3536	0.69322
54	9. 23	7. 2014	5.7888	0.074773	0.053	2. 0818	0.66917	3. 111	1. 3755	0.70632
55	9. 53	7.2159	5.7888	0.066011	0.046	2. 1051	0.67794	3.105	1. 3915	0.71356
56	9.83	7. 2208	5.7888	0.058417	0.041	2. 1176	0.68553	3.089	1.4015	0.71602
57	10.12	7.239	5.7888	0.050238	0.035	2. 1439	0.69371	3.091	1.4188	0.72512
58	10.42	7. 2561	5.7888	0.04206	0.029	2. 1691	0.70189	3.090	1.4355	0.73363
59	10.72	7. 271	5.7888	0.033882	0.023	2. 1923	0.71006	3.087	1.4512	0.74111
60	11.02	7. 2868	5.7888	0.025703	0.017	2. 2162	0.71824	3.086	1.4672	0.749
61	11.32	7. 3071	5.7888	0.018109	0.012	2. 2442	0.72584	3.092	1.485	0.75916
62	11.61	7. 3189	5.7888	0.0099308	0.006	2. 2641	0.73402	3.085	1.4991	0.76505
63	11.91	7. 3464	5.7888	0.0023367	0.002	2. 2992	0.74161	3.100	1. 5204	0.77881
64	12. 21	7. 3533	5.7888	-0.0046733	-0.003	2. 3131	0.74862	3.090	1. 5309	0.78225
65	12.50	7. 3814	5.7888	-0.013436	-0.0008	2.35	0.75738	3.103	1. 5537	0.79631
66	12.79	7. 3862	5.7888	-0.02103	-0.013	2. 3624	0.76498	3.088	1. 5637	0.79871
67	13.09	7.4038	5.7888	-0.02804	-0.017	2.387	0.77199	3.092	1. 5795	0.8075
68	13.39	7.4092	5.7888	-0.03505	-0.022	2. 3994	0.779	3.080	1. 5892	0.81019
69	13.70	7.43	5.7888	-0.042644	-0.026	2.4278	0.78659	3.087	1. 6072	0.82062
70	14.00	7.4362	5.7888	-0.04907	-0.030	2.4404	0.79302	3.077	1.6167	0.8237
71	14.29	7.4459	5.7888	-0.055496	-0.033	2.4566	0.79944	3.073	1.628	0.82857
72	14.59	7.4665	5.7888	-0.061922	-0.037	2.4835	0.80587	3.082	1. 6447	0.83883
73	14.88	7. 4743	5.7888	-0.068932	-0.041	2.4983	0.81288	3.073	1. 6556	0.84273
74	15.17	7.4963	5.7888	-0.075942	-0.044	2. 5274	0.81989	3. 083	1. 6736	0.85376
75	15.47	7. 5037	5.7888	-0.082367	-0.048	2. 5412	0.82631	3.075	1. 6838	0.85746
76	15.77	7. 5262	5.7888	-0.089961	-0.052	2. 5713	0.83391	3.083	1. 7026	0.86869
77	15.99	7. 5332	5.7888	-0.094635	-0.054	2.583	0.83858	3.080	1.7108	0.87219

Liquid Limit: 42

	Vertical	Total Vertical	Horizontal $\begin{array}{r}\text { Total }\end{array}$	Excess Pore	A	Effective Vertical	$\begin{aligned} & \text { Effective } \\ & \text { Horizontal } \end{aligned}$	Stress	Effective	
	Strain	Stress	Stress	Pressure	Parameter	Stress	Stress	Ratio	p_{f}^{p}	${ }_{9}$
	\%	$t \mathrm{ff}$	$t \mathrm{sf}$	tsf		tsf	tsf		tsf	$t \mathrm{sf}$
1	0.00	5.7888	5.7888	0	0.000	0.74395	0.74395	1.000	0.74395	0
2	0.05	6.152	5.7888	0.064842	0.179	1. 0423	0.6791	1. 535	0.86072	0.18161
3	0.09	6. 2492	5.7888	0.1256	0.273	1. 0788	0.61835	1. 745	0.84856	0.23021
4	0.14	6. 2934	5.7888	0.16123	0.319	1. 0874	0.58272	1.866	0.83504	0.25232
5	0.19	6. 3207	5. 7888	0.18576	0.349	1. 0901	0.55818	1.953	0.82413	0.26595
6	0.24	6. 3458	5.7888	0.20387	0.366	1. 0971	0.54007	2. 031	0.81857	0.2785
7	0.29	6. 3688	5.7888	0.21848	0.377	1. 1054	0.52547	2. 104	0.81545	0.28998
8	0.34	6. 3864	5.7888	0.23016	0.385	1. 1114	0.51379	2.163	0.8126	0.29882
9	0.38	6.402	5.7888	0.24009	0.392	1.117	0.50385	2. 217	0.81044	0.30659
10	0.43	6.4186	5.7888	0.24827	0. 394	1.1254	0.49568	2. 270	0.81055	0.31488
11	0.48	6.4362	5.7888	0.25528	0.394	1.136	0.48867	2. 325	0.81235	0.32369
12	0.53	6.4495	5.7888	0.26171	0.396	1.143	0.48224	2. 370	0.81262	0.33037
13	0.58	6. 4608	5.7888	0.26638	0. 396	1.1496	0.47757	2.407	0.81358	0.33601
14	0.68	6. 4865	5.7888	0.27456	0.394	1. 1671	0.46939	2.486	0.81822	0.34883
15	0.78	6. 5078	5.7888	0. 28098	0.391	1.182	0.46296	2. 553	0.82248	0.35952
16	0.87	6. 5302	5.7888	0.28624	0.386	1. 1991	0.45771	2.620	0.82842	0.37072
17	0.97	6. 5473	5.7888	0.28975	0.382	1. 2127	0.4542	2.670	0.83347	0.37927
18	1.07	6. 5644	5.7888	0.29208	0.377	1. 2275	0.45186	2.716	0.83966	0.3878
19	1.17	6. 5804	5.7888	0.29384	0.371	1. 2417	0.45011	2.759	0.8459	0.39579
20	1.27	6. 5953	5.7888	0.29559	0.367	1. 2548	0.44836	2.799	0.85159	0.40323
21	1.37	6.6049	5.7888	0.29617	0.363	1.2639	0.44777	2.823	0.85582	0.40804
22	1.47	6.6208	5.7888	0.29792	0. 358	1.278	0.44602	2.865	0.86201	0.41599
23	1.57	6.6304	5.7888	0.29792	0. 354	1.2876	0.44602	2.887	0.86681	0.42079
24	1.67	6. 6431	5.7888	0.29792	0.349	1. 3003	0.44602	2.915	0.87315	0.42713
25	1.77	6.6536	5.7888	0.29734	0. 344	1. 3114	0.44661	2.936	0.87902	0.43242
26	1.87	6.6663	5.7888	0.29676	0.338	1. 3247	0.44719	2.962	0.88592	0.43873
27	1.97	6.682	5.7888	0.295	0.330	1. 3421	0.44894	2.989	0.89553	0.44658
28	2.07	6.6935	5.7888	0.29325	0.324	1. 3554	0.4507	3.007	0.90305	0.45236
29	2.17	6.7009	5.7888	0.29208	0.320	1. 3639	0.45186	3.018	0.9079	0.45604
30	2.27	6.7082	5.7888	0.28916	0.315	1. 3742	0.45478	3.022	0.91449	0.45971
31	2.37	6.7186	5.7888	0.28683	0.308	1.387	0.45712	3.034	0.92205	0.46492
32	2.67	6.7478	5.7888	0.27865	0.291	1.4243	0.4653	3.061	0.94479	0.47949
33	2.97	6.7695	5. 7888	0.2693	0.275	1. 4554	0.47465	3.066	0.96501	0.49036
34	3.27	6.7942	5.7888	0.25879	0.257	1.4905	0.48516	3.072	0.98784	0.50268
35	3.56	6.8136	5.7888	0.24944	0.243	1. 5193	0.49451	3.072	1. 0069	0.51239
36	3.86	6.8308	5.7888	0.24009	0.230	1. 5459	0.50385	3.068	1. 0249	0.521
37	4.16	6.858	5.7888	0.23075	0.216	1. 5824	0.5132	3.083	1. 0478	0.5346
38	4.46	6.8739	5.7888	0.22198	0.205	1.607	0.52196	3.079	1. 0645	0.54253
39	4.76	6.8937	5.7888	0.21205	0.192	1. 6368	0.53189	3.077	1. 0843	0.55243
40	5.06	6. 9144	5.7888	0.20271	0.180	1.6668	0.54124	3.080	1.104	0.56278
41	5.36	6.9329	5.7888	0.19277	0.168	1. 6952	0.55117	3.076	1. 1232	0.57204
42	5.65	6.9603	5.7888	0.18401	0.157	1. 7314	0.55993	3.092	1. 1457	0.58576
43	5.95	6.9885	5.7888	0.1735	0.145	1.7702	0.57045	3.103	1. 1703	0.59986
44	6. 24	7.0076	5.7888	0.16473	0.135	1.798	0.57921	3.104	1. 1886	0.60939
45	6.55	7. 0165	5.7888	0.15597	0.127	1. 8157	0.58797	3.088	1. 2018	0.61386
46	6.85	7. 0343	5.7888	0.14663	0.118	1.8428	0.59732	3.085	1. 2201	0.62274
47	7. 15	7. 0529	5.7888	0.13728	0.109	1. 8708	0.60667	3. 084	1. 2387	0.63205
48	7.44	7. 0822	5. 7888	0.12852	0.099	1. 9088	0.61543	3.102	1. 2621	0.6467
49	7.74	7.0996	5.7888	0.11917	0.091	1.9356	0.62478	3.098	1. 2802	0.65539
50	8.03	7. 1275	5.7888	0.10982	0.082	1. 9729	0.63412	3.111	1. 3035	0.66937
51	8.33	7.132	5.7888	0.10048	0.075	1.9866	0.64347	3.087	1.315	0.67158
52	8.63	7. 1537	5.7888	0.092298	0.068	2. 0166	0.65165	3.095	1. 3341	0.68246
53	8.93	7. 1752	5.7888	0.083536	0.060	2. 0468	0.66041	3.099	1. 3536	0.69322
54	9. 23	7. 2014	5.7888	0.074773	0.053	2. 0818	0.66917	3.111	1. 3755	0.70632
55	9. 53	7.2159	5.7888	0.066011	0.046	2. 1051	0.67794	3.105	1. 3915	0.71356
56	9.83	7. 2208	5.7888	0.058417	0.041	2.1176	0.68553	3.089	1. 4015	0.71602
57	10.12	7.239	5.7888	0.050238	0.035	2. 1439	0.69371	3.091	1.4188	0.72512
58	10.42	7. 2561	5.7888	0.04206	0.029	2. 1691	0.70189	3.090	1. 4355	0.73363
59	10.72	7.271	5.7888	0.033882	0.023	2. 1923	0.71006	3.087	1.4512	0.74111
60	11.02	7.2868	5.7888	0.025703	0.017	2. 2162	0.71824	3.086	1.4672	0.749
61	11.32	7. 3071	5.7888	0.018109	0.012	2. 2442	0.72584	3.092	1.485	0.75916
62	11.61	7. 3189	5.7888	0.0099308	0.006	2. 2641	0.73402	3.085	1.4991	0.76505
63	11.91	7. 3464	5.7888	0.0023367	0.002	2. 2992	0.74161	3.100	1. 5204	0.77881
64	12. 21	7. 3533	5.7888	-0.0046733	-0.003	2. 3131	0.74862	3.090	1. 5309	0.78225
65	12.50	7. 3814	5.7888	-0.013436	-0.008	2.35	0.75738	3.103	1. 5537	0.79631
66	12.79	7. 3862	5.7888	-0.02103	-0.013	2. 3624	0.76498	3.088	1. 5637	0.79871
67	13.09	7.4038	5.7888	-0.02804	-0.017	2. 387	0.77199	3.092	1. 5795	0.8075
68	13.39	7.4092	5.7888	-0.03505	-0.022	2. 3994	0.779	3.080	1. 5892	0.81019
69	13.70	7.43	5.7888	-0.042644	-0.026	2.4278	0.78659	3.087	1. 6072	0.82062
70	14.00	7.4362	5.7888	-0.04907	-0.030	2.4404	0.79302	3.077	1. 6167	0.8237
71	14.29	7.4459	5.7888	-0.055496	-0.033	2.4566	0.79944	3.073	1.628	0.82857
72	14.59	7.4665	5.7888	-0.061922	-0.037	2. 4835	0.80587	3.082	1. 6447	0.83883
73	14.88	7. 4743	5.7888	-0.068932	-0.041	2.4983	0.81288	3.073	1. 6556	0.84273
74	15.17	7.4963	5.7888	-0.075942	-0.044	2. 5274	0.81989	3.083	1. 6736	0.85376
75	15.47	7. 5037	5.7888	-0.082367	-0.048	2. 5412	0.82631	3.075	1.6838	0.85746
76	15.77	7. 5262	5.7888	-0.089961	-0.052	2. 5713	0.83391	3.083	1.7026	0.86869
77	15.99	7. 5332	5.7888	-0.094635	-0.054	2.583	0.83858	3.080	1.7108	0.87219

	Vertical	Total Vertical	Horizontal $\begin{array}{r}\text { Total }\end{array}$	Excess pore	A	Effective Vertical	$\begin{aligned} & \text { Effective } \\ & \text { Horizontal } \end{aligned}$	Stress	Effective	
	Strain	Stress	Stress	Pressure	Parameter	Stress	Stress	Ratio	p_{f}^{p}	${ }_{9}$
	\%	$t \mathrm{ff}$	$t \mathrm{sf}$	tsf		tsf	tsf		tsf	$t \mathrm{sf}$
1	0.00	5.7888	5.7888	0	0.000	0.74395	0.74395	1.000	0.74395	0
2	0.05	6.152	5.7888	0.064842	0.179	1. 0423	0.6791	1. 535	0.86072	0.18161
3	0.09	6. 2492	5.7888	0.1256	0.273	1. 0788	0.61835	1. 745	0.84856	0.23021
4	0.14	6. 2934	5.7888	0.16123	0.319	1. 0874	0.58272	1.866	0.83504	0.25232
5	0.19	6. 3207	5. 7888	0.18576	0.349	1. 0901	0. 55818	1.953	0.82413	0.26595
6	0.24	6. 3458	5.7888	0. 20387	0.366	1. 0971	0.54007	2. 031	0.81857	0.2785
7	0.29	6. 3688	5.7888	0.21848	0.377	1. 1054	0.52547	2.104	0.81545	0.28998
8	0.34	6. 3864	5.7888	0.23016	0.385	1. 1114	0.51379	2.163	0.8126	0.29882
9	0.38	6.402	5.7888	0.24009	0.392	1.117	0.50385	2.217	0.81044	0.30659
10	0.43	6.4186	5.7888	0.24827	0. 394	1. 1254	0.49568	2.270	0.81055	0.31488
11	0.48	6.4362	5.7888	0. 25528	0. 394	1.136	0.48867	2.325	0.81235	0.32369
12	0.53	6.4495	5. 7888	0.26171	0.396	1.143	0.48224	2.370	0.81262	0.33037
13	0.58	6. 4608	5.7888	0. 26638	0.396	1. 1496	0.47757	2.407	0.81358	0.33601
14	0.68	6. 4865	5.7888	0.27456	0.394	1.1671	0.46939	2.486	0.81822	0.34883
15	0.78	6. 5078	5.7888	0. 28098	0.391	1.182	0.46296	2. 553	0.82248	0.35952
16	0.87	6. 5302	5.7888	0. 28624	0.386	1. 1991	0.45771	2.620	0.82842	0.37072
17	0.97	6. 5473	5.7888	0. 28975	0.382	1. 2127	0.4542	2.670	0.83347	0.37927
18	1.07	6. 5644	5.7888	0. 29208	0.377	1. 2275	0.45186	2.716	0.83966	0.3878
19	1.17	6. 5804	5.7888	0. 29384	0.371	1. 2417	0.45011	2.759	0.8459	0.39579
20	1.27	6. 5953	5.7888	0.29559	0.367	1. 2548	0.44836	2.799	0.85159	0.40323
21	1.37	6.6049	5.7888	0.29617	0.363	1.2639	0.44777	2.823	0.85582	0.40804
22	1.47	6.6208	5.7888	0.29792	0.358	1.278	0.44602	2.865	0.86201	0.41599
23	1.57	6.6304	5.7888	0. 29792	0.354	1. 2876	0.44602	2.887	0.86681	0.42079
24	1.67	6. 6431	5.7888	0.29792	0.349	1. 3003	0.44602	2.915	0.87315	0.42713
25	1.77	6.6536	5.7888	0. 29734	0. 344	1. 3114	0.44661	2.936	0.87902	0.43242
26	1.87	6.6663	5.7888	0.29676	0.338	1. 3247	0.44719	2.962	0.88592	0.43873
27	1.97	6.682	5.7888	0.295	0.330	1. 3421	0.44894	2.989	0.89553	0.44658
28	2.07	6.6935	5.7888	0.29325	0.324	1. 3554	0.4507	3.007	0.90305	0.45236
29	2.17	6.7009	5.7888	0. 29208	0.320	1. 3639	0.45186	3.018	0.9079	0.45604
30	2.27	6.7082	5.7888	0.28916	0.315	1. 3742	0.45478	3.022	0.91449	0.45971
31	2.37	6.7186	5.7888	0.28683	0.308	1.387	0.45712	3.034	0.92205	0.46492
32	2.67	6.7478	5.7888	0.27865	0.291	1.4243	0.4653	3.061	0.94479	0.47949
33	2.97	6.7695	5. 7888	0.2693	0.275	1. 4554	0.47465	3.066	0.96501	0.49036
34	3.27	6. 7942	5.7888	0.25879	0.257	1.4905	0.48516	3.072	0.98784	0.50268
35	3.56	6.8136	5.7888	0.24944	0.243	1. 5193	0.49451	3.072	1.0069	0.51239
36	3.86	6.8308	5.7888	0.24009	0.230	1. 5459	0.50385	3.068	1. 0249	0.521
37	4.16	6.858	5.7888	0.23075	0.216	1.5824	0.5132	3.083	1. 0478	0.5346
38	4.46	6.8739	5.7888	0.22198	0.205	1.607	0.52196	3.079	1. 0645	0.54253
39	4.76	6.8937	5.7888	0.21205	0.192	1. 6368	0.53189	3.077	1. 0843	0.55243
40	5.06	6. 9144	5.7888	0.20271	0.180	1. 6668	0.54124	3.080	1.104	0.56278
41	5.36	6.9329	5.7888	0.19277	0.168	1. 6952	0.55117	3.076	1. 1232	0.57204
42	5.65	6. 9603	5.7888	0.18401	0.157	1. 7314	0.55993	3.092	1. 1457	0.58576
43	5.95	6.9885	5.7888	0.1735	0.145	1. 7702	0.57045	3.103	1. 1703	0.59986
44	6. 24	7.0076	5.7888	0.16473	0.135	1.798	0.57921	3.104	1. 1886	0.60939
45	6.55	7. 0165	5.7888	0.15597	0.127	1. 8157	0.58797	3.088	1. 2018	0.61386
46	6.85	7. 0343	5.7888	0.14663	0.118	1. 8428	0.59732	3.085	1. 2201	0.62274
47	7.15	7.0529	5.7888	0.13728	0.109	1.8708	0.60667	3.084	1. 2387	0.63205
48	7.44	7. 0822	5. 7888	0.12852	0.099	1. 9088	0.61543	3.102	1. 2621	0.6467
49	7.74	7.0996	5.7888	0.11917	0.091	1. 9356	0.62478	3.098	1. 2802	0.65539
50	8.03	7.1275	5.7888	0.10982	0.082	1.9729	0.63412	3.111	1.3035	0.66937
51	8.33	7.132	5.7888	0.10048	0.075	1.9866	0.64347	3.087	1.315	0.67158
52	8.63	7.1537	5.7888	0.092298	0.068	2. 0166	0.65165	3.095	1. 3341	0.68246
53	8.93	7.1752	5.7888	0.083536	0.060	2. 0468	0.66041	3.099	1. 3536	0.69322
54	9. 23	7. 2014	5.7888	0.074773	0.053	2. 0818	0.66917	3.111	1. 3755	0.70632
55	9. 53	7.2159	5.7888	0.066011	0.046	2. 1051	0.67794	3.105	1. 3915	0.71356
56	9.83	7. 2208	5.7888	0.058417	0.041	2. 1176	0.68553	3.089	1. 4015	0.71602
57	10.12	7.239	5.7888	0.050238	0.035	2. 1439	0.69371	3.091	1.4188	0.72512
58	10.42	7. 2561	5.7888	0.04206	0.029	2. 1691	0.70189	3.090	1.4355	0.73363
59	10.72	7.271	5.7888	0.033882	0.023	2. 1923	0.71006	3.087	1. 4512	0.74111
60	11.02	7.2868	5.7888	0.025703	0.017	2. 2162	0.71824	3.086	1.4672	0.749
61	11.32	7. 3071	5.7888	0.018109	0.012	2. 2442	0.72584	3.092	1.485	0.75916
62	11.61	7. 3189	5.7888	0.0099308	0.006	2. 2641	0.73402	3.085	1.4991	0.76505
63	11.91	7. 3464	5.7888	0.0023367	0.002	2. 2992	0.74161	3.100	1. 5204	0.77881
64	12. 21	7. 3533	5.7888	-0.0046733	-0.003	2. 3131	0.74862	3.090	1. 5309	0.78225
65	12.50	7. 3814	5.7888	-0.013436	-0.008	2. 35	0.75738	3.103	1. 5537	0.79631
66	12.79	7. 3862	5.7888	-0.02103	-0.013	2. 3624	0.76498	3.088	1. 5637	0.79871
67	13.09	7.4038	5.7888	-0.02804	-0.017	2. 387	0.77199	3.092	1. 5795	0.8075
68	13.39	7.4092	5.7888	-0.03505	-0.022	2. 3994	0.779	3.080	1. 5892	0.81019
69	13.70	7.43	5.7888	-0.042644	-0.026	2.4278	0.78659	3.087	1.6072	0.82062
70	14.00	7.4362	5.7888	-0.04907	-0.030	2. 4404	0.79302	3.077	1.6167	0.8237
71	14.29	7.4459	5.7888	-0.055496	-0.033	2.4566	0.79944	3.073	1.628	0.82857
72	14.59	7.4665	5.7888	-0.061922	-0.037	2.4835	0.80587	3.082	1.6447	0.83883
73	14.88	7. 4743	5.7888	-0.068932	-0.041	2.4983	0.81288	3.073	1. 6556	0.84273
74	15.17	7.4963	5.7888	-0.075942	-0.044	2. 5274	0.81989	3.083	1. 6736	0.85376
75	15.47	7. 5037	5.7888	-0.082367	-0.048	2. 5412	0.82631	3.075	1.6838	0.85746
76	15.77	7. 5262	5.7888	-0.089961	-0.052	2. 5713	0.83391	3.083	1.7026	0.86869
77	15.99	7. 5332	5.7888	-0.094635	-0.054	2.583	0.83858	3.080	1.7108	0.87219

Measured Specific Gravity: 2.67

Project: COLETO CREEK FACI LITY Boring No.: B-2-1 S-14
Sample No.: S-14
Test No.: 17.4 PSI

Location: I PR-GDF SUEZ
Tested By: BCM
Test Date: 12/5/11
Sample Type: 3" ST

Project No.: 60225561
Checked By: WPQ
Depth: 26.0'-28.0
Elevation:

Soil Description: CLAYEY F-M SAND LIttle SILT. BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXI MUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

```
Specimen Height: 6.08 in
Specimen Area: 6.35 in^2
Specimen Volume: 38.65 in^3
```

Liquid Limit: 42

Piston Area: 0.00 in^2
Piston Friction: 0.00 |b
Piston Weight: 0.00 lb

Filter Strip Correction: 0.00 tsf
Membrane Correction: 0.00 ib/in
Correction Type: Uniform

Measured Specific Gravity: 2.67

1
1
2
3
4
${ }^{2}$
5
6
7
7
8
9

Project: COLETO CREEK FACILITY Boring No.: B-2-1 S-14
Sample No.: S-14
$\begin{array}{ll}\text { Sample } & \text { No.: } \\ \text { Test No.: } & 17.4 \mathrm{PSI}\end{array}$

Location: I PR-GDF SUEZ
Tested By: BCM
Test Date: 12/5/11

Project No.: 60225561
Checked By: WP Q
Depth: 26.0'-28.0
Elevation:....

Soil Description: CLAYEY F-M SAND LITTLE SILT. BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXI MUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

```
Specimen Height: 6.08 in
Specimen Area: 6.35 in^2
Specimen Volume: 38.65 i n^^3
```

Piston Area: 0.00 i $n^{\wedge} 2$
Piston Friction: 0.00 |b
Piston Weight: 0.001 b

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 |b/in
Correction Type: Uniform

Project: COLETO CREEK FACILITY Boring No.: B-2-1 S-14
Sample No.: S-14
Test No.: 24.3 PSI

Location: I PR-GDF SUEZ
Tested By: BCM
Test Date: $12 / 5 / 11$
Sample Type: $3^{\prime \prime}$ ST

Project No.: 60225561
Checked By: WPQ
Depth: 26.0'-28.0
El evation:

Soil Description: CLAYEY F-M SAND LIttle SILT. BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXI MUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

```
Specimen Height: 6.02 in
Specimen Area: 6.36 in^2
Specimen Volume: 38.27 in^3
```

Liquid Limit: 42
$\begin{array}{rr} & \text { Vertical } \\ \text { Time } & \text { Strain } \\ \text { min } & \end{array}$ ninion o으 O응

0
037 10.00

00000000000000
03268
5.004
0.004 25.004

30
35
40
45
50
55 70.00
90.

100
110
120
130
140
140
150
160
170
190
210
220
220
230
240
270
300
330
360
390
420
450 480
410
5404.

Piston Area: 0.00 in^2
Piston Friction: 0.00 |b
Piston Weight: 0.00 lb

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 |b/in
 Correction Type: Uniform

Deviator
Load
$1 b$
Deviator
Stress
tsf

Pore	Horizontal	Vertical
Pressure	Stress	Stress
tsf	tsf	tsf

$\begin{array}{rr}6.36 & 0 \\ 6.3621 & 36.347 \\ 6.3658 & 49.512\end{array}$
0
0.41134
0.56007
0.64283
0.70062
0.75005
0.79115
0.82808
0.86141
0.89468
0.9238
0.95113
0.97903

1. 0365

2. 1959
1.2494
1.2993
3. 3526

1.5037
1.5548
4. 6048
5. 6544
1.7012
1.7478
1.792
1.8355
1.8807
6. 999
7. 1166
2.2215
8. 040

Nivinionenen ninen

$6.8328 \quad 6.8328$
$\begin{array}{ll}6.8328 & 7.2441 \\ 6.8328 & 7.3929\end{array}$
$\begin{array}{ll}6.8328 & 7.3929 \\ 6.8328 & 7.4756 \\ 6.8328 & 7.5334\end{array}$
$\begin{array}{ll}6.8328 & 7.5334 \\ 6.8328 & 7.5828\end{array}$
$\begin{array}{ll}6.8328 & 7.6239 \\ 6.8328 & 7.6609\end{array}$
$\begin{array}{ll}6.8328 & 7.6609 \\ 6.8328 & 7.6942\end{array}$
$\begin{array}{ll}6.8328 & 7.7275 \\ 6.8328 & 7.7566\end{array}$
$\begin{array}{ll}6.8328 & 7.7839 \\ 6.8328 & 7.8118\end{array}$
$\begin{array}{ll}6.8328 & 7.8693\end{array}$
$\begin{array}{ll}6.8328 & 7.9237 \\ 6.8328 & 7.9715\end{array}$
$6.8328 \quad 8.0287$
$\begin{array}{ll}6.8328 & 8.0822\end{array}$
$\begin{array}{ll}6.8328 & 8.1321 \\ 6.8328 & 8.1854\end{array}$
$\begin{array}{ll}6.8328 & 8.2369\end{array}$
$\begin{array}{ll}6.8328 & 8.287 \\ 6.8328 & 8.3365\end{array}$
$6.8328 \quad 8.3876$
6.8328
8. 4392
8.4872
8.534
8. 5806
8.6254
8.6683
8.7135
8. 8324
8. 9494
9.0543
. 1562
9. 2545
9. 3487
g. 4383
9. 5201
9.6003
9.672
9.7494
9. 8222
9.8912
9.9525
10.016
10.016
10.078
10.134
10.19
10. 22
10.285
10.331
10.382
10.425
10.472
10.548
10.591
10.51
10.621
10.659
10.659
10.696
10.728
10.763
10.793
10.834
10.849
10.885
10.916
10.939
10.969
10.969
10.992
11.016
11.042
11.053
11.084
11.108
11.108
11.122

Project : COLETO CREEK FACILITY Boring No.: B-2-1 S-14
Sample No.: S-14
Test No.: 24.3 PSI

Location: I PR-GDF SUEZ
Tested By: BCM
Test Date: 12/5/11

Project No.: 60225561
Checked By: WP Q
Depth: 26.0'-28.0
El evation:....
$A=С О М$

Soil Description: CLAYEY F-M SAND LIttle SILT. BROWNISH GRAY SO
Remarks: FAILURE CRITERIA = MAXI MUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4T67

```
Specimen Height: 6.02 in
Specimen Area: 6.36 i n^^2
Specimen Volume: 38.27 i n^3
```

Piston Area: 0.00 i $n^{\wedge} 2$
Piston Friction: $0.00 \mid b$
Piston Weight: 0.00 |b

Filter Strip Correction: 0.00 tsf Membrane correction: 0.00 |b/in
Correction Type: Uniform

Project: COLETO CREEK FACILITY
Location: IPR-GDF SUEZ
Project No.: 60225561
Boring No.: $B-4-1 S-7$
Sample Type: 3" ST

Symbol		(1)	\triangle	\square	
Test No.		7 PSI	13.9 PSI	20.8 PSI	
$\frac{\bar{\sigma}}{\bar{E}}$	Diameter, in	2.8457	2.8382	2.837	
	Height, in	5.9839	5.9646	5.7075	
	Water Content, \%	13.01	13.76	17.65	
	Dry Density, pcf	117.3	118.	109.8	
	Saturation, \%	83.50	90.24	92.02	
	Void Ratio	0.41352	0.40495	0.50912	
$\begin{array}{\|c} \frac{1}{0} \\ \frac{0}{\omega} \\ \frac{1}{\omega} \\ \frac{0}{0} \\ \frac{0}{0} \\ 0 \end{array}$	Water Content, \%	15.40	14.54	18.60	
	Dry Density, pcf	117.7	119.6	111.	
	Saturation, \%	100.00	100.00	100.00	
	Void Ratio	0.40877	0.3861	0.49381	
	Back Press., tsf	5.046	5.0443	5.0958	
Minor Prin. Stress, tsf		0.49798	0.99651	1.4418	
Max. Dev. Stress, tsf		3.6849	7.0909	7.9769	
Time to Failure, min		770.98	772.22	773.86	
Strain Rate, \%/min		0.02	0.02	0.02	
B-Value		. 97	. 95	. 99	
Measured Specific Gravity		2.65	2.65	2.65	
Liquid Limit		27	27	27	
Plastic Limit		11	11	11	
Plasticity Index		16	16	16	
Failure Sketch					

Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Project: COLETO CREEK FACILITY	Location: IPR-GDF SUEZ	Project No.: 60225561
Boring No.: B-4-1 S-7	Tested By: BCM	Checked By: WPQ
Sample No.: S-7	Test Date: $12 / 1 / 11$	Depth: $12.0^{\prime}-14.0^{\prime}$
Test No.: B-4-1 S-7	Sample Type: $3^{\prime \prime}$ ST	Elevation: ----
Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC		
Remarks: FAILURE CRITERIA $=$ MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767		

Project: COLETO CREEK FACILITY Boring No.: B-4.1 S-7
Sample No: S. 7
Test No.: 7 PSI
Location: I PR-GDF SUEZ
Tested By: BCM
Test Date: 12/1/11
Project No.: 60225561

Soil Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXI MUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

```
Specimen Height: 5.98 in
Specimen Area: 6.36 in^2
Specimen Volume: 38.06 in^3
```

Liquid Li mit: 27

Piston Area: 0.00 in^2
Piston Friction: 0.00 |b
Piston Weight: 0.00 |b
PIastic Limit: 11

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 |b/in
Correction Type: Uniform
Measured Specific Gravity: 2.65

Ti me mi n	Vertical Strain
0	0.086461
10	0.18589
15	0.28388
20	0.38187
25	0.47842
30.001	0.57785
35.001	0.6744
40.001	0.77094
45.001	0.86893
50.001	0.96692
55.001	1.0649
60.001	1.1629
70.001	1. 3589
80.001	1. 5549
90.002	1. 7494
100	1. 9454
110	2.1399
120	2.333
130	2. 5261
140	2. 7178
150	2. 9109
160	3. 1054
170	3.2999
180	3.4959
190	3.6904
200	3.8879
210	4.0838
220	4.2798
230	4.4744
240	4.6675
270	5. 2482
300	5.839
330	6.4298
360	7.012
390	7. 597
420	8. 1879
450	8. 7758
480	9. 3565
510	9. 943
540	10.532
570	11.116
600	11.698
630	12.285
660	12.874
690	13.463
720	14.047
750	14.632
70.98	15.049

Corrected	Deviator
Area	Load
in^2	$1 b$

Deviator
Stress
tsf
Pore Horiz
Pressure
tsf

Project: COLETO CREEK FACILITY Boring No.: B-4.1 S.7
Sample No: S. 7
Test No: : 7 PSI

Location: I PR-GDF SUEZ
Tested By: BCM
Test Date: 12/1/11
Sample Type: 3" ST

Project No: 60225561
Checked By: WPQ
Depth: 12.0'-14.0
Elevation:

Soil Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXI MUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

```
Specimen Height: 5.98 in
Specimen Area: 6.36 in^2
```

Specimen Volume: 38.06 in^3

Liquid Limit: 27

Piston Area: 0.00 in^2
Piston Friction: 0.00 lb
Piston Weight: 0.00 lb
Plastic Limit: 11

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 |b/in Correction Type: Uniform

Measured Specific Gravity: 2.65

	Vertical	Tot al Vertical	Total Horizontal	$\begin{array}{r} \text { Excess } \\ \text { Pore } \end{array}$	A	Effective Vertical	$\begin{aligned} & \text { Effective } \\ & \text { Horizontal } \end{aligned}$	Stress	Effective	
	$\text { Strain } \begin{gathered} \% \end{gathered}$	$\begin{array}{r} \text { stress } \\ \text { tsf } \end{array}$	$\begin{gathered} \text { Stres } \\ \text { ts f } \end{gathered}$	Pressure $t \mathrm{sf}$	Parameter	$\begin{array}{r} \text { stress } \\ \text { ts f } \end{array}$	$\begin{gathered} \text { Stress } \\ \text { tsf } \end{gathered}$	Ratio	${ }_{t}{ }^{p}$	$t s f^{9}$
1	0.00	5. 544	5. 544	0	0.000	0.49798	0.49798	1.000	0.49798	0
2	0.09	5.7679	5. 544	0. 11333	0.506	0.60855	0. 38465	1. 582	0.4966	0.11195
3	0.19	5.8236	5. 544	0.13962	0.499	0.63796	0. 35836	1.780	0.49816	0.1398
4	0.28	5.8673	5. 544	0.1548	0.479	0.66648	0.34317	1.942	0.50483	0.16165
5	0.38	5. 9032	5. 544	0.16298	0.454	0.6942	0.335	2.072	0.5146	0.1796
6	0.48	5.9331	5. 544	0.16766	0.431	0.71943	0. 33032	2. 178	0.52488	0.19455
7	0.58	5.9618	5. 544	0.16999	0.407	0.74574	0.32799	2. 274	0.53686	0.20888
8	0.67	5.9945	5. 544	0.17058	0.379	0.7779	0.3274	2.376	0.55265	0.22525
9	0.77	6.0207	5. 544	0.16999	0. 357	0.80466	0.32799	2.453	0.56632	0.23834
10	0.87	6.0486	5. 544	0.16882	0.335	0.83372	0. 32915	2. 533	0.58144	0.25228
11	0.97	6.0764	5. 544	0.16649	0.313	0.86389	0.33149	2.606	0.59769	0.2662
12	1.06	6.1042	5. 544	0.16415	0.293	0.894	0. 33383	2.678	0.61391	0.28009
13	1. 16	6.1307	5. 544	0.16181	0.276	0.92288	0.33616	2.745	0.62952	0.29336
14	1. 36	6.1883	5. 544	0.15539	0.241	0.98693	0.34259	2.881	0.66476	0.32217
15	1. 55	6. 2522	5. 544	0.14721	0.208	1. 059	0.35077	3.019	0.70486	0.35409
16	1. 75	6. 3187	5. 544	0.13903	0.179	1. 1337	0. 35895	3. 158	0.7463	0.38736
17	1. 95	6.3855	5. 544	0.1291	0.153	1. 2104	0.36888	3.281	0.78965	0.42077
18	2. 14	6. 4556	5. 544	0.11917	0.131	1. 2904	0.37881	3.407	0.83462	0.45581
19	2. 33	6. 5283	5. 544	0.10749	0.109	1. 3748	0. 39049	3. 521	0.88265	0.49216
20	2. 53	6.6019	5. 544	0.094635	0.089	1. 4612	0.40334	3.623	0.93229	0.52895
21	2. 72	6.6729	5. 544	0.081783	0.072	1. 5451	0.4162	3.712	0.98063	0.56444
22	2. 91	6.7453	5. 544	0.066595	0.055	1.6327	0.43138	3.785	1.032	0.60064
23	3. 11	6. 8156	5. 544	0.050238	0.040	1.7194	0.44774	3.840	1. 0836	0.63582
24	3. 30	6.8857	5. 544	0.033297	0.025	1. 8064	0.46468	3.887	1. 1355	0.67085
25	3. 50	6. 9555	5. 544	0.015772	0.011	1.8937	0.48221	3.927	1. 1879	0.70573
26	3.69	7.0209	5. 544	-0.0017525	-0.001	1.9766	0.49973	3.955	1. 2382	0.73846
27	3.89	7.0872	5. 544	-0.019862	-0.013	2. 061	0.51784	3.980	1. 2894	0.7716
28	4.08	7. 1527	5. 544	-0.037971	-0.024	2. 1446	0. 53595	4.002	1. 3403	0.80433
29	4.28	7.2161	5. 544	-0.055496	-0.033	2. 2256	0.55347	4.021	1. 3895	0.83606
30	4.47	7. 2799	5. 544	-0.073021	-0.042	2. 3069	0.571	4.040	1.4389	0.86795
31	4.67	7. 3366	5. 544	-0.090546	-0.051	2. 3811	0.58852	4.046	1.4848	0.89631
32	5. 25	7. 5036	5. 544	-0.14078	-0.072	2. 5983	0.63876	4.068	1. 6186	0.97979
33	5. 84	7. 6631	5. 544	-0.18927	-0.089	2. 8063	0.68725	4.083	1. 7468	1. 0595
34	6.43	7.8132	5. 544	-0.23425	-0.103	3.0014	0.73223	4.099	1. 8668	1. 1346
35	7. 01	7. 9454	5. 544	-0.27865	-0.116	3.178	0.77663	4.092	1. 9773	1. 2007
36	7.60	8.0773	5. 544	-0.32304	-0.128	3. 3543	0.82102	4.086	2.0877	1.2667
37	8.19	8.2045	5. 544	-0.36744	-0.138	3. 5259	0.86542	4.074	2. 1957	1.3302
38	8.78	8. 3234	5. 544	-0.41067	-0.148	3.688	0.90865	4.059	2. 2983	1. 3897
39	9. 36	8.4321	5. 544	-0.4539	-0.157	3.84	0. 95187	4.034	2. 3959	1.4441
40	9.94	8. 5379	5. 544	-0.49537	-0.165	3.9873	0.99335	4. 014	2.4903	1.497
41	10.53	8.6351	5. 544	-0. 03626	-0.173	4.1254	1.0342	3.989	2. 5798	1. 5456
42	11.12	8.7262	5. 544	-0. 07599	-0.181	4.2562	1.074	3.963	2.6651	1. 5911
43	11.70	8.8117	5. 544	-0.0.61805	-0.189	4.3837	1.116	3.928	2.7499	1. 6338
44	12.28	8.8966	5. 544	-0.066478	-0.198	4. 5154	1. 1628	3.883	2. 8391	1.6763
45	12.87	8. 9722	5. 544	-0.70918	-0.207	4.6354	1. 2072	3.840	2. 9213	1.7141
46	13.46	9. 0496	5. 544	-0.75591	-0.216	4.7595	1. 2539	3.796	3.0067	1.7528
47	14.05	9.1197	5. 544	-0.8079	-0.226	4.8816	1. 3059	3.738	3.0937	1.7879
48	14.63	9.1809	5. 544	-0.81958	-0.225	4.9544	1. 3176	3.760	3.136	1.8184
49	15.05	9.2289	5. 544	-0.87975	-0.239	5.0627	1. 3777	3.675	3. 2202	1.8425

Project: COLETO CREEK FACILITY Boring No.: B-4.1 S.7
Sample No.: S.7
Test No.: 13.9 PSI

Location: I PR-GDF SUEZ
Tested By: BCM
Test Date: 12/1/11
Sample Type: 3" ST

Project No: 60225561
Checked By: WPQ
Depth: 12.0'-14.0'
Elevation:....

Soil Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXI MUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

```
Specimen Height: 5.96 in
Specimen Area: 6. 33 in^2
Specimen Volume: 37.74 in^3
```

Liquid Limit: 27

Piston Area: 0.00 in^2
Piston Friction: 0.00 |b
Piston Weight: 0.00 lb
Plastic Limit: 11

Filter Strip Correction: 0.00 tsf
Membrane Correction: 0.00 |b/in
Correction Type: Uniform
Measured Specific Gravity: 2.65

	Vertical
Time	
min n	Strain
$\%$	

Corrected	Deviator
Area	Load
in^2	$1 b$

Deviator	Pore	Horizontal	Vertical
Stress	Pressure	Stress	Stress
$t \mathrm{sf}$	$t \mathrm{sf}$	$t \mathrm{sf}$	$t \mathrm{ff}$
0	5.0443	6.0408	6.0408
0.48432	5. 1902	6.0408	6. 5251
0.65698	5. 2828	6.0408	6.6978
0.76059	5. 3416	6.0408	6.8014
0.83918	5.381	6.0408	6.88
0.9044	5.4104	6.0408	6. 9452
0.96534	5.4304	6.0408	7. 0061
1.022	5.4431	6.0408	7. 0628
1.0819	5. 4526	6.0408	7. 1227
1.1391	5.4565	6.0408	7.1799
1. 1987	5.4587	6.0408	7.2395
1. 2582	5.4581	6.0408	7.299
1.32	5. 4554	6.0408	7. 3608
1.4358	5.4448	6.0408	7.4766
1. 5633	5.4271	6.0408	7.6041
1. 692	5.406	6.0408	7. 7328
1. 8225	5. 3805	6.0408	7.8633
1. 9525	5. 3527	6.0408	7.9933
2.0843	5. 3222	6.0408	8. 1251
2. 2172	5. 2895	6.0408	8. 258
2. 3463	5. 2534	6.0408	8. 3871
2.4747	5.219	6.0408	8. 5155
2.6018	5. 1813	6.0408	8.6426
2.7267	5.1441	6.0408	8.7675
2.8461	5.107	6.0408	8.8869
2.9611	5. 0693	6.0408	9. 0019
3.0732	5. 0321	6.0408	9.114
3. 1824	4.9949	6.0408	9. 2232
3. 2856	4.9583	6.0408	9. 3264
3. 3868	4.9222	6.0408	9.4276
3.4851	4.8873	6.0408	9. 5259
3.7579	4.7863	6.0408	9. 7987
4.011	4.6926	6.0408	10.052
4.2378	4.6066	6.0408	10.279
4.4548	4.5289	6.0408	10.496
4.6616	4.454	6.0408	10.702
4.8733	4.3803	6.0408	10.914
5. 079	4. 3087	6.0408	11.12
5. 2925	4. 2377	6.0408	11.333
5. 5038	4.1678	6.0408	11.545
5.6918	4.1007	6.0408	11.733
5.8943	4.0319	6.0408	11.935
6.0761	3.9659	6.0408	12.117
6. 2708	3. 9004	6.0408	12.312
6.4622	3.8366	6.0408	12.503
6.6254	3.7706	6.0408	12.666
6.7979	3.7068	6.0408	12.839
6.9648	3.643	6.0408	13.006
7.0909	3. 5959	6.0408	13.132

```
COCt: COLETO CREEK FACILITY
Boring No.: B-4.1 S.7
Sample No.: S-7
Test No.: 13.9 PSI
Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/1/111
```

Project No.: 60225561

Soil Description: F.M SAND LITTLE CLAY TRACE SILT. BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXI MUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

```
Specimen Height: 5.96 in
Specimen Area: 6.33 in^^2
Specimen Volume: 37.74 in^3
Piston Area: 0.00 in^2
Piston Friction: 0.00 |b
Piston Weight: 0.00 lb
Liquid Li mit: 27
P|astic Limit: 11
```

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 | b/in
Correction Type: Uniform
Measured Specific Gravity: 2.65

	Vertical	Total Vertical	Total Horizontal	$\begin{aligned} & \text { Excess } \\ & \text { Pore } \end{aligned}$	A	Effective Vertical	$\begin{aligned} & \text { Effective } \\ & \text { Horizontal } \end{aligned}$	Stress	Effective	
	$\begin{aligned} \text { Strain } \\ \% \end{aligned}$	$\begin{array}{r} \text { Stress } \\ \text { tsf } \end{array}$	$\begin{gathered} \text { Stress } \\ \text { tsf } \end{gathered}$	Pressure tsf	Parameter	$\begin{array}{r} \text { Stress } \\ \text { tsf } \end{array}$	$\begin{gathered} \text { Stress } \\ \text { tsf } \end{gathered}$	Ratio	$\text { ts }{ }^{p}$	ts ${ }^{\text {q }}$
1	0.00	6.0408	6.0408	0	0.000	0.99651	0.99651	1. 000	0.99651	0
2	0.09	6. 5251	6.0408	0.1459	0.301	1. 3349	0.85061	1. 569	1. 0928	0.24216
3	0.19	6. 6978	6.0408	0.23854	0.363	1.4149	0.75797	1.867	1.0865	0.32849
4	0. 29	6. 8014	6.0408	0.29734	0.391	1. 4598	0.69917	2.088	1. 0795	0.3803
5	0.39	6.88	6.0408	0.33673	0.401	1.499	0.65978	2. 272	1. 0794	0.41959
6	0.49	6. 9452	6.0408	0.36613	0.405	1. 5348	0.63038	2.435	1.0826	0.4522
7	0.60	7. 0061	6.0408	0.3861	0.400	1. 5757	0.61041	2. 581	1. 0931	0.48267
8	0.70	7. 0628	6.0408	0. 39886	0.390	1. 6197	0.59765	2.710	1. 1087	0.51101
9	0.81	7. 1227	6.0408	0.40829	0.377	1. 6701	0.58822	2. 839	1. 1292	0.54094
10	0.91	7.1799	6.0408	0.41217	0.362	1. 7235	0. 58434	2. 949	1.1539	0. 56956
11	1. 02	7. 2395	6.0408	0.41439	0.346	1.7809	0.58212	3. 059	1.1815	0. 59937
12	1.12	7.299	6.0408	0.41384	0.329	1.8409	0.58267	3. 159	1. 2118	0.62909
13	1. 22	7. 3608	6.0408	0.41107	0.311	1. 9055	0.58545	3. 255	1. 2455	0.66002
14	1.44	7.4766	6.0408	0.40053	0.279	2. 0318	0.59599	3.409	1. 3139	0.7179
15	1.65	7. 6041	6.0408	0.38277	0.245	2. 1771	0.61374	3. 547	1. 3954	0.78166
16	1.86	7. 7328	6.0408	0.36169	0.214	2. 3268	0.63482	3.665	1.4808	0.84599
17	2.07	7. 8633	6.0408	0.33617	0.184	2.4828	0.66034	3.760	1. 5716	0.91125
18	2.27	7. 9933	6.0408	0.30844	0.158	2. 6406	0.68807	3.838	1. 6643	0.97625
19	2.48	8. 1251	6.0408	0.27793	0.133	2. 8029	0.71858	3.901	1.7607	1. 0422
20	2.69	8.258	6.0408	0.2452	0.111	2. 9685	0.75131	3.951	1.8599	1. 1086
21	2. 90	8. 3871	6.0408	0.20914	0.089	3.1337	0.78737	3.980	1. 9605	1.1731
22	3. 11	8. 5155	6.0408	0.17474	0.071	3. 2965	0.82177	4.011	2. 0591	1. 2374
23	3. 32	8.6426	6.0408	0.13702	0.053	3.4613	0.85949	4.027	2.1604	1. 3009
24	3. 52	8.7675	6.0408	0.099854	0.037	3.6233	0.89666	4.041	2.26	1. 3633
25	3.74	8.8869	6.0408	0.062686	0.022	3.78	0.93383	4.048	2. 3569	1.4231
26	3.95	9. 0019	6.0408	0.024963	0.008	3.9327	0.97155	4.048	2.4521	1. 4806
27	4.16	9. 114	6.0408	-0.012204	-0.004	4.0819	1. 0087	4.047	2. 5453	1. 5366
28	4.36	9. 2232	6.0408	-0.049372	-0.016	4.2283	1. 0459	4.043	2.6371	1. 5912
29	4.57	9. 3264	6.0408	-0.085985	-0.026	4. 3681	1. 0825	4.035	2.7253	1. 6428
30	4.78	9. 4276	6.0408	-0.12204	-0.036	4. 5053	1. 1186	4.028	2.8119	1.6934
31	4.98	9. 5259	6.0408	-0.15699	-0.045	4.6386	1. 1535	4.021	2.8961	1.7426
32	5.60	9. 7987	6.0408	-0.25796	-0.069	5. 0124	1. 2545	3.996	3.1334	1.8789
33	6.22	10.052	6.0408	-0.35171	-0.088	5. 3592	1. 3482	3.975	3. 3537	2. 0055
34	6.83	10.279	6.0408	-0.43769	-0.103	5.672	1. 4342	3.955	3. 5531	2. 1189
35	7.45	10.496	6.0408	-0. 0.51536	-0.116	5.9667	1. 5119	3.947	3.7393	2. 2274
36	8.07	10.702	6.0408	-0. 59025	-0.127	6. 2483	1. 5868	3.938	3.9175	2. 3308
37	8.69	10.914	6.0408	-0.66403	-0.136	6. 5338	1. 6605	3.935	4.0972	2.4367
38	9. 31	11.12	6.0408	-0.73559	-0.145	6. 8111	1.7321	3.932	4.2716	2. 5395
39	9.93	11.333	6.0408	-0.8066	-0.152	7. 0956	1. 8031	3.935	4.4494	2.6463
40	10.55	11.545	6.0408	-0. 0765	-0.159	7. 3768	1.873	3.938	4.6249	2. 7519
41	11.18	11.733	6.0408	-0.94362	-0.166	7.6319	1. 9401	3.934	4.786	2.8459
42	11.80	11.935	6.0408	-1.0124	-0.172	7. 9032	2.0089	3.934	4.9561	2. 9472
43	12.42	12. 117	6.0408	-1.0784	-0.177	8. 1511	2.0749	3.928	5.113	3. 0381
44	13.03	12.312	6.0408	-1.1439	-0.182	8.4112	2. 1404	3.930	5. 2758	3. 1354
45	13.66	12.503	6.0408	-1.2077	-0.187	8. 6664	2. 2042	3.932	5.4353	3. 2311
46	14. 28	12.666	6.0408	-1.2737	-0.192	8.8956	2. 2702	3.918	5. 5829	3. 3127
47	14.90	12.839	6.0408	-1.3375	-0.197	9. 1319	2.334	3.913	5.7329	3. 3989
48	15.52	13.006	6.0408	-1.4013	-0. 201	9. 3626	2. 3978	3.905	5.8802	3. 4824
49	15.99	13.132	6.0408	-1.4484	-0.204	9. 5358	2.4449	3.900	5.9904	3. 5454

```
Project: COLETO CREEK FACILITY
Boring No.: B-4-1 S-7
Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/1/111
Sample No.: S.7
Sample Type: 3" ST
```

Project No.: 60225561
Checked By: WPQ
Depth: 12.0'-14.0
Elevation:....

Soil Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXI MUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

```
Specimen Height: 5.71 in
Specimen Area: 6.32 in^2
Specimen Volume: 36.08 in^3
```

Liquid Limit: 27
Ti me
mi n

0	
5. 0038	0.074905
10.004	0.17378
15.004	0.27265
20.004	0.37303
25.004	0.4749
30	0.57677
35	0.67415
40	0.77752
45.002	0.87939
50.003	0.97976
55.003	1.0801
60.003	1.1835
70.03	1.3842
80.04	1.589
90.004	1.7887
100	1.9925
110	2.1962
120	2.3955
130	2.5992
140	2.8059
150	3.0097
160	3.2119
170	3.4142
180	3.6119
190	3.8127
200	4.0164
210	4.2187
220	4.4164
230	4.6187
240	4.8209
270	5.4291
300	6.0389
330	6.6411
360	7.2433
390	7.8605
420	8.4643
450	9.0605
480	9.6658
510	10.283
540	10.887
570	111.48
600	12.084
630	12.699
660	13.303
690	13.902
720	14.505
750	15.119
77306	15.606
80	

Vertical
Strailn
0
Corrected
Area
in $\wedge 2$
Deviator
Load
a

6.3214	0
6.3261	45.054

$\begin{array}{ll}6.3261 & 45.054 \\ 6.3324 & 62.257\end{array}$
6. 3386
$\begin{array}{ll}6.345 & 80.614 \\ 6.3515 & 86.279\end{array}$
$\begin{array}{ll}6.3515 & 90.279 \\ 6.358 & 90.422 \\ 6.3643 & 93.779\end{array}$
$\begin{array}{ll}6.3709 & 97.975 \\ 6.3774 & 100.65\end{array}$
6.37
6.38
6. 3904
6. 3971
6.4101
6.4235
6.436
6. 449

Piston Area: 0.00 in $\wedge^{\wedge} 2$
Piston Friction: 0.00 lb
Piston Weight: $0.001 b$
Filter Strip Correction: 0.00 tsf
Membrane Correction: 0.00 |b/in
Correction Type: Uniform
Measured Specific Gravity: 2.65

Deviator	Pore	Horizontal	Vertical
Stress	Pressure	Stress	Stress
$t \mathrm{sf}$	$t \mathrm{sf}$	$t \mathrm{ff}$	$t \mathrm{sf}$
0	5.0958	6. 5376	6. 5376
0.51278	5. 2246	6. 5376	7. 0504
0.70787	5.3665	6.5376	7. 2455
0.82871	5.4806	6. 5376	7.3663
0.91477	5. 5686	6. 5376	7. 4524
0.97804	5.636	6. 5376	7. 5156
1. 024	5.6898	6. 5376	7. 5616
1. 0609	5.7316	6. 5376	7. 5985
1. 1073	5.7648	6. 5376	7.6449
1. 1363	5.7909	6. 5376	7.6739
1. 1837	5.8104	6. 5376	7. 7213
1. 215	5.8262	6. 5376	7.7526
1. 255	5.8387	6. 5376	7.7926
1. 3167	5.8539	6. 5376	7.8543
1. 3898	5.8583	6. 5376	7.9274
1.4556	5.855	6. 5376	7.9932
1. 534	5.8463	6. 5376	8.0716
1.6108	5.8338	6. 5376	8.1484
1. 6851	5.8186	6. 5376	8.2227
1. 7555	5.7979	6. 5376	8.2931
1. 8365	5.7762	6. 5376	8.3741
1. 9393	5.7523	6. 5376	8.4769
2. 0145	5.7278	6. 5376	8. 5521
2. 1101	5.7018	6. 5376	8.6477
2.1887	5. 6735	6. 5376	8.7263
2. 2657	5. 6442	6. 5376	8.8033
2. 3452	5.6148	6. 5376	8.8828
2.4473	5. 5849	6. 5376	8.9849
2. 5501	5. 5534	6. 5376	9.0877
2.637	5. 5208	6. 5376	9. 1746
2.7207	5.4876	6. 5376	9. 2583
2. 9988	5. 3849	6. 5376	9. 5364
3. 2921	5. 2746	6. 5376	9.8297
3.5833	5.1589	6. 5376	10.121
3.8816	5. 0409	6. 5376	10.419
4.1827	4.9187	6. 5376	10.72
4.4949	4.7937	6. 5376	11.033
4.8112	4.6665	6. 5376	11.349
5.118	4.535	6. 5376	11.656
5.4138	4.4035	6. 5376	11.951
5.7335	4.2698	6. 5376	12.271
6.0491	4.1361	6. 5376	12.587
6. 3581	4.0008	6. 5376	12.896
6. 6755	3.8687	6. 5376	13. 213
6. 9608	3.7378	6. 5376	13.498
7. 2373	3.6073	6. 5376	13.775
7. 514	3.4807	6. 5376	14.052
7.7897	3. 3563	6. 5376	14.327
7.9769	3. 2617	6. 5376	14.514

Project: COLETO CREEK FACI LITY Boring No.: B-4-1 S.7
Sample No.: S.7
Test No.: 20.8 PSI
Soil Description: F.M SAND LITTLE CLAY TRACE SILT. BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXI MUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

```
Specimen Height: 5.71 in
Specimen Area: 6.32 in^2
Specimen Volume: 36.08 in^3
```

Liquid Limit: 27

6.537
7. 0504
7.2455
7.3663
7. 4524
7.5156

Piston Area: 0.00 in^2
Piston Friction: 0.00 lb
Piston Weight: 0.00 lb
PIastic Limit: 11

Project No: 60225561
Checked By: WPQ
Depth: 12.0'-14.0'
Elevation:....

Location: I PR-GDF SUEZ
Tested By: BCM
Test Date: 12/1/11

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 |b/in Correction Type: Uniform
Measured Specific Gravity: 2.65

$\begin{array}{r} \text { Excess } \\ \text { Por e } \end{array}$	A	Effective Vertical	$\begin{aligned} & \text { Effective } \\ & \text { Horizontal } \end{aligned}$	Stress	Effective	
Pressure t sf	Parameter	$\begin{gathered} \text { Stress } \\ \text { tsf } \end{gathered}$	$\begin{array}{r} \text { Stress } \\ \text { tsf } \end{array}$	Ratio	$t \mathrm{p}$	ts ${ }^{9}$
0	0.000	1. 4418	1.4418	1.000	1.4418	0
0.12879	0.251	1. 8258	1.313	1. 391	1. 5694	0.25639
0.27063	0.382	1.879	1.1711	1.604	1. 5251	0.35394
0.38475	0.464	1.8857	1.057	1. 784	1.4714	0.41435
0.47279	0. 517	1.8838	0.96898	1. 944	1. 4264	0.45738
0.54018	0. 552	1.8796	0.9016	2.085	1. 3906	0.48902
0.59398	0.580	1. 8718	0.8478	2. 208	1. 3598	0.51198
0.63582	0.599	1.8669	0.80595	2.316	1. 3364	0.53047
0.66897	0.604	1.8801	0.7728	2.433	1. 3264	0.55363
0.69506	0.612	1.883	0.74672	2. 522	1.3149	0.56816
0.71462	0.604	1.9108	0.72715	2.628	1.319	0. 59183
0.73038	0.601	1.9264	0.71139	2.708	1. 3189	0.60749
0.74288	0.592	1.9539	0.69889	2.796	1.3264	0.62751
0.7581	0.576	2.0004	0.68368	2.926	1.342	0.65834
0.76244	0. 549	2.0691	0.67933	3.046	1. 3742	0.69489
0.75918	0. 522	2. 1382	0.68259	3.132	1.4104	0.72781
0.75049	0.489	2. 2253	0.69129	3.219	1.4583	0.76699
0.73799	0.458	2. 3146	0.70379	3.289	1. 5092	0.80542
0.72277	0.429	2.4041	0.719	3. 344	1. 5616	0.84255
0.70212	0.400	2.4951	0.73965	3. 373	1.6174	0.87774
0.68039	0.370	2. 5979	0.76139	3.412	1.6797	0.91827
0.65647	0.339	2.7246	0.7853	3.469	1.7549	0.96965
0.63202	0.314	2. 8242	0.80976	3.488	1.817	1.0072
0.60593	0.287	2.9459	0.83584	3. 524	1.8909	1. 055
0.57768	0.264	3. 0528	0.8641	3. 533	1.9584	1. 0943
0. 54833	0.242	3. 1592	0.89345	3. 536	2.0263	1.1329
0.51898	0.221	3.268	0.92279	3. 541	2. 0954	1.1726
0.48909	0.200	3. 3999	0.95268	3. 569	2.1763	1. 2236
0.45758	0.179	3. 5343	0.9842	3. 591	2. 2593	1. 2751
0.42497	0.161	3.6538	1. 0168	3. 593	2. 3353	1. 3185
0. 39182	0.144	3.7707	1.05	3.591	2.4103	1.3604
0.28911	0.096	4. 1515	1.1527	3.602	2.6521	1.4994
0.17879	0.054	4. 5551	1.263	3.607	2.909	1.6461
0.063039	0.018	4.9621	1. 3787	3.599	3.1704	1.7917
0.054887	-0.014	5. 3783	1.4967	3.594	3.4375	1.9408
-0.17716	-0.042	5. 8017	1.6189	3. 584	3.7103	2. 0914
-0.30215	-0.067	6.2388	1.7439	3. 577	3.9914	2. 2475
-0.42932	-0.089	6.6822	1.8711	3. 571	4.2767	2.4056
-0.56083	-0.110	7. 1206	2. 0026	3. 556	4.5616	2. 559
-0.69234	-0.128	7. 5479	2. 1341	3. 537	4.841	2.7069
-0.82603	-0.144	8.0013	2. 2678	3. 528	5.1345	2.8667
-0.95971	-0.159	8.4506	2. 4015	3. 519	5.426	3.0245
-1.095	-0.172	8.8949	2. 5368	3. 506	5.7159	3. 1791
-1.2271	-0.184	9.3444	2.6689	3.501	6.0066	3.3378
-1.3581	-0.195	9.7607	2.7998	3.486	6.2803	3.4804
-1.4885	-0.206	10.168	2. 9303	3.470	6. 5489	3.6186
-1.6151	-0.215	10.571	3.0569	3.458	6.8139	3.757
-1.7395	-0.223	10.971	3. 1813	3.449	7.0762	3.8948
-1.8341	-0.230	11.253	3. 2759	3.435	7. 2643	3.9884

Project: COLETO CREEK FACILITY
Location: IPR-GDF SUEZ
Project No.: 60225561
Boring No.: B-4-1 S-13
Sample Type: 3" ST

Symbol		(1)	\triangle	\square	
Test No.		10.4 PSI	17.4 PSI	24.3 PSI	
$\frac{\bar{\sigma}}{\stackrel{\rightharpoonup}{5}}$	Diameter, in	2.722	2.8299	2.6157	
	Height, in	6.0571	5.4106	5.9323	
	Water Content, \%	5.02	7.46	5.91	
	Dry Density, pcf	121.2	121.3	120.9	
	Saturation, \%	36.18	53.82	42.11	
	Void Ratio	0.36923	0.3684	0.37292	
$\begin{gathered} \frac{1}{0} \\ \frac{1}{\alpha} \\ \frac{1}{\omega} \\ 0 \\ \frac{1}{O} \\ 0 \\ 0 \end{gathered}$	Water Content, \%	13.55	13.79	12.58	
	Dry Density, pcf	122.	121.5	124.4	
	Saturation, \%	100.00	100.00	100.00	
	Void Ratio	0.36021	0.36668	0.33456	
	Back Press., tsf	5.0425	5.0399	5.042	
Minor Prin. Stress, tsf		0.74626	1.2529	1.798	
Max. Dev. Stress, tsf		1.6147	1.6669	2.202	
Time to Failure, min		3930	2700	3930	
Strain Rate, \%/min		0.006	0.006	0.006	
B-Value		. 95	. 95	. 97	
Measured Specific Gravity		2.66	2.66	2.66	
Liquid Limit		40	40	40	
Plastic Limit		24	24	24	
Plasticity Index		16	16	16	
Failure Sketch					

Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Project: COLETO CREEK FACILITY	Location: IPR-GDF SUEZ	Project No.: 60225561
Boring No.: B-4-1 S-13	Tested By: BCM	Checked By: WPQ
Sample No.: S-13	Test Date: $12 / 2 / 11$	Depth: 24.0'-26.0'
Test No.: B-4-1 S-13	Sample Type: $3^{\prime \prime}$ ST	Elevation: -----
Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC		
Remarks: FAILURE CRITERIA $=$ MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767		

Project: COLETO CREEK FACILITY Boring No.: B-4-1 S-13
Sample No.: S-13
Test No.: 10.4 PSI

Location: I PR-GDF SUEZ
Tested By: BCM
Test Date: 12/2/11
Sample Type: 3" ST

Project No.: 60225561
Checked By: WPQ
Depth: 24.0'-26.0
Elevation:.....

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SO
Remarks: FAILURE CRITERIA = MAXI MUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

```
Specimen Height: 6.06 in
Specimen Area: 5.82 in^2
Specimen Volume: 35.25 in^3
```

Liquid Limit: 40

Piston Area: 0.00 in^2
Piston Friction: 0.00 |b
Piston Weight: 0.00 lb

Filter Strip Correction: 0.00 tsf
Membrane Correction:o.00 Ib/in
Correction Type: Uniform

Plastic Limit: 24
Measured Specific Gravity: 2.66

	Ti me mi n	$\begin{array}{r} \text { Vertical } \\ \text { Strain } \\ \% \end{array}$	$\begin{array}{r} \text { Corrected } \\ \text { Area } \\ \text { in^2 } \end{array}$	Deviator Load I b	Deviator Stress t $\mathrm{s} f$	$\begin{array}{r} \text { Pore } \\ \text { Pressure } \\ \text { tsf } \end{array}$	$\begin{array}{r} \text { Horizontal } \\ \text { Stress } \\ \text { tsf } \end{array}$	$\begin{array}{r} \text { Vertical } \\ \text { Stress } \\ \text { tsf } \end{array}$
1	0	0	5. 8194	0	0	5. 0425	5.7888	5.7888
2	5.0041	0.017083	5. 8204	6.8968	0.085314	5. 2419	5.7888	5.8741
3	10	0.037013	5. 8216	11.372	0.14064	5. 2811	5.7888	5.9294
4	15	0.056944	5. 8228	14.478	0.17902	5.308	5.7888	5.9678
5	20	0.075451	5. 8238	16.9	0.20893	5. 3273	5.7888	5.9977
6	25	0.093957	5. 8249	18.795	0.23232	5. 3425	5.7888	6.0211
7	30	0.11389	5.8261	20.48	0.25309	5. 3553	5.7888	6.0419
8	35.001	0.13239	5. 8272	21.901	0.27061	5. 3658	5.7888	6.0594
9	40.001	0.1509	5. 8282	23.27	0. 28747	5. 3746	5.7888	6.0763
10	45.001	0.17083	5. 8294	24.428	0.30172	5. 3828	5.7888	6.0905
11	50.001	0.19076	5. 8306	25.481	0.31466	5. 3892	5.7888	6.1035
12	55.001	0.21069	5. 8317	26.481	0.32695	5. 3951	5.7888	6.1157
13	60.001	0.2292	5. 8328	27.482	0.33923	5.4003	5.7888	6.128
14	70.001	0.26764	5. 8351	29.272	0.36119	5.4097	5.7888	6.15
15	80.001	0.3075	5.8374	30.904	0.38118	5.4173	5.7888	6.17
16	90.002	0.34593	5.8396	32.325	0. 39856	5.4231	5.7888	6.1874
17	100	0.38579	5.842	33.694	0.41527	5. 4284	5.7888	6.2041
18	110	0.42281	5. 8441	34.905	0.43003	5.4337	5.7888	6. 2188
19	120	0.46124	5. 8464	36.063	0.44413	5.4372	5.7888	6.2329
20	130	0.50111	5. 8487	37.116	0.45691	5.4407	5.7888	6. 2457
21	140	0.54097	5. 8511	38.169	0.46969	5.4436	5.7888	6. 2585
22	150	0.5794	5. 8534	39.117	0.48116	5. 4454	5.7888	6.27
23	160	0.61784	5. 8556	40.012	0.49198	5.4477	5.7888	6.2808
24	170	0.65628	5.8579	40.907	0.50279	5.4494	5.7888	6.2916
25	180	0.69471	5. 8602	41.802	0.51359	5.4512	5.7888	6. 3024
26	190	0.73457	5. 8625	42.644	0.52373	5.453	5.7888	6. 3125
27	200	0.77159	5.8647	43.276	0.53129	5.4541	5.7888	6.3201
28	210	0.81145	5.867	44.013	0.54012	5.4553	5.7888	6.3289
29	220	0.84846	5. 8692	44.75	0. 54896	5.4565	5.7888	6.3378
30	230	0.8869	5. 8715	45.645	0. 55973	5.4565	5.7888	6. 3485
31	270	1. 0406	5. 8806	48.593	0.59495	5.4576	5.7888	6. 3838
32	300	1.156	5. 8875	50.541	0.61808	5.4576	5.7888	6.4069
33	330	1. 2713	5.8944	52.489	0.64116	5.4565	5.7888	6.43
34	360	1. 3866	5. 9013	54.174	0.66096	5.4553	5.7888	6.4498
35	390	1. 5005	5. 9081	55.911	0.68137	5.453	5.7888	6.4702
36	420	1. 6172	5.9151	57.596	0.70107	5.4506	5.7888	6.4899
37	450	1. 7325	5.922	59.07	0.71817	5.4465	5.7888	6.507
38	480	1.8492	5. 9291	60.702	0.73714	5. 4436	5.7888	6. 5259
39	510	1.966	5. 9361	62.334	0.75606	5.4407	5.7888	6. 5449
40	540	2. 0841	5. 9433	63.966	0.77492	5.4366	5.7888	6. 5637
41	570	2.2009	5. 9504	65.44	0.79183	5.4331	5.7888	6.5806
42	600	2. 3176	5. 9575	66.862	0.80806	5. 4284	5.7888	6. 5969
43	630	2.4358	5.9647	68.388	0.82551	5.4231	5.7888	6.6143
44	660	2. 5539	5.972	69.863	0.84229	5.4196	5.7888	6.6311
45	690	2.6721	5. 9792	71.179	0.85711	5.4144	5.7888	6.6459
46	720	2.7902	5. 9865	72.548	0.87254	5.4091	5.7888	6.6613
47	750	2. 9056	5. 9936	73.916	0.88795	5.4038	5.7888	6.6767
48	780	3.0223	6. 0008	75.285	0.9033	5. 3992	5.7888	6.6921
49	810	3. 1376	6.0079	76.391	0.91548	5. 3939	5.7888	6.7043
50	840	3. 2515	6.015	77.707	0.93016	5. 3886	5.7888	6.719
51	870	3. 3654	6. 0221	78.971	0.94417	5. 3828	5.7888	6.733
52	900	3.4807	6.0293	80.287	0.95876	5. 3781	5.7888	6.7476
53	930	3.5946	6.0364	81.498	0.97207	5. 3729	5.7888	6.7609
54	960	3. 7085	6.0436	82.656	0.98472	5. 3664	5.7888	6.7735
55	990	3.8238	6. 0508	84.025	0.99983	5. 3623	5.7888	6.7886
56	1020	3.9377	6. 058	85.235	1.013	5.3559	5.7888	6.8018
57	1050	4.053	6. 0653	86.446	1. 0262	5.3518	5.7888	6.815
58	1080	4.1683	6.0726	87.447	1. 0368	5.346	5.7888	6.8256
59	1110	4.285	6.08	88.658	1. 0499	5. 3413	5.7888	6.8387
60	1140	4.4018	6. 0874	89.658	1. 0604	5.336	5.7888	6.8492
61	1170	4. 5185	6.0948	90.816	1.0728	5. 3308	5.7888	6.8616
62	1200	4.6352	6.1023	91.974	1. 0852	5. 3243	5.7888	6.874
63	1230	4.752	6.1098	93.133	1. 0975	5. 3185	5.7888	6.8863
64	1260	4.8701	6. 1174	94.185	1.1085	5.3126	5.7888	6. 8973
65	1290	4.9883	6.125	95.238	1.1195	5.3056	5.7888	6. 9083
66	1320	5. 1064	6.1326	96.502	1.133	5.301	5.7888	6.9218
67	1350	5. 2232	6.1402	97.45	1.1427	5. 2945	5.7888	6.9315
68	1380	5.3385	6.1476	98.555	1.1543	5. 2881	5.7888	6.9431
69	1410	5.4552	6. 1552	99.555	1. 1645	5. 2834	5.7888	6. 9533
70	1440	5. 5705	6.1627	100.56	1.1748	5.277	5.7888	6. 9636
71	1470	5.683	6.1701	101.61	1. 1857	5. 27	5.7888	6. 9745
72	1500	5.7983	6.1776	102.45	1. 1941	5. 2659	5.7888	6.9829
73	1530	5. 9136	6. 1852	103.61	1. 2061	5.26	5.7888	6.9949
74	1560	6. 0275	6.1927	104.35	1. 2132	5. 2524	5.7888	7.002
75	1590	6.1428	6.2003	105.29	1. 2227	5. 2477	5.7888	7.0115
76	1620	6. 2581	6.2079	106.35	1. 2334	5. 2413	5.7888	7.0222
77	1650	6.372	6. 2155	107.24	1. 2423	5. 2355	5.7888	7. 0311
78	1680	6.4887	6.2233	107.98	1. 2493	5. 2302	5.7888	7.0381
79	1710	6.6041	6.2309	108.87	1.2581	5.2238	5.7888	7.0469

80	1740	6.7236	6.2389	109.93	2686	5. 2185	5.7888	7.0574
81	1770	6.8418	6. 2468	110.98	1. 2791	5. 2127	5.7888	7. 0679
82	1800	6.9585	6. 2547	111.82	1. 2872	5. 2057	5.7888	7.076
83	1830	7. 0767	6. 2626	112.56	1. 2941	5.1998	5.7888	7. 0829
84	1860	7. 1948	6. 2706	113.45	1. 3027	5.1951	5.7888	7. 0915
85	1890	7. 3144	6. 2787	114.24	1. 3101	5.1887	5.7888	7. 0989
86	1920	7.4326	6. 2867	114.98	1. 3168	5.184	5.7888	7. 1056
87	1950	7. 5493	6. 2946	115.82	1. 3248	5.1776	5.7888	7. 1136
88	1980	7. 6646	6. 3025	116.61	1. 3322	5.1723	5.7888	7.121
89	2010	7. 7814	6. 3105	117.24	1. 3377	5. 1665	5.7888	7. 1265
90	2040	7. 8953	6. 3183	118.03	1. 3451	5.1612	5.7888	7. 1339
91	2070	8. 0077	6.326	118.72	1. 3512	5.1548	5.7888	7.14
92	2100	8.1216	6. 3339	119.56	1. 3591	5. 1501	5.7888	7. 1479
93	2130	8. 2369	6. 3418	120.35	1. 3664	5.1443	5.7888	7. 1552
94	2160	8. 3522	6. 3498	121.09	1.373	5.139	5.7888	7. 1618
95	2190	8.4647	6. 3576	121.77	1. 3791	5.1326	5.7888	7. 1679
96	2220	8. 58	6. 3656	122.56	1. 3863	5. 1279	5.7888	7. 1751
97	2250	8.6939	6. 3735	123.14	1. 3911	5.1238	5.7888	7. 1799
98	2280	8.8092	6. 3816	124.14	1.4006	5.1185	5.7888	7. 1894
99	2310	8.9259	6. 3898	124.77	1.4059	5.1127	5.7888	7. 1947
100	2340	9. 0441	6. 3981	125.3	1.41	5. 1074	5.7888	7. 1988
101	2370	9. 1608	6.4063	126.04	1.4165	5. 1022	5.7888	7. 2053
102	2400	9. 279	6.4147	126.67	1. 4218	5. 0981	5.7888	7. 2106
103	2430	9. 3957	6. 4229	127. 25	1.4264	5. 0922	5.7888	7. 2152
104	2460	9. 5139	6.4313	127.83	1.4311	5. 0881	5.7888	7. 2199
105	2490	9.632	6.4397	128.41	1.4357	5. 0829	5. 7888	7. 2245
106	2520	9. 7516	6. 4482	129.25	1.4432	5. 0782	5.7888	7.232
107	2550	9.8698	6.4567	129.88	1.4483	5. 0735	5.7888	7. 2371
108	2580	9.9837	6. 4649	130.35	1.4518	5. 0688	5.7888	7. 2406
109	2610	10.102	6.4734	131.04	1.4575	5. 0648	5.7888	7. 2463
110	2640	10.219	6.4818	131.46	1.4603	5. 0601	5.7888	7. 2491
111	2670	10.332	6.49	132.09	1.4654	5.056	5.7888	7. 2542
112	2700	10.448	6.4984	132.72	1.4705	5. 0525	5.7888	7. 2593
113	2730	10.562	6. 5066	133.46	1.4768	5.046	5.7888	7. 2656
114	2760	10.677	6.515	134.2	1.4831	5. 0414	5.7888	7. 2719
115	2790	10.792	6.5235	134.46	1.484	5. 0373	5.7888	7. 2728
116	2820	10.909	6.532	134.88	1.4867	5. 0338	5.7888	7. 2755
117	2850	11.024	6.5405	135.41	1.4906	5. 0297	5.7888	7. 2794
118	2880	11.14	6. 549	135.99	1.4951	5. 0268	5.7888	7. 2839
119	2910	11.256	6.5576	136.67	1. 5006	5. 0209	5.7888	7. 2894
120	2940	11.373	6.5662	137.2	1. 5044	5. 0162	5.7888	7. 2932
121	2970	11.491	6. 575	137.88	1. 5099	5. 0127	5.7888	7. 2987
122	3000	11.609	6.5838	138.25	1. 5119	5. 0098	5.7888	7. 3007
123	3030	11.73	6. 5928	138.83	1. 5162	5.0063	5.7888	7. 305
124	3060	11.847	6. 6015	139.57	1. 5222	5. 0016	5. 7888	7. 311
125	3090	11.965	6.6104	139.94	1. 5242	4.9981	5.7888	7. 313
126	3120	12.083	6.6193	140.51	1. 5284	4.9934	5.7888	7. 3172
127	3150	12.2	6.6281	141.15	1.5333	4.9911	5.7888	7. 3221
128	3180	12.317	6.6369	141.62	1. 5364	4.9841	5.7888	7. 3252
129	3210	12.432	6.6456	141.94	1. 5378	4.9829	5.7888	7. 3266
130	3240	12.55	6. 6546	142.67	1.5437	4.98	5.7888	7. 3325
131	3270	12.666	6. 6634	143.52	1.5507	4.9759	5.7888	7. 3395
132	3300	12.78	6.6721	144.09	1. 555	4.9724	5.7888	7. 3438
133	3330	12.893	6.6808	144.57	1.558	4.9689	5.7888	7. 3468
134	3360	13.009	6.6897	144.99	1. 5605	4.966	5.7888	7. 3493
135	3390	13.124	6.6986	145.36	1. 5624	4.9624	5.7888	7. 3512
136	3420	13.238	6. 7074	145.83	1.5654	4.9595	5.7888	7. 3542
137	3450	13.355	6. 7164	146.2	1. 5673	4. 9554	5.7888	7. 3561
138	3480	13.471	6. 7255	146.89	1. 5725	4. 9519	5.7888	7. 3613
139	3510	13.588	6.7345	147.46	1.5766	4.9496	5.7888	7. 3654
140	3540	13.706	6.7438	147.78	1.5778	4.9455	5.7888	7. 3666
141	3570	13.823	6.7529	148.1	1.579	4. 942	5.7888	7. 3678
142	3600	13.938	6.7619	148.68	1. 5831	4.9385	5.7888	7. 3719
143	3630	14.058	6. 7714	149.41	1. 5887	4.9355	5.7888	7. 3775
144	3660	14.175	6.7806	149.89	1. 5916	4.9338	5.7888	7. 3804
145	3690	14. 291	6.7898	150.25	1.5933	4.9303	5.7888	7. 3821
146	3720	14.411	6. 7993	150.25	1. 5911	4.9279	5. 7888	7. 3799
147	3750	14.529	6.8087	150.52	1. 5917	4.9256	5.7888	7. 3805
148	3780	14.645	6.8179	151.31	1.5979	4.9227	5.7888	7. 3867
149	3810	14.76	6. 8271	152.36	1. 6068	4.9192	5.7888	7. 3956
150	3840	14.875	6. 8364	152.73	1. 6085	4.9168	5.7888	7. 3973
151	3870	14.99	6.8456	153.04	1.6097	4.9133	5.7888	7. 3985
152	3900	15.104	6. 8548	153.57	1.613	4.911	5.7888	7. 4018
153	3930	15.218	6.864	153.94	1.6147	4.9092	5.7888	7.4035

Project: COLETO CREEK FACILITY
Boring No.: B-4-1 S-13
Sample No.: S-13
Test No.: 10.4 PSI

Location: I PR-GDF SUEZ Tested By: BCM
Test Date: 12/2/11
Sample Type: 3" ST

Project No.: 60225561
Checked By: WPQ
Depth: 24.0' 26.0

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

```
Specimen Height: 6.06 in
Specimen Area: 5.82 i n^2
```

Specimen Volume: 35.25 in^3

Piston Area: 0.00 i $n^{\wedge} 2$
Piston Friction: 0.00 l b
Piston Weight: 0.00|b

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 |b/in Correction Type: Uniform

	Vertical	$\begin{array}{r} \text { Total } \\ \text { Vertical } \end{array}$	$\begin{array}{r} \text { Total } \\ \text { Horizontal } \end{array}$	$\begin{gathered} \text { Excess } \\ \text { Pore } \end{gathered}$	A	Effective Vertical	$\begin{aligned} & \text { Effective } \\ & \text { Horizontal } \end{aligned}$	Stress	Effective	
	$\begin{aligned} \text { Strain } \\ \% \end{aligned}$	$\begin{array}{r} \text { Stress } \\ \text { tsf } \end{array}$	$\begin{gathered} \text { Stress } \\ \text { tsf } \end{gathered}$	$\begin{array}{r} \text { Pressure } \\ \text { tsf } \end{array}$	Parameter	$\begin{array}{r} \text { stress } \\ \text { tsf } \end{array}$	$\begin{array}{r} \text { Stress } \\ \text { tsf } \end{array}$	Ratio	tsf	ts ${ }^{9}$
1	0.00	5.7888	5.7888	0	0.000	0.74626	0.74626	1. 000	0.74626	0
2	0.02	5.8741	5.7888	0.19936	2. 337	0.63221	0.5469	1. 156	0.58956	0.042657
3	0.04	5. 9294	5. 7888	0.23853	1. 696	0.64837	0.50773	1. 277	0.57805	0.070321
4	0.06	5.9678	5.7888	0.26543	1. 483	0.65986	0.48083	1. 372	0.57035	0.089512
5	0.08	5. 9977	5. 7888	0.28472	1. 363	0.67047	0.46154	1. 453	0.56601	0.10447
6	0.09	6.0211	5. 7888	0.29992	1. 291	0.67866	0.44634	1. 520	0.5625	0.11616
7	0.11	6.0419	5.7888	0.31278	1. 236	0.68657	0.43348	1. 584	0.56002	0.12655
8	0.13	6.0594	5.7888	0.32331	1. 195	0.69356	0.42295	1. 640	0.55826	0.1353
9	0.15	6.0763	5.7888	0.33208	1. 155	0.70165	0.41418	1. 694	0. 55792	0.14373
10	0.17	6.0905	5.7888	0.34026	1.128	0.70772	0.406	1.743	0.55686	0.15086
11	0.19	6.1035	5.7888	0.34669	1. 102	0.71423	0.39957	1.787	0.5569	0.15733
12	0.21	6.1157	5. 7888	0.35254	1. 078	0.72067	0.39372	1.830	0. 5572	0.16347
13	0.23	6.128	5.7888	0.3578	1. 055	0.72769	0.38846	1. 873	0.55808	0.16962
14	0.27	6.15	5.7888	0.36716	1. 017	0.7403	0.37911	1. 953	0.5597	0.1806
15	0.31	6.17	5. 7888	0.37476	0.983	0.75268	0.37151	2. 026	0.56209	0.19059
16	0.35	6.1874	5.7888	0.3806	0.955	0.76421	0.36566	2. 090	0.56494	0.19928
17	0.39	6.2041	5.7888	0.38586	0.929	0.77566	0.3604	2. 152	0.56803	0.20763
18	0.42	6. 2188	5.7888	0.39113	0.910	0.78517	0.35514	2. 211	0.57015	0.21501
19	0.46	6.2329	5.7888	0.39463	0.889	0.79576	0.35163	2. 263	0.57369	0.22206
20	0.50	6.2457	5.7888	0.39814	0.871	0.80503	0.34812	2. 313	0.57658	0.22846
21	0.54	6. 2585	5. 7888	0.40106	0.854	0.81488	0.3452	2. 361	0.58004	0. 23484
22	0.58	6.27	5.7888	0.40282	0.837	0.8246	0.34344	2. 401	0.58402	0.24058
23	0.62	6.2808	5. 7888	0.40516	0.824	0.83308	0.3411	2. 442	0.58709	0.24599
24	0.66	6. 2916	5.7888	0.40691	0.809	0.84214	0.33935	2.482	0.59075	0.25139
25	0.69	6. 3024	5.7888	0.40866	0.796	0.85119	0.3376	2. 521	0.59439	0.2568
26	0.73	6. 3125	5.7888	0.41042	0.784	0.85957	0.33584	2. 559	0.59771	0.26187
27	0.77	6.3201	5.7888	0.41159	0.775	0.86596	0.33467	2. 587	0.60032	0.26565
28	0.81	6. 3289	5.7888	0.41276	0.764	0.87363	0.3335	2. 620	0.60357	0.27006
29	0.85	6. 3378	5.7888	0.41393	0.754	0.8813	0.33233	2. 652	0.60682	0.27448
30	0.89	6. 3485	5.7888	0.41393	0.740	0.89206	0.33233	2. 684	0.6122	0.27986
31	1.04	6. 3838	5.7888	0.4151	0.698	0.92612	0.33117	2. 797	0.62864	0. 29748
32	1.16	6.4069	5.7888	0.4151	0.672	0.94925	0.33117	2.866	0.64021	0. 30904
33	1.27	6.43	5. 7888	0.41393	0.646	0.97349	0.33233	2. 929	0.65291	0. 32058
34	1.39	6.4498	5.7888	0.41276	0.624	0.99447	0.3335	2. 982	0.66398	0.33048
35	1. 50	6.4702	5.7888	0.41042	0.602	1.0172	0.33584	3.029	0.67653	0. 34069
36	1.62	6.4899	5.7888	0.40808	0. 582	1. 0393	0.33818	3.073	0.68872	0.35054
37	1.73	6.507	5.7888	0.40399	0. 563	1. 0604	0.34227	3.098	0.70136	0.35909
38	1. 85	6. 5259	5.7888	0.40106	0. 544	1. 0823	0.3452	3.135	0.71377	0.36857
39	1. 97	6. 5449	5.7888	0.39814	0.527	1. 1042	0.34812	3.172	0.72615	0.37803
40	2.08	6. 5637	5.7888	0.39405	0.509	1. 1271	0.35221	3.200	0.73967	0.38746
41	2. 20	6. 5806	5.7888	0.39054	0.493	1. 1475	0.35572	3.226	0.75163	0.39591
42	2. 32	6. 5969	5.7888	0.38586	0.478	1.1685	0.3604	3. 242	0.76443	0.40403
43	2. 44	6.6143	5.7888	0.3806	0.461	1.1912	0.36566	3. 258	0.77842	0.41276
44	2. 55	6.6311	5.7888	0.37709	0.448	1. 2115	0.36917	3. 282	0.79031	0.42114
45	2.67	6. 6459	5.7888	0.37183	0.434	1. 2315	0.37443	3. 289	0.80299	0.42856
46	2.79	6. 6613	5.7888	0.36657	0.420	1. 2522	0.37969	3. 298	0.81596	0.43627
47	2. 91	6.6767	5.7888	0.36131	0.407	1. 2729	0.38495	3. 307	0.82893	0.44397
48	3.02	6. 6921	5.7888	0.35663	0. 395	1. 2929	0.38963	3. 318	0.84128	0.45165
49	3.14	6.7043	5.7888	0.35137	0.384	1.3104	0.39489	3. 318	0.85263	0.45774
50	3.25	6.719	5.7888	0.34611	0.372	1.3303	0.40015	3. 324	0.86523	0.46508
51	3. 37	6.733	5. 7888	0.34026	0.360	1. 3502	0.406	3. 326	0.87808	0.47208
52	3.48	6.7476	5.7888	0.33558	0.350	1. 3694	0.41068	3. 335	0.89006	0.47938
53	3. 59	6.7609	5.7888	0.33032	0.340	1.388	0.41594	3. 337	0.90197	0.48603
54	3.71	6.7735	5.7888	0.32389	0.329	1.4071	0.42237	3. 331	0.91473	0.49236
55	3.82	6.7886	5.7888	0.3198	0.320	1.4263	0.42646	3. 344	0.92638	0.49991
56	3.94	6.8018	5.7888	0.31337	0. 309	1.4459	0.43289	3. 340	0.93941	0.50652
57	4. 05	6.815	5.7888	0.30928	0.301	1.4632	0.43699	3. 348	0.95008	0.5131
58	4.17	6. 8256	5.7888	0.30343	0.293	1.4797	0.44283	3. 341	0.96124	0. 51841
59	4.29	6. 8387	5.7888	0.29875	0.285	1.4974	0.44751	3. 346	0.97246	0.52495
60	4.40	6. 8492	5.7888	0.29349	0.277	1. 5132	0.45277	3. 342	0.983	0.53022
61	4. 52	6.8616	5.7888	0.28823	0.269	1. 5309	0.45803	3. 342	0.99445	0.53642
62	4.64	6.874	5.7888	0.2818	0.260	1. 5497	0.46446	3. 336	1.0071	0.5426
63	4.75	6.8863	5.7888	0.27595	0.251	1. 5678	0.47031	3. 334	1. 0191	0.54876
64	4.87	6.8973	5.7888	0.2701	0.244	1. 5847	0.47616	3. 328	1. 0304	0.55427
65	4. 99	6. 9083	5.7888	0.26309	0. 235	1. 6027	0.48317	3. 317	1. 0429	0. 55977
66	5.11	6. 9218	5.7888	0.25841	0.228	1.6208	0.48785	3. 322	1. 0543	0.56649
67	5. 22	6. 9315	5.7888	0.25198	0.221	1.637	0.49428	3. 312	1. 0656	0.57135
68	5. 34	6.9431	5.7888	0.24555	0.213	1. 655	0.50071	3. 305	1. 0778	0.57713
69	5. 46	6. 9533	5.7888	0.24087	0.207	1.6699	0.50539	3. 304	1. 0877	0.58227
70	5. 57	6. 9636	5.7888	0.23444	0.200	1.6866	0.51182	3.295	1.0992	0. 5874
71	5. 68	6. 9745	5.7888	0.22743	0.192	1.7045	0.51884	3.285	1. 1117	0.59285
72	5. 80	6. 9829	5.7888	0.22333	0.187	1.717	0.52293	3.283	1.12	0.59703
73	5. 91	6.9949	5.7888	0.21749	0.180	1.7349	0.52877	3. 281	1.1318	0.60304
74	6. 03	7.002	5.7888	0.20989	0.173	1.7496	0.53637	3. 262	1.143	0.6066
75	6.14	7. 0115	5.7888	0.20521	0.168	1.7638	0.54105	3.260	1. 1524	0.61135
76	6.26	7. 0222	5.7888	0.19878	0.161	1.7809	0.54748	3. 253	1. 1642	0.61671
77	6.37	7.0311	5. 7888	0.19293	0.155	1.7956	0.55333	3. 245	1. 1745	0.62114
78	6.49	7. 0381	5.7888	0.18767	0.150	1.8079	0.55859	3.236	1. 1832	0.62463

6.60	7.0469	5.7888	0.18124
6.72	7. 0574	5. 7888	0.17598
6.84	7.0679	5. 7888	0.17013
6.96	7.076	5. 7888	0.16312
7.08	7.0829	5. 7888	0.15727
7. 19	7.0915	5. 7888	0.15259
7.31	7. 0989	5. 7888	0.14616
7. 43	7. 1056	5. 7888	0.14148
7.55	7.1136	5. 7888	0.13505
7.66	7.121	5. 7888	0.12979
7.78	7. 1265	5. 7888	0.12394
7.90	7. 1339	5. 7888	0.11868
8.01	7.14	5.7888	0.11225
8.12	7. 1479	5. 7888	0.10757
8.24	7. 1552	5. 7888	0.10173
8.35	7. 1618	5. 7888	0.096466
8.46	7. 1679	5. 7888	0.090035
8.58	7.1751	5. 7888	0.085358
8.69	7.1799	5. 7888	0.081265
8.81	7.1894	5. 7888	0.076003
8.93	7. 1947	5. 7888	0.070157
9.04	7. 1988	5. 7888	0.064895
9.16	7. 2053	5.7888	0.059634
9.28	7. 2106	5. 7888	0.055541
9.40	7. 2152	5.7888	0.049695
9. 51	7. 2199	5.7888	0.045602
9.63	7. 2245	5. 7888	0.04034
9.75	7.232	5.7888	0.035663
9.87	7. 2371	5. 7888	0.030986
9.98	7. 2406	5. 7888	0.026309
10.10	7. 2463	5. 7888	0.022216
10.22	7. 2491	5. 7888	0.017539
10.33	7. 2542	5. 7888	0.013447
10.45	7. 2593	5.7888	0.0099389
10.56	7. 2656	5.7888	0.0035079
10.68	7. 2719	5.7888	-0.0011693
10.79	7. 2728	5. 7888	-0.0052618
10.91	7. 2755	5.7888	-0.0087696
11.02	7. 2794	5. 7888	-0.012862
11.14	7. 2839	5.7888	-0.015785
11.26	7. 2894	5. 7888	-0.021632
11.37	7. 2932	5. 7888	-0.026309
11.49	7. 2987	5. 7888	-0.029817
11.61	7. 3007	5. 7888	-0.03274
11.73	7. 305	5. 7888	-0.036248
11.85	7. 311	5. 7888	-0.040925
11.97	7.313	5. 7888	-0.044433
12.08	7. 3172	5. 7888	-0.04911
12. 20	7. 3221	5.7888	-0.051449
12.32	7. 3252	5. 7888	-0.058464
12.43	7. 3266	5.7888	-0.059634
12.55	7. 3325	5. 7888	-0.062557
12.67	7. 3395	5. 7888	-0.066649
12.78	7. 3438	5.7888	-0.070157
12.89	7. 3468	5.7888	-0.073665
13.01	7. 3493	5.7888	-0.076588
13.12	7. 3512	5.7888	-0.080096
13. 24	7. 3542	5. 7888	-0.083019
13.35	7. 3561	5.7888	-0.087112
13.47	7. 3613	5. 7888	-0.09062
13.59	7. 3654	5. 7888	-0.092958
13.71	7. 3666	5. 7888	-0.097051
13.82	7. 3678	5.7888	-0.10056
13.94	7. 3719	5. 7888	-0.10407
14.06	7. 3775	5. 7888	-0.10699
14.17	7. 3804	5. 7888	-0.10874
14.29	7. 3821	5.7888	-0.11225
14.41	7. 3799	5.7888	-0.11459
14.53	7. 3805	5. 7888	-0.11693
14.64	7. 3867	5. 7888	-0.11985
14.76	7. 3956	5. 7888	-0.12336
14.88	7. 3973	5. 7888	-0.1257
14.99	7. 3985	5. 7888	-0.12921
15.10	7. 4018	5.7888	-0.13154
15.22	7.4035	5.7888	-0.1333

3.227
3.225 3.225
3.220
3.207 3.225
3.207
3.197

Project: COLETO CREEK FACILITY Boring No.: B-4-1 S-13
Sample No.: S-13
Test No.: 17.4 PSI

Location: I PR-GDF SUEZ
Tested By: BCM
Test Date: 12/2/11

Project No.: 60225561
Checked By: WPQ
Depth: 24.0' 26.0
Elevation:

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SO
Remarks: FAILURE CRITERIA = MAXI MUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

```
Specimen Height: 5.41 in
Specimen Area: 6.29 in^2
Specimen Volume: 34.03 in^3
```

Liquid Li mit: 40

Piston Area: 0.00 in^2
Piston Friction: 0.00 |b
Piston Weight: 0.00 lb

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 |b/in
 Correction Type: Uniform

	Ti me mi n	Vertical Strain	Corrected Area in $n^{\wedge} 2$	Deviator Load I b	$\begin{array}{r} \text { Deviator } \\ \text { Stress } \\ \text { tsf } \end{array}$	$\begin{array}{r} \text { Pore } \\ \text { Pressure } \\ \text { tsf } \end{array}$	$\begin{array}{r} \text { Horizontal } \\ \text { Stress } \\ \text { tsf } \end{array}$	$\begin{array}{r} \text { Vertical } \\ \text { Stress } \\ \text { tsf } \end{array}$
1	0	0	6.2898	0	0	5.0399	6.2928	6.2928
2	5.0042	0.0151	6. 2908	12.364	0.14151	5.111	6.2928	6.4343
3	10	0.035234	6.292	19.701	0.22544	5. 1588	6. 2928	6. 5182
4	15	0.057045	6. 2934	25.408	0. 29068	5.1965	6. 2928	6.5835
5	20	0.078856	6.2948	29.756	0.34035	5. 2265	6.2928	6. 6331
6	25	0.10067	6. 2962	33.696	0.38533	5. 2526	6. 2928	6.6781
7	30	0. 12248	6. 2975	23. 234	0. 26563	5. 2232	6. 2928	6. 5584
8	35.001	0.14261	6. 2988	33.628	0.38439	5. 2704	6.2928	6.6772
9	40.001	0.16442	6. 3002	37.976	0.434	5. 2948	6. 2928	6.7268
10	45.001	0.18623	6. 3016	28.533	0.32601	5. 2676	6. 2928	6. 6188
11	50.001	0. 20637	6. 3028	37.297	0.42606	5.307	6. 2928	6.7189
12	55.001	0. 23154	6. 3044	21.332	0.24362	5. 2565	6.2928	6.5364
13	60.001	0.24999	6. 3056	34.375	0. 39251	5. 3098	6. 2928	6. 6853
14	70.001	0.29529	6. 3085	30.163	0.34426	5. 3065	6. 2928	6.6371
15	80.001	0.33724	6. 3111	23.845	0.27204	5. 2959	6.2928	6. 5648
16	90.002	0. 37583	6. 3136	43.751	0.49893	5.377	6. 2928	6.7917
17	100	0.42113	6. 3164	42.12	0.48012	5. 3792	6. 2928	6.7729
18	110	0.46475	6. 3192	37.636	0.42882	5. 3715	6. 2928	6.7216
19	120	0.51005	6. 3221	27.582	0.31412	5. 3459	6. 2928	6.6069
20	130	0.55032	6. 3246	48.098	0.54756	5.4242	6.2928	6.8404
21	140	0.59394	6. 3274	42.052	0.47851	5.4087	6. 2928	6.7713
22	150	0.64092	6. 3304	29.552	0.33612	5. 3737	6.2928	6.6289
23	160	0.67951	6. 3329	51.971	0. 59087	5. 4514	6.2928	6.8837
24	170	0.72481	6. 3357	42.935	0.48792	5.4248	6.2928	6.7807
25	180	0.76507	6. 3383	56.794	0.64515	5.477	6.2928	6.938
26	190	0.8087	6. 3411	50.612	0.57467	5.4603	6.2928	6.8675
27	200	0.85567	6. 3441	30.979	0. 35158	5.4031	6.2928	6.6444
28	210	0.89594	6. 3467	55.639	0.6312	5. 4864	6.2928	6.924
29	220	0.94124	6. 3496	38.723	0.4391	5. 4364	6. 2928	6.7319
30	230	0.98151	6. 3522	59.376	0.67301	5. 5064	6.2928	6.9658
31	240	1.0268	6. 3551	41.984	0.47566	5.4553	6.2928	6.7685
32	270	1. 1543	6. 3633	62.637	0.70873	5. 5347	6.2928	7. 0015
33	300	1. 2835	6. 3716	68.751	0.77689	5. 5636	6.2928	7.0697
34	330	1. 4161	6. 3802	52.854	0. 59645	5. 5253	6. 2928	6.8893
35	360	1. 5436	6. 3884	72.691	0.81926	5. 5963	6.2928	7. 1121
36	390	1. 6728	6. 3968	77.515	0.87247	5. 6152	6.2928	7. 1653
37	420	1. 8053	6. 4055	80.504	0.90489	5.6297	6. 2928	7. 1977
38	450	1. 9362	6.414	83.425	0.93648	5.643	6.2928	7.2293
39	480	2. 0654	6.4225	87.229	0.9779	5. 6547	6.2928	7. 2707
40	510	2. 1962	6.4311	90.218	1. 0101	5.6647	6. 2928	7.3029
41	540	2. 3254	6.4396	92.936	1. 0391	5. 6735	6. 2928	7. 3319
42	570	2. 4563	6.4482	95.925	1.0711	5.6819	6.2928	7. 3639
43	600	2. 5855	6. 4568	98.439	1.0977	5.6885	6. 2928	7. 3905
44	630	2.7163	6. 4654	100.27	1. 1167	5. 6957	6. 2928	7.4095
45	660	2.8489	6.4743	102.18	1.1363	5.7013	6. 2928	7.4291
46	690	2. 9781	6.4829	104.15	1. 1567	5.7057	6.2928	7.4495
47	720	3. 1089	6.4916	105.84	1.1739	5. 7102	6.2928	7.4667
48	750	3.2381	6.5003	107.75	1.1934	5.7141	6.2928	7. 4862
49	780	3.369	6. 5091	109.72	1. 2136	5.7169	6.2928	7. 5064
50	810	3.4982	6. 5178	111.55	1. 2323	5.7191	6. 2928	7. 5251
51	840	3.6307	6. 5268	112.37	1. 2396	5.7202	6. 2928	7. 5324
52	870	3.7616	6. 5357	112.91	1.2439	5.7213	6.2928	7. 5367
53	900	3.8925	6. 5446	114.34	1. 2579	5.7218	6. 2928	7. 5507
54	930	4.0233	6. 5535	115.56	1. 2696	5.7218	6.2928	7. 5624
55	960	4. 1525	6. 5623	116.99	1. 2835	5.7213	6. 2928	7.5763
56	990	4.2817	6. 5712	118.21	1. 2952	5.7207	6. 2928	7. 588
57	1020	4.4143	6. 5803	118.96	1. 3016	5.7196	6.2928	7. 5944
58	1050	4. 5418	6. 5891	120.31	1. 3147	5.7202	6.2928	7.6075
59	1080	4.6726	6. 5981	121.13	1. 3218	5. 7202	6.2928	7. 6146
60	1110	4.8018	6.6071	122.56	1. 3355	5.7196	6.2928	7.6283
61	1140	4.931	6.6161	123.71	1. 3463	5. 7174	6. 2928	7. 6391
62	1170	5. 0619	6. 6252	125	1. 3585	5.7146	6. 2928	7.6513
63	1200	5.1928	6.6343	126.09	1. 3684	5.7113	6.2928	7.6612
64	1230	5.322	6.6434	127.18	1. 3783	5.708	6.2928	7.6711
65	1260	5.4545	6.6527	128.06	1. 3859	5.7052	6.2928	7.6787
66	1290	5. 5837	6.6618	128.81	1. 3921	5.7019	6.2928	7.6849
67	1320	5.7129	6.6709	129.89	1.4019	5.6991	6.2928	7.6947
68	1350	5. 8437	6. 6802	130.71	1.4088	5.6957	6. 2928	7.7016
69	1380	5. 9746	6.6895	131.73	1.4178	5.6924	6.2928	7.7106
70	1410	6. 1055	6.6988	133.15	1.4312	5.6896	6.2928	7.724
71	1440	6.2363	6.7082	134.85	1.4474	5.6869	6. 2928	7.7402
72	1470	6. 3655	6.7174	136.14	1.4592	5.683	6.2928	7.752
73	1500	6.4947	6.7267	138.38	1.4812	5.6796	6. 2928	7.774
74	1530	6.6239	6.736	140.02	1.4966	5.6774	6.2928	7.7894
75	1560	6.7531	6.7453	140.15	1.496	5.6735	6.2928	7.7888
76	1590	6.884	6.7548	140.9	1. 5018	5. 6696	6.2928	7.7946
77	1620	7.0132	6.7642	141.24	1. 5034	5.6669	6.2928	7.7962
78	1650	7. 1407	6.7735	143.21	1. 5223	5. 6647	6.2928	7. 8151
79	1680	7.2682	6.7828	142.94	1. 5173	5.6624	6.2928	7.8101

80	1710	7.3991	6.7924	144.57	5324	5.6597	6.2928	7.8252
81	1740	7. 5299	6.802	144.91	1.5339	5.6585	6. 2928	7.8267
82	1770	7. 6641	6.8119	145.45	1. 5374	5.6563	6. 2928	7. 8302
83	1800	7. 7984	6.8218	144.97	1. 5301	5. 6547	6. 2928	7. 8229
84	1830	7.9292	6.8315	146.13	1. 5401	5.6524	6. 2928	7. 8329
85	1860	8. 0618	6.8414	147.01	1. 5472	5.6497	6.2928	7.84
86	1890	8. 1927	6.8511	146.81	1.5428	5. 6463	6. 2928	7.8356
87	1920	8. 3235	6.8609	148.1	1. 5542	5. 6441	6. 2928	7.847
88	1950	8.4527	6.8706	149.8	1. 5698	5. 6408	6. 2928	7.8626
89	1980	8. 5836	6. 8804	149.39	1. 5633	5. 6386	6. 2928	7.8561
90	2010	8.7128	6.8901	150.75	1. 5753	5.6358	6. 2928	7.8681
91	2040	8. 842	6.8999	150.48	1. 5702	5.6319	6. 2928	7.863
92	2070	8.9695	6. 9096	150.82	1. 5716	5. 6291	6. 2928	7.8644
93	2100	9.0987	6. 9194	151.63	1. 5778	5. 6263	6.2928	7.8706
94	2130	9. 2295	6. 9294	153.33	1. 5932	5. 6241	6. 2928	7.886
95	2160	9.3604	6. 9394	154.76	1. 6057	5. 6213	6.2928	7. 8985
96	2190	9.4913	6. 9494	156.66	1. 6231	5.6191	6. 2928	7. 9159
97	2220	9.6238	6. 9596	156.32	1.6172	5.6169	6. 2928	7.91
98	2250	9.7547	6. 9697	155.71	1. 6085	5. 6152	6.2928	7. 9013
99	2280	9.8872	6.9799	155. 5	1. 6041	5.6119	6. 2928	7. 8969
100	2310	10.02	6. 9902	155.3	1.5996	5.6097	6. 2928	7. 8924
101	2340	10.151	7. 0004	155.71	1. 6015	5.6069	6. 2928	7. 8943
102	2370	10.285	7. 0109	156.18	1.604	5.6041	6. 2928	7. 8968
103	2400	10.417	7. 0213	157.2	1.612	5. 6008	6. 2928	7. 9048
104	2430	10.548	7.0315	157.75	1.6153	5.598	6. 2928	7. 9081
105	2460	10.681	7.042	157.75	1.6129	5.5963	6. 2928	7. 9057
106	2490	10.81	7. 0522	158.22	1.6154	5.5925	6. 2928	7. 9082
107	2520	10.939	7. 0624	158.97	1.6207	5. 5886	6. 2928	7. 9135
108	2550	11.07	7. 0728	159.78	1.6266	5.5858	6. 2928	7. 9194
109	2580	11.199	7. 0831	160.26	1.6291	5. 5825	6. 2928	7. 9219
110	2610	11.328	7. 0934	161.14	1. 6356	5.5797	6.2928	7. 9284
111	2640	11.459	7. 1039	159.85	1.6202	5. 578	6. 2928	7.913
112	2670	11.59	7. 1144	160.6	1.6253	5.5752	6. 2928	7. 9181
113	2700	11.718	7. 1247	164.95	1.6669	5.573	6.2928	7. 9597
114	2730	11.852	7. 1355	159.92	1. 6137	5.5703	6. 2928	7. 9065
115	2760	11.983	7. 1461	158.56	1.5976	5.5669	6. 2928	7. 8904
116	2790	12.112	7. 1566	159.78	1. 6075	5.5647	6. 2928	7.9003
117	2820	12. 243	7. 1673	159.92	1.6065	5.5619	6. 2928	7. 8993
118	2850	12.375	7. 1781	159.85	1. 6034	5. 5603	6. 2928	7. 8962
119	2880	12.506	7. 1889	160.26	1.6051	5.558	6. 2928	7. 8979
120	2910	12.639	7. 1998	160.06	1. 6006	5.5541	6. 2928	7. 8934
121	2940	12.771	7. 2107	160.4	1.6016	5.5525	6. 2928	7. 8944
122	2970	12.904	7. 2217	160.19	1. 5971	5.5497	6. 2928	7. 8899
123	3000	13.035	7.2326	160.33	1.5961	5.5475	6. 2928	7. 8889
124	3030	13.169	7. 2438	160.74	1. 5976	5. 5458	6. 2928	7.8904
125	3060	13.298	7. 2545	160.87	1. 5966	5.5442	6.2928	7.8894
126	3090	13.427	7. 2654	160.87	1.5942	5.543	6. 2928	7.887
127	3120	13.56	7. 2765	161.62	1.5992	5.5403	6.2928	7.892
128	3150	13.689	7. 2874	162.43	1.6049	5.5397	6.2928	7. 8977
129	3180	13.818	7. 2983	162.98	1.6078	5. 538	6. 2928	7.9006
130	3210	13.947	7. 3093	162.84	1. 6041	5.5369	6. 2928	7. 8969
131	3240	14.078	7. 3204	163.39	1.607	5. 5353	6. 2928	7. 8998
132	3270	14.208	7. 3314	163.93	1.6099	5.5342	6. 2928	7.9027
133	3300	14.338	7. 3426	165.02	1.6181	5. 533	6. 2928	7. 9109
134	3330	14.468	7.3537	164.4	1. 6097	5.5319	6.2928	7.9025
135	3360	14.598	7. 365	165.02	1.6132	5.5314	6.2928	7.906
136	3390	14.731	7. 3765	165.15	1.612	5.5303	6. 2928	7.9048
137	3420	14.864	7. 3879	165.49	1.6128	5.5292	6.2928	7. 9056
138	3450	14.994	7. 3993	165.56	1.611	5.5275	6.2928	7.9038
139	3480	15.127	7.4109	165.42	1.6072	5.5258	6. 2928	7.9
140	3510	15. 261	7. 4226	165.9	1.6092	5.5242	6.2928	7.902
141	3540	15.394	7.4342	166.31	1.6107	5.523	6. 2928	7.9035
142	3570	15.525	7.4457	167.12	1.6161	5.5219	6. 2928	7.9089
143	3600	15.655	7.4573	166.99	1.6122	5.5197	6. 2928	7.905
144	3630	15.788	7.469	167.19	1.6117	5. 5181	6. 2928	7.9045
145	3660	15.916	7.4804	167.6	1.6132	5.5169	6. 2928	7.906
146 147	3690 95.9	16.048 16.073	7.4922 7.4944	168.55 168.96	1. 61988	5. 5153 5. 5158	6.2928 6.2928	7.9126 7.916

```
Location: I PR-GDF SUEZ
Tested By: BCM
Test Date: 12/2/11

Project No.: 60225561
Checked By: WPQ
Depth: 24.0' 26.0
Elevation:....

A=COM

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXI MUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767
```

Specimen Height: 5.41 in
Specimen Area: 6.29 i n^2
Specimen Volume: 34.03 in^^3

```
Piston Area: 0.00 i \(n^{\wedge} 2\)
Piston Friction: 0.00 l b
Piston Weight: 0.00|b

Filter Strip Correction: 0.00 tsf Membrane Correction: \(0.00 \mathrm{lb} / \mathrm{in}\)

P|astic Limit: 24
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Vertical & \[
\begin{array}{r}
\text { Total } \\
\text { Vertical }
\end{array}
\] & \[
\begin{array}{r}
\text { Total } \\
\text { Horizontal }
\end{array}
\] & \[
\begin{array}{r}
\text { Excess } \\
\text { Pore }
\end{array}
\] & A & Effective Vertical & \[
\begin{aligned}
& \text { Effective } \\
& \text { Horizontal }
\end{aligned}
\] & Stress & Effective & \\
\hline & Strain & \[
\begin{array}{r}
\text { stress } \\
\text { tsf }
\end{array}
\] & \[
\begin{array}{r}
\text { Stress } \\
\text { tsf }
\end{array}
\] & \[
\begin{array}{r}
\text { Pressure } \\
\text { tsf }
\end{array}
\] & Parameter & \[
\begin{array}{r}
\text { stress } \\
\text { tsf }
\end{array}
\] & \[
\begin{gathered}
\text { stress } \\
\text { tsf }
\end{gathered}
\] & Ratio & \[
\begin{gathered}
p \\
t
\end{gathered}
\] & ts \({ }^{9}\) \\
\hline 1 & 0.00 & 6. 2928 & 6. 2928 & 0 & 0.000 & 1. 2529 & 1. 2529 & 1.000 & 1. 2529 & 0 \\
\hline 2 & 0.02 & 6.4343 & 6. 2928 & 0.071079 & 0. 502 & 1. 3233 & 1. 1818 & 1. 120 & 1. 2525 & 0.070757 \\
\hline 3 & 0.04 & 6. 5182 & 6. 2928 & 0.11883 & 0. 527 & 1. 3595 & 1. 134 & 1. 199 & 1. 2468 & 0.11272 \\
\hline 4 & 0.06 & 6. 5835 & 6. 2928 & 0.1566 & 0.539 & 1.3869 & 1. 0963 & 1. 265 & 1. 2416 & 0.14534 \\
\hline 5 & 0.08 & 6.6331 & 6. 2928 & 0.18658 & 0. 548 & 1.4066 & 1. 0663 & 1. 319 & 1. 2365 & 0.17017 \\
\hline 6 & 0.10 & 6. 6781 & 6. 2928 & 0.21268 & 0. 552 & 1.4255 & 1. 0402 & 1. 370 & 1. 2328 & 0.19267 \\
\hline 7 & 0.12 & 6. 5584 & 6. 2928 & 0.18325 & 0.690 & 1.3352 & 1.0696 & 1. 248 & 1. 2024 & 0.13282 \\
\hline 8 & 0.14 & 6.6772 & 6. 2928 & 0.23045 & 0.600 & 1.4068 & 1. 0224 & 1. 376 & 1. 2146 & 0.1922 \\
\hline 9 & 0.16 & 6.7268 & 6.2928 & 0.25488 & 0.587 & 1.432 & 0.99798 & 1. 435 & 1. 215 & 0.217 \\
\hline 10 & 0.19 & 6.6188 & 6. 2928 & 0.22767 & 0.698 & 1.3512 & 1. 0252 & 1. 318 & 1.1882 & 0.16301 \\
\hline 11 & 0.21 & 6.7189 & 6. 2928 & 0.2671 & 0.627 & 1.4118 & 0.98576 & 1.432 & 1.1988 & 0.21303 \\
\hline 12 & 0.23 & 6. 5364 & 6. 2928 & 0.21657 & 0.889 & 1. 2799 & 1.0363 & 1. 235 & 1. 1581 & 0.12181 \\
\hline 13 & 0.25 & 6. 6853 & 6. 2928 & 0.26988 & 0.688 & 1.3755 & 0.98299 & 1. 399 & 1. 1792 & 0.19626 \\
\hline 14 & 0.30 & 6.6371 & 6. 2928 & 0.26655 & 0.774 & 1. 3306 & 0.98632 & 1. 349 & 1.1585 & 0.17213 \\
\hline 15 & 0.34 & 6. 5648 & 6.2928 & 0.25599 & 0.941 & 1.2689 & 0.99687 & 1. 273 & 1.1329 & 0.13602 \\
\hline 16 & 0.38 & 6.7917 & 6. 2928 & 0.33707 & 0.676 & 1.4147 & 0.9158 & 1. 545 & 1.1653 & 0.24947 \\
\hline 17 & 0.42 & 6.7729 & 6. 2928 & 0.33929 & 0.707 & 1.3937 & 0.91357 & 1. 526 & 1.1536 & 0.24006 \\
\hline 18 & 0.46 & 6.7216 & 6. 2928 & 0.33152 & 0.773 & 1.3502 & 0.92135 & 1. 465 & 1.1358 & 0.21441 \\
\hline 19 & 0.51 & 6.6069 & 6. 2928 & 0.30597 & 0.974 & 1.261 & 0.94689 & 1. 332 & 1.104 & 0.15706 \\
\hline 20 & 0.55 & 6.8404 & 6. 2928 & 0.38427 & 0.702 & 1.4161 & 0.86859 & 1. 630 & 1.1424 & 0.27378 \\
\hline 21 & 0.59 & 6.7713 & 6. 2928 & 0.36872 & 0.771 & 1.3627 & 0.88414 & 1. 541 & 1. 1234 & 0.23926 \\
\hline 22 & 0.64 & 6.6289 & 6. 2928 & 0.33374 & 0.993 & 1. 2552 & 0.91913 & 1. 366 & 1. 0872 & 0.16806 \\
\hline 23 & 0.68 & 6.8837 & 6. 2928 & 0.41148 & 0.696 & 1.4323 & 0.84138 & 1. 702 & 1.1368 & 0.29543 \\
\hline 24 & 0.72 & 6.7807 & 6.2928 & 0.38483 & 0.789 & 1.356 & 0.86804 & 1. 562 & 1. 112 & 0.24396 \\
\hline 25 & 0.77 & 6.938 & 6. 2928 & 0.43702 & 0.677 & 1.461 & 0.81584 & 1. 791 & 1.1384 & 0.32258 \\
\hline 26 & 0.81 & 6.8675 & 6. 2928 & 0.42036 & 0.731 & 1.4072 & 0.8325 & 1.690 & 1. 1198 & 0.28734 \\
\hline 27 & 0.86 & 6. 6444 & 6. 2928 & 0.36317 & 1. 033 & 1.2413 & 0.8897 & 1. 395 & 1. 0655 & 0.17579 \\
\hline 28 & 0.90 & 6.924 & 6. 2928 & 0.44646 & 0.707 & 1.4376 & 0.8064 & 1.783 & 1. 122 & 0.3156 \\
\hline 29 & 0.94 & 6.7319 & 6. 2928 & 0.39649 & 0.903 & 1. 2955 & 0.85638 & 1. 513 & 1. 0759 & 0.21955 \\
\hline 30 & 0.98 & 6. 9658 & 6. 2928 & 0.46646 & 0.693 & 1.4594 & 0.78641 & 1. 856 & 1. 1229 & 0.3365 \\
\hline 31 & 1. 03 & 6. 7685 & 6. 2928 & 0.41537 & 0.873 & 1.3132 & 0.8375 & 1. 568 & 1. 0753 & 0.23783 \\
\hline 32 & 1. 15 & 7. 0015 & 6. 2928 & 0.49478 & 0.698 & 1.4668 & 0.75809 & 1. 935 & 1. 1125 & 0.35436 \\
\hline 33 & 1.28 & 7.0697 & 6. 2928 & 0.52365 & 0.674 & 1. 5061 & 0.72921 & 2.065 & 1. 1177 & 0.38845 \\
\hline 34 & 1.42 & 6. 8893 & 6.2928 & 0.48534 & 0.814 & 1. 364 & 0.76753 & 1.777 & 1. 0658 & 0.29823 \\
\hline 35 & 1. 54 & 7. 1121 & 6. 2928 & 0.55641 & 0.679 & 1. 5157 & 0.69645 & 2. 176 & 1. 1061 & 0.40963 \\
\hline 36 & 1.67 & 7.1653 & 6. 2928 & 0.57529 & 0.659 & 1.55 & 0.67757 & 2. 288 & 1.1138 & 0.43624 \\
\hline 37 & 1. 81 & 7. 1977 & 6. 2928 & 0.58973 & 0.652 & 1.568 & 0.66313 & 2. 365 & 1.1156 & 0.45245 \\
\hline 38 & 1. 94 & 7.2293 & 6. 2928 & 0.60306 & 0.644 & 1. 5863 & 0.6498 & 2. 441 & 1.118 & 0.46824 \\
\hline 39 & 2.07 & 7. 2707 & 6. 2928 & 0.61472 & 0.629 & 1. 616 & 0.63814 & 2. 532 & 1. 1271 & 0.48895 \\
\hline 40 & 2. 20 & 7. 3029 & 6.2928 & 0.62472 & 0.618 & 1.6382 & 0.62815 & 2. 608 & 1.1332 & 0.50503 \\
\hline 41 & 2. 33 & 7. 3319 & 6. 2928 & 0.6336 & 0.610 & 1.6584 & 0.61926 & 2.678 & 1.1388 & 0.51955 \\
\hline 42 & 2.46 & 7. 3639 & 6. 2928 & 0.64193 & 0.599 & 1.682 & 0.61093 & 2. 753 & 1.1465 & 0.53554 \\
\hline 43 & 2. 59 & 7. 3905 & 6. 2928 & 0.64859 & 0. 591 & 1.702 & 0.60427 & 2.817 & 1. 1531 & 0. 54885 \\
\hline 44 & 2. 72 & 7. 4095 & 6. 2928 & 0.65581 & 0. 587 & 1.7137 & 0.59705 & 2. 870 & 1. 1554 & 0. 55833 \\
\hline 45 & 2.85 & 7.4291 & 6. 2928 & 0.66137 & 0. 582 & 1.7278 & 0.5915 & 2.921 & 1.1596 & 0.56814 \\
\hline 46 & 2. 98 & 7.4495 & 6. 2928 & 0.66581 & 0. 576 & 1.7437 & 0.58706 & 2.970 & 1.1654 & 0.57833 \\
\hline 47 & 3. 11 & 7.4667 & 6. 2928 & 0.67025 & 0. 571 & 1.7565 & 0.58261 & 3.015 & 1.1696 & 0.58697 \\
\hline 48 & 3. 24 & 7. 4862 & 6. 2928 & 0.67414 & 0. 565 & 1.7722 & 0.57873 & 3. 062 & 1. 1754 & 0.59672 \\
\hline 49 & 3.37 & 7. 5064 & 6. 2928 & 0.67692 & 0. 558 & 1.7896 & 0.57595 & 3. 107 & 1.1828 & 0.60681 \\
\hline 50 & 3. 50 & 7. 5251 & 6. 2928 & 0.67914 & 0. 551 & 1.806 & 0.57373 & 3.148 & 1.1899 & 0.61613 \\
\hline 51 & 3.63 & 7. 5324 & 6. 2928 & 0.68025 & 0.549 & 1.8122 & 0.57262 & 3.165 & 1.1924 & 0.61978 \\
\hline 52 & 3.76 & 7. 5367 & 6. 2928 & 0.68136 & 0. 548 & 1. 8154 & 0.57151 & 3.176 & 1.1934 & 0.62193 \\
\hline 53 & 3.89 & 7. 5507 & 6. 2928 & 0.68191 & 0. 542 & 1.8288 & 0.57095 & 3.203 & 1.1999 & 0.62893 \\
\hline 54 & 4.02 & 7. 5624 & 6. 2928 & 0.68191 & 0.537 & 1.8405 & 0.57095 & 3. 224 & 1. 2057 & 0.63479 \\
\hline 55 & 4.15 & 7. 5763 & 6.2928 & 0.68136 & 0. 531 & 1.855 & 0.57151 & 3. 246 & 1. 2133 & 0.64176 \\
\hline 56 & 4.28 & 7.588 & 6. 2928 & 0.6808 & 0. 526 & 1.8673 & 0.57206 & 3. 264 & 1. 2197 & 0.6476 \\
\hline 57 & 4.41 & 7. 5944 & 6. 2928 & 0.67969 & 0. 522 & 1.8748 & 0.57317 & 3.271 & 1.224 & 0.65079 \\
\hline 58 & 4. 54 & 7. 6075 & 6.2928 & 0.68025 & 0. 517 & 1.8873 & 0.57262 & 3. 296 & 1.23 & 0.65734 \\
\hline 59 & 4.67 & 7. 6146 & 6. 2928 & 0.68025 & 0. 515 & 1.8944 & 0.57262 & 3. 308 & 1. 2335 & 0.66089 \\
\hline 60 & 4.80 & 7.6283 & 6. 2928 & 0.67969 & 0. 509 & 1.9087 & 0.57317 & 3. 330 & 1.2409 & 0.66777 \\
\hline 61 & 4. 93 & 7. 6391 & 6. 2928 & 0.67747 & 0. 503 & 1. 9217 & 0.57539 & 3. 340 & 1. 2485 & 0.67315 \\
\hline 62 & 5.06 & 7.6513 & 6. 2928 & 0.67469 & 0.497 & 1.9366 & 0.57817 & 3. 350 & 1. 2574 & 0.67923 \\
\hline 63 & 5. 19 & 7.6612 & 6. 2928 & 0.67136 & 0.491 & 1.9499 & 0.5815 & 3. 353 & 1.2657 & 0.6842 \\
\hline 64 & 5. 32 & 7.6711 & 6. 2928 & 0.66803 & 0.485 & 1.9631 & 0.58483 & 3. 357 & 1. 274 & 0.68915 \\
\hline 65 & 5. 45 & 7. 6787 & 6. 2928 & 0.66525 & 0.480 & 1.9735 & 0.58761 & 3. 359 & 1. 2806 & 0.69297 \\
\hline 66 & 5. 58 & 7.6849 & 6. 2928 & 0.66192 & 0.475 & 1.9831 & 0.59094 & 3. 356 & 1.287 & 0.69606 \\
\hline 67 & 5. 71 & 7.6947 & 6. 2928 & 0.65915 & 0.470 & 1.9957 & 0.59372 & 3. 361 & 1. 2947 & 0.70097 \\
\hline 68 & 5. 84 & 7.7016 & 6. 2928 & 0.65581 & 0.466 & 2. 0058 & 0.59705 & 3. 360 & 1. 3014 & 0.70439 \\
\hline 69 & 5.97 & 7.7106 & 6. 2928 & 0.65248 & 0.460 & 2. 0182 & 0.60038 & 3. 361 & 1. 3093 & 0.7089 \\
\hline 70 & 6. 11 & 7.724 & 6. 2928 & 0.64971 & 0.454 & 2. 0343 & 0.60316 & 3. 373 & 1. 3187 & 0.71558 \\
\hline 71 & 6.24 & 7.7402 & 6. 2928 & 0.64693 & 0.447 & 2.0533 & 0.60594 & 3. 389 & 1. 3296 & 0.7237 \\
\hline 72 & 6.37 & 7.752 & 6. 2928 & 0.64304 & 0.441 & 2. 0691 & 0.60982 & 3. 393 & 1. 3394 & 0.72962 \\
\hline 73 & 6.49 & 7.774 & 6. 2928 & 0.63971 & 0.432 & 2. 0944 & 0.61315 & 3.416 & 1. 3538 & 0.74061 \\
\hline 74 & 6.62 & 7.7894 & 6. 2928 & 0.63749 & 0.426 & 2.112 & 0.61538 & 3.432 & 1. 3637 & 0.7483 \\
\hline 75 & 6.75 & 7.7888 & 6. 2928 & 0.6336 & 0.424 & 2.1152 & 0.61926 & 3.416 & 1. 3673 & 0.74799 \\
\hline 76 & 6.88 & 7. 7946 & 6. 2928 & 0.62971 & 0.419 & 2.125 & 0.62315 & 3.410 & 1. 3741 & 0.75092 \\
\hline 77 & 7. 01 & 7. 7962 & 6. 2928 & 0.62694 & 0.417 & 2. 1293 & 0.62593 & 3.402 & 1. 3776 & 0.75169 \\
\hline 78 & 7.14 & 7.8151 & 6. 2928 & 0.62472 & 0.410 & 2.1504 & 0.62815 & 3.423 & 1. 3893 & 0.76113 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 79 & 7.27 & 7.8101 & 6. 2928 & 0.6225 & 0.410 & 2.1476 & 0.63037 & 3.407 & 1.389 & 0.75864 \\
\hline 80 & 7.40 & 7. 8252 & 6. 2928 & 0.61972 & 0.404 & 2.1656 & 0.63315 & 3.420 & 1. 3994 & 0.76621 \\
\hline 81 & 7.53 & 7.8267 & 6. 2928 & 0.61861 & 0.403 & 2.1681 & 0.63426 & 3.418 & 1.4012 & 0.76693 \\
\hline 82 & 7.66 & 7. 8302 & 6. 2928 & 0.61639 & 0.401 & 2.1738 & 0.63648 & 3.415 & 1. 4052 & 0.76868 \\
\hline 83 & 7.80 & 7.8229 & 6. 2928 & 0.61472 & 0.402 & 2.1683 & 0.63814 & 3.398 & 1.4032 & 0.76506 \\
\hline 84 & 7.93 & 7.8329 & 6. 2928 & 0.6125 & 0. 398 & 2.1805 & 0.64036 & 3.405 & 1.4104 & 0.77006 \\
\hline 85 & 8.06 & 7.84 & 6. 2928 & 0.60972 & 0. 394 & 2. 1903 & 0.64314 & 3.406 & 1.4167 & 0.7736 \\
\hline 86 & 8.19 & 7.8356 & 6. 2928 & 0.60639 & 0.393 & 2.1893 & 0.64647 & 3.387 & 1.4179 & 0.77142 \\
\hline 87 & 8.32 & 7.847 & 6. 2928 & 0.60417 & 0.389 & 2. 2029 & 0.64869 & 3.396 & 1.4258 & 0.7771 \\
\hline 88 & 8.45 & 7.8626 & 6.2928 & 0.60084 & 0.383 & 2. 2218 & 0.65203 & 3.408 & 1.4369 & 0.7849 \\
\hline 89 & 8. 58 & 7. 8561 & 6. 2928 & 0.59862 & 0.383 & 2. 2175 & 0.65425 & 3.389 & 1.4359 & 0.78165 \\
\hline 90 & 8.71 & 7.8681 & 6. 2928 & 0. 59584 & 0. 378 & 2.2323 & 0.65702 & 3. 398 & 1.4447 & 0.78764 \\
\hline 91 & 8.84 & 7.863 & 6. 2928 & 0.59195 & 0.377 & 2. 2311 & 0.66091 & 3.376 & 1.446 & 0.78511 \\
\hline 92 & 8.97 & 7. 8644 & 6. 2928 & 0.58918 & 0.375 & 2. 2352 & 0.66369 & 3.368 & 1.4495 & 0.78578 \\
\hline 93 & 9.10 & 7.8706 & 6.2928 & 0.5864 & 0.372 & 2. 2443 & 0.66646 & 3. 367 & 1. 4554 & 0.78891 \\
\hline 94 & 9. 23 & 7.886 & 6. 2928 & 0.58418 & 0.367 & 2. 2619 & 0.66869 & 3.383 & 1.4653 & 0.79659 \\
\hline 95 & 9.36 & 7.8985 & 6. 2928 & 0.5814 & 0.362 & 2. 2772 & 0.67146 & 3.391 & 1.4743 & 0.80285 \\
\hline 96 & 9.49 & 7.9159 & 6. 2928 & 0.57918 & 0. 357 & 2. 2968 & 0.67368 & 3.409 & 1.4852 & 0.81154 \\
\hline 97 & 9.62 & 7.91 & 6. 2928 & 0.57696 & 0. 357 & 2. 2931 & 0.6759 & 3. 393 & 1.4845 & 0.8086 \\
\hline 98 & 9.75 & 7.9013 & 6.2928 & 0.57529 & 0.358 & 2. 2861 & 0.67757 & 3. 374 & 1.4818 & 0.80427 \\
\hline 99 & 9.89 & 7.8969 & 6. 2928 & 0.57196 & 0. 357 & 2.285 & 0.6809 & 3. 356 & 1.4829 & 0.80204 \\
\hline 100 & 10.02 & 7.8924 & 6. 2928 & 0.56974 & 0.356 & 2.2827 & 0.68312 & 3. 342 & 1.4829 & 0.79981 \\
\hline 101 & 10.15 & 7.8943 & 6. 2928 & 0.56696 & 0. 354 & 2. 2874 & 0.6859 & 3. 335 & 1.4866 & 0.80074 \\
\hline 102 & 10.28 & 7. 8968 & 6. 2928 & 0.56419 & 0. 352 & 2. 2926 & 0.68868 & 3. 329 & 1.4907 & 0.80198 \\
\hline 103 & 10.42 & 7.9048 & 6. 2928 & 0.56086 & 0. 348 & 2.3041 & 0.69201 & 3.330 & 1.498 & 0.80602 \\
\hline 104 & 10.55 & 7.9081 & 6. 2928 & 0. 55808 & 0.346 & 2.31 & 0.69478 & 3.325 & 1. 5024 & 0.80763 \\
\hline 105 & 10.68 & 7.9057 & 6. 2928 & 0. 55641 & 0.345 & 2.3093 & 0.69645 & 3.316 & 1.5029 & 0.80643 \\
\hline 106 & 10.81 & 7. 9082 & 6. 2928 & 0.55253 & 0.342 & 2.3157 & 0.70034 & 3. 307 & 1.508 & 0.80769 \\
\hline 107 & 10.94 & 7.9135 & 6. 2928 & 0. 54864 & 0. 339 & 2.3249 & 0.70422 & 3.301 & 1. 5146 & 0.81033 \\
\hline 108 & 11.07 & 7.9194 & 6. 2928 & 0.54586 & 0.336 & 2.3336 & 0.707 & 3. 301 & 1. 5203 & 0.81329 \\
\hline 109 & 11. 20 & 7.9219 & 6. 2928 & 0. 54253 & 0.333 & 2. 3394 & 0.71033 & 3. 293 & 1. 5249 & 0.81453 \\
\hline 110 & 11.33 & 7.9284 & 6. 2928 & 0.53976 & 0.330 & 2.3488 & 0.71311 & 3. 294 & 1.5309 & 0.81782 \\
\hline 111 & 11.46 & 7. 913 & 6. 2928 & 0.53809 & 0.332 & 2. 3349 & 0.71478 & 3. 267 & 1. 5249 & 0.81008 \\
\hline 112 & 11.59 & 7.9181 & 6.2928 & 0.53531 & 0.329 & 2.3429 & 0.71755 & 3. 265 & 1. 5302 & 0.81266 \\
\hline 113 & 11.72 & 7.9597 & 6. 2928 & 0.53309 & 0.320 & 2.3867 & 0.71977 & 3.316 & 1. 5532 & 0.83346 \\
\hline 114 & 11.85 & 7. 9065 & 6. 2928 & 0.53031 & 0.329 & 2.3362 & 0.72255 & 3.233 & 1. 5294 & 0.80683 \\
\hline 115 & 11.98 & 7. 8904 & 6. 2928 & 0.52698 & 0.330 & 2.3235 & 0.72588 & 3. 201 & 1. 5247 & 0.79878 \\
\hline 116 & 12.11 & 7.9003 & 6. 2928 & 0.52476 & 0. 326 & 2. 3356 & 0.7281 & 3.208 & 1. 5319 & 0.80376 \\
\hline 117 & 12. 24 & 7.8993 & 6. 2928 & 0.52199 & 0.325 & 2.3374 & 0.73088 & 3.198 & 1. 5341 & 0.80325 \\
\hline 118 & 12.38 & 7.8962 & 6. 2928 & 0.52032 & 0. 325 & 2. 3359 & 0.73255 & 3.189 & 1. 5342 & 0.8017 \\
\hline 119 & 12. 51 & 7. 8979 & 6. 2928 & 0.5181 & 0.323 & 2. 3398 & 0.73477 & 3.184 & 1.5373 & 0.80254 \\
\hline 120 & 12.64 & 7.8934 & 6. 2928 & 0.51421 & 0.321 & 2.3393 & 0.73865 & 3.167 & 1.539 & 0.8003 \\
\hline 121 & 12.77 & 7.8944 & 6. 2928 & 0.51255 & 0.320 & 2.3419 & 0.74032 & 3.163 & 1. 5411 & 0.80079 \\
\hline 122 & 12.90 & 7.8899 & 6. 2928 & 0.50977 & 0.319 & 2.3402 & 0.7431 & 3.149 & 1. 5416 & 0.79855 \\
\hline 123 & 13.03 & 7.8889 & 6.2928 & 0. 50755 & 0.318 & 2.3414 & 0.74532 & 3.141 & 1.5433 & 0.79803 \\
\hline 124 & 13.17 & 7. 8904 & 6. 2928 & 0. 50588 & 0.317 & 2.3446 & 0.74698 & 3.139 & 1. 5458 & 0.79882 \\
\hline 125 & 13.30 & 7.8894 & 6. 2928 & 0.50422 & 0.316 & 2.3453 & 0.74865 & 3.133 & 1.547 & 0.79831 \\
\hline 126 & 13.43 & 7.887 & 6. 2928 & 0.50311 & 0. 316 & 2. 344 & 0.74976 & 3.126 & 1. 5469 & 0.79712 \\
\hline 127 & 13.56 & 7.892 & 6. 2928 & 0.50033 & 0.313 & 2.3517 & 0.75254 & 3.125 & 1. 5521 & 0.7996 \\
\hline 128 & 13.69 & 7. 8977 & 6. 2928 & 0.49977 & 0.311 & 2. 3579 & 0.75309 & 3.131 & 1. 5555 & 0.80243 \\
\hline 129 & 13.82 & 7.9006 & 6.2928 & 0.49811 & 0.310 & 2.3626 & 0.75476 & 3.130 & 1. 5587 & 0.80391 \\
\hline 130 & 13.95 & 7.8969 & 6.2928 & 0.497 & 0.310 & 2.3599 & 0.75587 & 3.122 & 1.5579 & 0.80203 \\
\hline 131 & 14.08 & 7. 8998 & 6.2928 & 0.49533 & 0.308 & 2.3645 & 0.75753 & 3.121 & 1. 561 & 0.80349 \\
\hline 132 & 14.21 & 7.9027 & 6.2928 & 0.49422 & 0.307 & 2.3685 & 0.75864 & 3.122 & 1. 5636 & 0.80495 \\
\hline 133 & 14.34 & 7.9109 & 6.2928 & 0.49311 & 0. 305 & 2.3779 & 0.75975 & 3.130 & 1. 5688 & 0.80905 \\
\hline 134 & 14.47 & 7.9025 & 6. 2928 & 0.492 & 0.306 & 2.3705 & 0.76087 & 3.116 & 1. 5657 & 0.80484 \\
\hline 135 & 14.60 & 7.906 & 6. 2928 & 0.49144 & 0. 305 & 2.3746 & 0.76142 & 3.119 & 1.568 & 0.80659 \\
\hline 136 & 14.73 & 7.9048 & 6. 2928 & 0.49033 & 0. 304 & 2.3745 & 0.76253 & 3.114 & 1. 5685 & 0.806 \\
\hline 137 & 14.86 & 7.9056 & 6. 2928 & 0.48922 & 0.303 & 2.3765 & 0.76364 & 3.112 & 1.57 & 0.80641 \\
\hline 138 & 14.99 & 7.9038 & 6. 2928 & 0.48756 & 0.303 & 2.3763 & 0.76531 & 3.105 & 1.5708 & 0.8055 \\
\hline 139 & 15.13 & 7.9 & 6. 2928 & 0.48589 & 0. 302 & 2.3741 & 0.76697 & 3.095 & 1. 5706 & 0.80358 \\
\hline 140 & 15.26 & 7.902 & 6.2928 & 0.48422 & 0.301 & 2.3779 & 0.76864 & 3.094 & 1.5733 & 0.80462 \\
\hline 141 & 15.39 & 7.9035 & 6. 2928 & 0.48311 & 0.300 & 2.3804 & 0.76975 & 3.092 & 1. 5751 & 0.80533 \\
\hline 142 & 15.52 & 7.9089 & 6. 2928 & 0.482 & 0.298 & 2.3869 & 0.77086 & 3.096 & 1.5789 & 0.80803 \\
\hline 143 & 15.66 & 7.905 & 6.2928 & 0.47978 & 0.298 & 2.3853 & 0.77308 & 3.085 & 1.5792 & 0.80612 \\
\hline 144 & 15.79 & 7.9045 & 6. 2928 & 0.47812 & 0.297 & 2.3864 & 0.77475 & 3.080 & 1. 5806 & 0.80584 \\
\hline 145 & 15.92 & 7. 906 & 6. 2928 & 0.47701 & 0.296 & 2.389 & 0.77586 & 3.079 & 1. 5824 & 0.80658 \\
\hline 146 & 16.05 & 7.9126 & 6.2928 & 0.47534 & 0.293 & 2.3973 & 0.77752 & 3.083 & 1. 5874 & 0.80988 \\
\hline 147 & 16.07 & 7. 916 & 6. 2928 & 0.4759 & 0.293 & 2.4002 & 0.77697 & 3.089 & 1.5886 & 0.81159 \\
\hline
\end{tabular}

Project: COLETO CREEK FACILITY Boring No.: B-4-1 S-13
Sample No.: S-13
Test No.: 24.3 PSI

Location: I PR-GDF SUEZ
Tested By: BCM
Test Date: 12/2/11
Sample Type: 3" ST

Project No.: 60225561
Checked By: WPQ
Depth: 24.0'-26.0
El evation: ....

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SO
Remarks: FAILURE CRITERIA = MAXI MUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767
```

Specimen Height: 5.93 in
Specimen Area: 5.37 in^2
Specimen Volume: 31.88 in^3

```

Liquid Limit: 40

Piston Area: 0.00 in^2
Piston Friction: 0.00 |b
Piston Weight: 0.00 lb

\author{
Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 |b/in \\ Correction Type: Uniform
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & Ti me mi n & Vertical Strain & \[
\begin{array}{r}
\text { Corrected } \\
\text { Area } \\
\text { in }
\end{array}
\] & \[
\begin{array}{r}
\text { Deviator } \\
\text { Load } \\
1 \quad b
\end{array}
\] & Deviator Stress t \(\mathrm{s} f\) & \[
\begin{array}{r}
\text { Pore } \\
\text { Pressure } \\
\text { tsf }
\end{array}
\] & \[
\begin{array}{r}
\text { Horizontal } \\
\text { Stress } \\
\text { tsf }
\end{array}
\] & \[
\begin{array}{r}
\text { Vertical } \\
\text { Stress } \\
\text { tsf }
\end{array}
\] \\
\hline 1 & 0 & 0 & 5.3738 & 0 & 0 & 5.042 & 6.84 & 6.84 \\
\hline 2 & 5 & 0.017296 & 5. 3747 & 9.9129 & 0.13279 & 5. 1121 & 6.84 & 6.9728 \\
\hline 3 & 10 & 0.036033 & 5. 3757 & 12.588 & 0.16859 & 5.1464 & 6.84 & 7.0086 \\
\hline 4 & 15 & 0.054771 & 5. 3767 & 13.427 & 0.1798 & 5.167 & 6.84 & 7. 0198 \\
\hline 5 & 20 & 0.073508 & 5. 3778 & 13.847 & 0.18538 & 5.1822 & 6.84 & 7. 0254 \\
\hline 6 & 25 & 0.092245 & 5.3788 & 14.319 & 0.19167 & 5.1958 & 6.84 & 7.0317 \\
\hline 7 & 30.001 & 0.11242 & 5. 3799 & 14.843 & 0.19865 & 5. 2083 & 6.84 & 7.0386 \\
\hline 8 & 35.001 & 0.13116 & 5. 3809 & 15.945 & 0. 21335 & 5. 2214 & 6.84 & 7. 0533 \\
\hline 9 & 40.001 & 0.15134 & 5.3819 & 17.046 & 0. 22804 & 5. 2344 & 6.84 & 7.068 \\
\hline 10 & 45.001 & 0.17152 & 5.383 & 18.515 & 0.24764 & 5. 2485 & 6.84 & 7.0876 \\
\hline 11 & 50.001 & 0.19026 & 5.384 & 19.931 & 0. 26653 & 5. 2632 & 6.84 & 7. 1065 \\
\hline 12 & 55.001 & 0.20899 & 5. 3851 & 21.189 & 0. 28331 & 5. 2768 & 6.84 & 7. 1233 \\
\hline 13 & 60.001 & 0.22773 & 5. 3861 & 22.553 & 0.30149 & 5. 2898 & 6.84 & 7.1415 \\
\hline 14 & 70.001 & 0.26521 & 5.3881 & 29.739 & 0.39739 & 5. 3404 & 6.84 & 7.2374 \\
\hline 15 & 80.001 & 0.30124 & 5.39 & 35.088 & 0.46871 & 5.3887 & 6.84 & 7. 3087 \\
\hline 16 & 90.002 & 0.34015 & 5. 3921 & 39.127 & 0.52245 & 5.4322 & 6.84 & 7. 3625 \\
\hline 17 & 100 & 0.37907 & 5. 3943 & 42.746 & 0.57055 & 5.4703 & 6.84 & 7.4106 \\
\hline 18 & 110 & 0.41799 & 5. 3964 & 45.788 & 0.61092 & 5. 5056 & 6.84 & 7. 4509 \\
\hline 19 & 120 & 0.45546 & 5. 3984 & 48.463 & 0.64637 & 5. 5376 & 6.84 & 7. 4864 \\
\hline 20 & 130 & 0.49582 & 5.4006 & 51.138 & 0.68177 & 5. 5664 & 6.84 & 7. 5218 \\
\hline 21 & 140 & 0.53473 & 5.4027 & 53.498 & 0.71295 & 5. 5925 & 6.84 & 7.553 \\
\hline 22 & 150 & 0.57365 & 5.4048 & 55.439 & 0.73853 & 5.6175 & 6.84 & 7. 5785 \\
\hline 23 & 160 & 0.61401 & 5.407 & 57.274 & 0.76267 & 5.6393 & 6.84 & 7.6027 \\
\hline 24 & 170 & 0.65292 & 5.4091 & 58.9 & 0.78401 & 5.6594 & 6.84 & 7.624 \\
\hline 25 & 180 & 0.69184 & 5.4112 & 60.474 & 0.80464 & 5.6789 & 6.84 & 7.6446 \\
\hline 26 & 190 & 0.7322 & 5.4134 & 61.837 & 0.82245 & 5.6974 & 6.84 & 7. 6625 \\
\hline 27 & 200 & 0.77111 & 5.4156 & 63.306 & 0.84166 & 5.7132 & 6.84 & 7.6817 \\
\hline 28 & 210 & 0.81147 & 5.4178 & 63.935 & 0.84968 & 5.7284 & 6.84 & 7.6897 \\
\hline 29 & 220 & 0.85039 & 5.4199 & 65.824 & 0.87443 & 5.7431 & 6.84 & 7. 7144 \\
\hline 30 & 230 & 0.8893 & 5.422 & 67.082 & 0.8908 & 5.7566 & 6.84 & 7.7308 \\
\hline 31 & 240 & 0.92966 & 5.4242 & 68.131 & 0.90436 & 5.7697 & 6.84 & 7.7444 \\
\hline 32 & 270 & 1. 0493 & 5.4308 & 71.121 & 0.9429 & 5.8034 & 6.84 & 7.7829 \\
\hline 33 & 300 & 1. 1689 & 5.4374 & 73.639 & 0.9751 & 5.8306 & 6.84 & 7. 8151 \\
\hline 34 & 330 & 1. 2871 & 5.4439 & 75.999 & 1. 0052 & 5.8545 & 6.84 & 7. 8452 \\
\hline 35 & 360 & 1. 4053 & 5.4504 & 77.939 & 1. 0296 & 5.8746 & 6.84 & 7.8696 \\
\hline 36 & 390 & 1. 5235 & 5.4569 & 79.775 & 1. 0526 & 5.8925 & 6.84 & 7.8926 \\
\hline 37 & 420 & 1.6417 & 5.4635 & 81.611 & 1. 0755 & 5.9083 & 6.84 & 7.9155 \\
\hline 38 & 450 & 1.7599 & 5.4701 & 83.184 & 1. 0949 & 5.9219 & 6.84 & 7.9349 \\
\hline 39 & 480 & 1. 8781 & 5.4767 & 84.653 & 1. 1129 & 5.9333 & 6.84 & 7.9529 \\
\hline 40 & 510 & 1. 9977 & 5.4833 & 86.174 & 1.1315 & 5.9441 & 6.84 & 7.9715 \\
\hline 41 & 540 & 2.1159 & 5.49 & 87.538 & 1.148 & 5.9534 & 6.84 & 7.988 \\
\hline 42 & 570 & 2. 2326 & 5.4965 & 88.849 & 1.1638 & 5.9615 & 6.84 & 8.0038 \\
\hline 43 & 600 & 2. 3494 & 5. 5031 & 90.265 & 1.181 & 5.9675 & 6.84 & 8.021 \\
\hline 44 & 630 & 2.4704 & 5. 5099 & 91.838 & 1. 2001 & 5.974 & 6.84 & 8.0401 \\
\hline 45 & 660 & 2. 5872 & 5. 5165 & 93.097 & 1. 2151 & 5.9805 & 6.84 & 8. 0551 \\
\hline 46 & 690 & 2.7068 & 5. 5233 & 94.146 & 1. 2273 & 5.9843 & 6.84 & 8.0673 \\
\hline 47 & 720 & 2.8236 & 5. 5299 & 95.667 & 1. 2456 & 5.9876 & 6.84 & 8.0856 \\
\hline 48 & 750 & 2. 9418 & 5. 5367 & 96.821 & 1. 2591 & 5.992 & 6.84 & 8.0991 \\
\hline 49 & 780 & 3. 0599 & 5. 5434 & 97.818 & 1. 2705 & 5.9952 & 6.84 & 8.1105 \\
\hline 50 & 810 & 3. 1781 & 5. 5502 & 99.129 & 1. 2859 & 5.9979 & 6.84 & 8.1259 \\
\hline 51 & 840 & 3. 2934 & 5. 5568 & 99.968 & 1. 2953 & 6.0001 & 6.84 & 8. 1353 \\
\hline 52 & 870 & 3.4102 & 5. 5635 & 101.02 & 1. 3073 & 6.0034 & 6.84 & 8. 1473 \\
\hline 53 & 900 & 3. 5284 & 5. 5703 & 101.86 & 1. 3166 & 6.0045 & 6.84 & 8.1566 \\
\hline 54 & 930 & 3. 6451 & 5. 5771 & 102.96 & 1. 3292 & 6.0061 & 6.84 & 8.1692 \\
\hline 55 & 960 & 3.7633 & 5. 5839 & 104.01 & 1. 3411 & 6.0072 & 6.84 & 8.1811 \\
\hline 56 & 990 & 3.883 & 5. 5909 & 104.95 & 1. 3516 & 6.0083 & 6.84 & 8.1916 \\
\hline 57 & 1020 & 3.9997 & 5. 5977 & 105.95 & 1. 3627 & 6.0093 & 6.84 & 8.2027 \\
\hline 58 & 1050 & 4.1179 & 5.6046 & 106.89 & 1. 3732 & 6.011 & 6.84 & 8. 2132 \\
\hline 59 & 1080 & 4.2346 & 5.6114 & 107.99 & 1. 3857 & 6.011 & 6.84 & 8. 2257 \\
\hline 60 & 1110 & 4. 3514 & 5.6183 & 108.83 & 1. 3947 & 6.0126 & 6.84 & 8. 2347 \\
\hline 61 & 1140 & 4.4681 & 5.6251 & 109.46 & 1.4011 & 6.0131 & 6.84 & 8.2411 \\
\hline 62 & 1170 & 4.5849 & 5.632 & 110.25 & 1.4094 & 6.0148 & 6.84 & 8. 2494 \\
\hline 63 & 1200 & 4.7045 & 5.6391 & 111.14 & 1.419 & 6.0142 & 6.84 & 8.259 \\
\hline 64 & 1230 & 4.8213 & 5.646 & 112.03 & 1.4287 & 6.0126 & 6.84 & 8. 2687 \\
\hline 65 & 1260 & 4.9438 & 5.6533 & 112.98 & 1.4388 & 6.0131 & 6.84 & 8. 2788 \\
\hline 66 & 1290 & 5. 0576 & 5.6601 & 113.81 & 1.4478 & 6.0115 & 6.84 & 8.2878 \\
\hline 67 & 1320 & 5.1744 & 5.667 & 114.97 & 1. 4607 & 6.0104 & 6.84 & 8.3007 \\
\hline 68 & 1350 & 5.294 & 5. 6742 & 115.81 & 1. 4695 & 6.0093 & 6.84 & 8.3095 \\
\hline 69 & 1380 & 5.4093 & 5.6811 & 116.8 & 1.4803 & 6.0088 & 6.84 & 8.3203 \\
\hline 70 & 1410 & 5. 5261 & 5.6881 & 117.91 & 1. 4924 & 6.0077 & 6.84 & 8. 3324 \\
\hline 71 & 1440 & 5. 6443 & 5.6953 & 118.95 & 1. 5038 & 6.005 & 6.84 & 8.3438 \\
\hline 72 & 1470 & 5. 7596 & 5.7022 & 120.06 & 1. 5159 & 6. 0028 & 6.84 & 8. 3559 \\
\hline 73 & 1500 & 5. 8763 & 5.7093 & 120.95 & 1. 5253 & 6.0023 & 6.84 & 8.3653 \\
\hline 74 & 1530 & 5. 9945 & 5.7165 & 121.94 & 1. 5359 & 6.0012 & 6.84 & 8. 3759 \\
\hline 75 & 1560 & 6. 1141 & 5.7238 & 122.84 & 1. 5452 & 5.999 & 6.84 & 8. 3852 \\
\hline 76 & 1590 & 6.2309 & 5.7309 & 123.94 & 1. 5571 & 5.9941 & 6.84 & 8. 3971 \\
\hline 77 & 1620 & 6. 3491 & 5.7381 & 124.93 & 1. 5676 & 5.9914 & 6.84 & 8.4076 \\
\hline 78 & 1650 & 6.4673 & 5.7454 & 125.83 & 1. 5768 & 5.9892 & 6.84 & 8.4168 \\
\hline 79 & 1680 & 6.5854 & 5.7526 & 126.87 & 1.588 & 5.9882 & 6.84 & 8.428 \\
\hline
\end{tabular}


Project: COLETO CREEK FACILITY Boring No: : B-4-1 S-13
Sample No.: S-13
Test No.: 24.3 PSI

Location: I PR-GDF SUEZ Tested By: BCM
Test Date: 12/2/11

Project No.: 60225561
Checked By: WPQ
Depth: \(24.01-26.0\)
Elevation:....

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SO
Remarks: FAILURE CRITERIA = MAXI MUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767
```

Specimen Height: 5,93 in
Specimen Area: 5.37 in^2
Specimen Volume: 31.88 in^3

```

Piston Area: 0.00 i \(n^{\wedge} 2\)
Piston Friction: 0.00 |b
Piston Weight: 0.00 lb

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 |b/in
Correction Type: Uniform

Measured Specific Gravity: 2.66
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Vertical & \[
\begin{array}{r}
\text { Total } \\
\text { Vertical }
\end{array}
\] & \[
\begin{array}{r}
\text { Total } \\
\text { Horizontal }
\end{array}
\] & \[
\begin{array}{r}
\text { Excess } \\
\text { Pore }
\end{array}
\] & A & Effective Vertical & \[
\begin{aligned}
& \text { Effective } \\
& \text { Horizontal }
\end{aligned}
\] & Stress & Effective & \\
\hline & Strain & \[
\begin{array}{r}
\text { Stress } \\
\text { tsf }
\end{array}
\] & \[
\begin{array}{r}
\text { Stress } \\
\text { tsf }
\end{array}
\] & \[
\begin{array}{r}
\text { Pressure } \\
\text { tsf }
\end{array}
\] & Parameter & \[
\begin{array}{r}
\text { stress } \\
\text { tsf }
\end{array}
\] & \[
\begin{gathered}
\text { stress } \\
\text { tsf }
\end{gathered}
\] & Ratio & \[
\begin{gathered}
p \\
t
\end{gathered}
\] & ts \({ }^{9}\) \\
\hline 1 & 0.00 & 6.84 & 6.84 & 0 & 0.000 & 1.798 & 1.798 & 1.000 & 1.798 & 0 \\
\hline 2 & 0.02 & 6. 9728 & 6.84 & 0.070104 & 0.528 & 1.8607 & 1.7279 & 1.077 & 1.7943 & 0.066397 \\
\hline 3 & 0.04 & 7. 0086 & 6.84 & 0.10434 & 0.619 & 1.8622 & 1.6936 & 1. 100 & 1.7779 & 0.084297 \\
\hline 4 & 0.05 & 7. 0198 & 6.84 & 0.12499 & 0.695 & 1.8528 & 1.673 & 1. 107 & 1.7629 & 0.0899 \\
\hline 5 & 0.07 & 7. 0254 & 6.84 & 0.14021 & 0.756 & 1.8432 & 1.6578 & 1. 112 & 1. 7505 & 0.092692 \\
\hline 6 & 0.09 & 7.0317 & 6.84 & 0.15379 & 0.802 & 1.8359 & 1. 6442 & 1. 117 & 1.74 & 0.095834 \\
\hline 7 & 0.11 & 7.0386 & 6.84 & 0.16629 & 0.837 & 1.8303 & 1.6317 & 1. 122 & 1.731 & 0.099325 \\
\hline 8 & 0.13 & 7.0533 & 6.84 & 0.17933 & 0.841 & 1.832 & 1.6186 & 1. 132 & 1.7253 & 0.10667 \\
\hline 9 & 0.15 & 7.068 & 6.84 & 0.19238 & 0.844 & 1.8336 & 1.6056 & 1. 142 & 1.7196 & 0.11402 \\
\hline 10 & 0.17 & 7.0876 & 6.84 & 0.20651 & 0.834 & 1.8391 & 1. 5915 & 1. 156 & 1.7153 & 0.12382 \\
\hline 11 & 0.19 & 7. 1065 & 6.84 & 0.22118 & 0.830 & 1.8433 & 1. 5768 & 1.169 & 1.7101 & 0.13326 \\
\hline 12 & 0.21 & 7. 1233 & 6.84 & 0.23477 & 0.829 & 1.8465 & 1.5632 & 1. 181 & 1.7049 & 0.14165 \\
\hline 13 & 0.23 & 7. 1415 & 6.84 & 0.24781 & 0.822 & 1.8517 & 1. 5502 & 1. 194 & 1.7009 & 0.15074 \\
\hline 14 & 0.27 & 7. 2374 & 6.84 & 0.29835 & 0.751 & 1.897 & 1.4996 & 1. 265 & 1.6983 & 0.1987 \\
\hline 15 & 0.30 & 7. 3087 & 6.84 & 0.34671 & 0.740 & 1.92 & 1.4513 & 1. 323 & 1.6856 & 0.23436 \\
\hline 16 & 0.34 & 7. 3625 & 6.84 & 0.39019 & 0.747 & 1.9302 & 1.4078 & 1. 371 & 1. 669 & 0.26123 \\
\hline 17 & 0.38 & 7.4106 & 6.84 & 0.42823 & 0.751 & 1.9403 & 1.3697 & 1. 417 & 1. 655 & 0.28528 \\
\hline 18 & 0.42 & 7.4509 & 6.84 & 0.46355 & 0.759 & 1. 9453 & 1. 3344 & 1. 458 & 1. 6399 & 0.30546 \\
\hline 19 & 0.46 & 7. 4864 & 6.84 & 0.49562 & 0.767 & 1.9487 & 1. 3024 & 1.496 & 1. 6255 & 0.32318 \\
\hline 20 & 0.50 & 7. 5218 & 6.84 & 0.52442 & 0.769 & 1.9553 & 1.2736 & 1. 535 & 1. 6144 & 0.34088 \\
\hline 21 & 0. 53 & 7.553 & 6.84 & 0.5505 & 0.772 & 1.9604 & 1. 2475 & 1. 572 & 1. 6039 & 0. 35648 \\
\hline 22 & 0.57 & 7. 5785 & 6.84 & 0.5755 & 0.779 & 1.961 & 1. 2225 & 1. 604 & 1. 5917 & 0.36926 \\
\hline 23 & 0.61 & 7.6027 & 6.84 & 0.59724 & 0.783 & 1.9634 & 1.2007 & 1. 635 & 1. 5821 & 0.38133 \\
\hline 24 & 0.65 & 7.624 & 6.84 & 0.61735 & 0.787 & 1.9646 & 1.1806 & 1.664 & 1. 5726 & 0.39201 \\
\hline 25 & 0.69 & 7.6446 & 6.84 & 0.63691 & 0.792 & 1.9657 & 1.1611 & 1. 693 & 1. 5634 & 0.40232 \\
\hline 26 & 0.73 & 7. 6625 & 6.84 & 0.65539 & 0.797 & 1.965 & 1. 1426 & 1.720 & 1. 5538 & 0.41123 \\
\hline 27 & 0.77 & 7. 6817 & 6.84 & 0.67115 & 0.797 & 1.9685 & 1.1268 & 1.747 & 1. 5477 & 0.42083 \\
\hline 28 & 0.81 & 7. 6897 & 6.84 & 0.68636 & 0.808 & 1.9613 & 1.1116 & 1.764 & 1. 5365 & 0.42484 \\
\hline 29 & 0.85 & 7. 7144 & 6.84 & 0.70104 & 0.802 & 1.9714 & 1. 0969 & 1.797 & 1. 5342 & 0.43721 \\
\hline 30 & 0.89 & 7.7308 & 6.84 & 0.71462 & 0.802 & 1.9742 & 1.0834 & 1.822 & 1. 5288 & 0.4454 \\
\hline 31 & 0.93 & 7.7444 & 6.84 & 0.72766 & 0.805 & 1.9747 & 1.0703 & 1.845 & 1. 5225 & 0.45218 \\
\hline 32 & 1. 05 & 7.7829 & 6.84 & 0.76136 & 0.807 & 1.9795 & 1.0366 & 1. 910 & 1. 5081 & 0.47145 \\
\hline 33 & 1. 17 & 7. 8151 & 6.84 & 0.78853 & 0.809 & 1.9845 & 1. 0094 & 1.966 & 1.497 & 0.48755 \\
\hline 34 & 1. 29 & 7. 8452 & 6.84 & 0.81244 & 0.808 & 1.9907 & 0.98553 & 2.020 & 1.4881 & 0.50258 \\
\hline 35 & 1.41 & 7.8696 & 6.84 & 0.83255 & 0.809 & 1.995 & 0.96543 & 2.066 & 1.4802 & 0.51479 \\
\hline 36 & 1.52 & 7.8926 & 6.84 & 0.85048 & 0.808 & 2.0001 & 0.94749 & 2. 111 & 1.4738 & 0.52628 \\
\hline 37 & 1.64 & 7. 9155 & 6.84 & 0.86624 & 0.805 & 2.0072 & 0.93173 & 2. 154 & 1.4695 & 0.53775 \\
\hline 38 & 1.76 & 7. 9349 & 6.84 & 0.87983 & 0.804 & 2.0131 & 0.91815 & 2. 193 & 1.4656 & 0.54746 \\
\hline 39 & 1.88 & 7.9529 & 6.84 & 0.89124 & 0.801 & 2.0196 & 0.90674 & 2. 227 & 1.4632 & 0.55645 \\
\hline 40 & 2.00 & 7.9715 & 6.84 & 0.90211 & 0.797 & 2.0274 & 0.89587 & 2. 263 & 1.4616 & 0.56576 \\
\hline 41 & 2. 12 & 7.988 & 6.84 & 0.91135 & 0.794 & 2.0347 & 0.88663 & 2. 295 & 1.4606 & 0.57402 \\
\hline 42 & 2. 23 & 8.0038 & 6.84 & 0.9195 & 0.790 & 2.0423 & 0.87848 & 2. 325 & 1.4604 & 0.58192 \\
\hline 43 & 2. 35 & 8.021 & 6.84 & 0.92548 & 0.784 & 2. 0535 & 0.8725 & 2. 354 & 1.463 & 0.59049 \\
\hline 44 & 2.47 & 8. 0401 & 6.84 & 0.932 & 0.777 & 2. 0661 & 0.86598 & 2. 386 & 1. 466 & 0.60004 \\
\hline 45 & 2. 59 & 8. 0551 & 6.84 & 0.93852 & 0.772 & 2.0745 & 0.85946 & 2. 414 & 1.467 & 0.60754 \\
\hline 46 & 2. 71 & 8. 0673 & 6.84 & 0.94232 & 0.768 & 2.0829 & 0.85565 & 2. 434 & 1.4693 & 0.61363 \\
\hline 47 & 2.82 & 8. 0856 & 6.84 & 0.94558 & 0.759 & 2.098 & 0.85239 & 2. 461 & 1.4752 & 0.62279 \\
\hline 48 & 2. 94 & 8.0991 & 6.84 & 0.94993 & 0.754 & 2. 1071 & 0.84804 & 2. 485 & 1.4776 & 0.62954 \\
\hline 49 & 3.06 & 8. 1105 & 6.84 & 0.95319 & 0.750 & 2.1153 & 0.84478 & 2. 504 & 1.48 & 0.63524 \\
\hline 50 & 3.18 & 8. 1259 & 6.84 & 0.95591 & 0.743 & 2.128 & 0.84207 & 2. 527 & 1.485 & 0.64297 \\
\hline 51 & 3.29 & 8. 1353 & 6.84 & 0.95808 & 0.740 & 2.1352 & 0.83989 & 2. 542 & 1.4875 & 0.64765 \\
\hline 52 & 3.41 & 8. 1473 & 6.84 & 0.96134 & 0.735 & 2.1439 & 0.83663 & 2. 563 & 1.4903 & 0.65365 \\
\hline 53 & 3. 53 & 8. 1566 & 6.84 & 0.96243 & 0.731 & 2.1521 & 0.83555 & 2. 576 & 1.4938 & 0.65828 \\
\hline 54 & 3.65 & 8. 1692 & 6.84 & 0.96406 & 0.725 & 2.1631 & 0.83392 & 2. 594 & 1.4985 & 0.66459 \\
\hline 55 & 3.76 & 8. 1811 & 6.84 & 0.96515 & 0.720 & 2.1739 & 0.83283 & 2. 610 & 1. 5034 & 0.67054 \\
\hline 56 & 3.88 & 8. 1916 & 6.84 & 0.96623 & 0.715 & 2.1833 & 0.83174 & 2. 625 & 1.5075 & 0.67578 \\
\hline 57 & 4.00 & 8.2027 & 6.84 & 0.96732 & 0.710 & 2.1934 & 0.83065 & 2. 641 & 1.512 & 0.68137 \\
\hline 58 & 4.12 & 8. 2132 & 6.84 & 0.96895 & 0.706 & 2.2022 & 0.82902 & 2. 656 & 1. 5156 & 0.68659 \\
\hline 59 & 4.23 & 8.2257 & 6.84 & 0.96895 & 0.699 & 2. 2147 & 0.82902 & 2. 671 & 1. 5218 & 0.69283 \\
\hline 60 & 4.35 & 8. 2347 & 6.84 & 0.97058 & 0.696 & 2.2221 & 0.82739 & 2.686 & 1. 5248 & 0.69736 \\
\hline 61 & 4. 47 & 8. 2411 & 6.84 & 0.97112 & 0.693 & 2.2279 & 0.82685 & 2. 694 & 1. 5274 & 0.70053 \\
\hline 62 & 4. 58 & 8. 2494 & 6.84 & 0.97276 & 0.690 & 2.2346 & 0.82522 & 2. 708 & 1. 5299 & 0.70471 \\
\hline 63 & 4.70 & 8.259 & 6.84 & 0.97221 & 0.685 & 2. 2448 & 0.82576 & 2. 718 & 1. 5353 & 0.70952 \\
\hline 64 & 4.82 & 8. 2687 & 6.84 & 0.97058 & 0.679 & 2. 2561 & 0.82739 & 2. 727 & 1. 5417 & 0.71433 \\
\hline 65 & 4. 94 & 8. 2788 & 6.84 & 0.97112 & 0.675 & 2. 2657 & 0.82685 & 2.740 & 1. 5463 & 0.71942 \\
\hline 66 & 5. 06 & 8. 2878 & 6.84 & 0.96949 & 0.670 & 2.2763 & 0.82848 & 2. 748 & 1. 5524 & 0.7239 \\
\hline 67 & 5. 17 & 8. 3007 & 6.84 & 0.96841 & 0.663 & 2.2902 & 0.82957 & 2. 761 & 1. 5599 & 0.73034 \\
\hline 68 & 5. 29 & 8. 3095 & 6.84 & 0.96732 & 0.658 & 2.3001 & 0.83065 & 2. 769 & 1. 5654 & 0.73474 \\
\hline 69 & 5.41 & 8. 3203 & 6.84 & 0.96678 & 0.653 & 2.3115 & 0.8312 & 2.781 & 1. 5714 & 0.74016 \\
\hline 70 & 5. 53 & 8. 3324 & 6.84 & 0.96569 & 0.647 & 2.3247 & 0.83228 & 2. 793 & 1. 5785 & 0.74622 \\
\hline 71 & 5. 64 & 8. 3438 & 6.84 & 0.96297 & 0.640 & 2.3388 & 0.835 & 2. 801 & 1. 5869 & 0.75192 \\
\hline 72 & 5. 76 & 8. 3559 & 6.84 & 0.9608 & 0.634 & 2.3531 & 0.83718 & 2. 811 & 1. 5951 & 0.75795 \\
\hline 73 & 5. 88 & 8. 3653 & 6.84 & 0.96026 & 0.630 & 2.363 & 0.83772 & 2. 821 & 1. 6004 & 0.76264 \\
\hline 74 & 5.99 & 8. 3759 & 6.84 & 0.95917 & 0.624 & 2.3747 & 0.83881 & 2. 831 & 1. 6068 & 0.76795 \\
\hline 75 & 6.11 & 8. 3852 & 6.84 & 0.957 & 0.619 & 2.3861 & 0.84098 & 2. 837 & 1. 6136 & 0.77258 \\
\hline 76 & 6.23 & 8. 3971 & 6.84 & 0.9521 & 0.611 & 2.403 & 0.84587 & 2. 841 & 1. 6244 & 0.77854 \\
\hline 77 & 6.35 & 8.4076 & 6.84 & 0.94939 & 0.606 & 2.4162 & 0.84859 & 2. 847 & 1. 6324 & 0.78381 \\
\hline 78 & 6.47 & 8.4168 & 6.84 & 0.94721 & 0.601 & 2.4276 & 0.85076 & 2.853 & 1. 6392 & 0.78841 \\
\hline
\end{tabular}

\footnotetext{

8. 4495
8. 4612
8. 4754
}


1.6458
\(\mathbf{1} .656\)
0.79398
0.80084
0.80475
0.8106
0.81772
0.8235
0.82899
0.8348
0.83798
0.8418
0.84561
0.85199
0.85834
0.86273
0.86681
0.87118
0.87713
0.88244
0.88961
0.8968
0.90108
0.90276
0.90735
0.91031
0.91296
0.91781
0.92488
0.92876
0.93197
0.93806
0.94409
0.95076
0.95326
0.95831
0.96019
0.96615
0.96895
0.97267
0.97669
0.98039
0.98409
0.98743
0.99268
0.99787
1.0018
1.0048
1.009
1.012
1.0147
1.0198
1.0212
1.0263
1.031
1.0348
1.0371
1.0409
1.0446
1.0472
1.049
1.0537
1.0568
1.0602
1.0636
1.0691
1.0709
1.074
1.0789
1.0819
1.0859
1.0888
1.0922
1.0948
1.0955
1.0975
1.0996
1.101
1.1002



\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Symbol} & (1) & \(\triangle\) & \(\square\) & \\
\hline \multicolumn{2}{|l|}{Test No.} & . 75 TSF & 1.25 TSF & 1.75 TSF & \\
\hline \multicolumn{2}{|l|}{Sample No.} & S-16-18 & S-16-18 & S-16-18 & \\
\hline \multicolumn{2}{|l|}{Shape} & Circular & Circular & Circular & \\
\hline \multirow{7}{*}{\[
\begin{aligned}
& \overline{\bar{O}} \\
& \stackrel{\rightharpoonup}{\bar{E}}
\end{aligned}
\]} & Dimension, in & 2.3504 & 2.3504 & 2.3504 & \\
\hline & Area, in^2 & 4.3388 & 4.3388 & 4.3388 & \\
\hline & Height, in & 1 & 1 & 1 & \\
\hline & Water Content, \% & 16.12 & 16.62 & 16.15 & \\
\hline & Dry Density, pcf & 117.9 & 117.1 & 117.9 & \\
\hline & Saturation, \% & 99.55 & 100.36 & 99.77 & \\
\hline & Void Ratio & 0.44047 & 0.45053 & 0.44026 & \\
\hline \multicolumn{2}{|l|}{Consol. Height, in} & 0.98989 & 0.9897 & 0.98947 & \\
\hline \multicolumn{2}{|l|}{Consol. Void Ratio} & 0.42591 & 0.43558 & 0.4251 & \\
\hline \multirow{4}{*}{\[
\begin{aligned}
& \overline{\bar{x}} \\
& \stackrel{\rightharpoonup}{\square}
\end{aligned}
\]} & Water Content, \% & 14.02 & 14.02 & 12.51 & \\
\hline & Dry Density, pcf & 121.9 & 122.6 & 124.2 & \\
\hline & Saturation, \% & 97.07 & 99.04 & 92.56 & \\
\hline & Void Ratio & 0.39288 & 0.38509 & 0.36752 & \\
\hline \multicolumn{2}{|l|}{Normal Stress, tsf} & 0.75 & 1.25 & 1.75 & \\
\hline \multicolumn{2}{|l|}{Max. Shear Stress, tsf} & 0.67243 & 1.0674 & 1.4045 & \\
\hline \multicolumn{2}{|l|}{Ult. Shear Stress, tsf} & 0.67243 & 0.95657 & 1.2984 & \\
\hline \multicolumn{2}{|l|}{Time to Failure, min} & 180.15 & 62.996 & 198 & \\
\hline \multicolumn{2}{|l|}{Disp. Rate, in/min} & 0.001417 & 0.001417 & 0.001417 & \\
\hline \multicolumn{2}{|l|}{Estimated Specific Gravity} & 2.72 & 2.72 & 2.72 & \\
\hline \multicolumn{2}{|l|}{Liquid Limit} & --- & --- & --- & \\
\hline \multicolumn{2}{|l|}{Plastic Limit} & --- & --- & --- & \\
\hline \multicolumn{2}{|l|}{Plasticity Index} & --- & --- & --- & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|c|c|}
\hline Project: COLETO CREEK FACILITY & Disp. Rate, in/min & 0.001417 & 0.001417 & 0.001417 \\
\hline Location: IPR-GDF SUEZ & Estimated Specific Gravity & 2.72 & 2.72 & 2.72 & \\
\hline Project No.: 60225561 & Liquid Limit & --- & --- & --- & \\
\hline Boring No.: B-1-1 & Plastic Limit & --- & --- & --- & \\
\hline Sample Type: TRIMMED & Plasticity Index & --- & --- & --- & \\
\hline
\end{tabular}
Description: CALICHE SOIL (CALSIUM CARBONATE) SOME F-C SAND TRACE F GRAVEL - WHITE
Remarks: TEST PERFORMED AS PER ASTM D 3080. SPECIMEN REMOLDED TO 117.0 PCF@ 16.5 WC


Project: COLETO CREEK FACILITY
Boring No: B-1.
Sample No.: S-16-18
Test No.: 1.25 TSF

Project No.: 60225561
Checked By: WPQ
Depth:
Elevation: ....

Soil Description: CALICHE SOI (CALSIUM CARBONATE) SOME F-C SAND TRACE F GRAVEL - WHITE Remarks: TEST PERFORMED AS PER ASTM D 3080 . SPECI MEN REMOLDED TO 117.0 PCF@16.5 WC

Step: 1 of 1
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Elapsed Ti me mi \(n\) & Vertical Stress tsf & Vertical Displacement & \[
\begin{array}{r}
\text { Horizontal } \\
\text { Stress } \\
\text { tsf }
\end{array}
\] & Horizontal Displacement & Cumulative Displacement \\
\hline 1 & 0.00 & 1.25 & 0.01189 & 0 & 0 & 0 \\
\hline 2 & 12.00 & 1.25 & 0.01458 & 0.07233 & 0.002821 & 0.002821 \\
\hline 3 & 14.00 & 1. 25 & 0.01451 & 0.07971 & 0.006913 & 0.006913 \\
\hline 4 & 16.00 & 1. 25 & 0.01467 & 0.08127 & 0.011 & 0.011 \\
\hline 5 & 18.00 & 1. 25 & 0.01488 & 0.1684 & 0.01481 & 0.01481 \\
\hline 6 & 20.00 & 1. 25 & 0.01499 & 0.1843 & 0.0189 & 0.0189 \\
\hline 7 & 22.00 & 1.25 & 0.0153 & 0.313 & 0.02271 & 0.02271 \\
\hline 8 & 24.00 & 1. 25 & 0.01616 & 0.413 & 0.0261 & 0.0261 \\
\hline 9 & 26.00 & 1. 25 & 0.01703 & 0. 5094 & 0.02963 & 0.02963 \\
\hline 10 & 28.00 & 1. 25 & 0.01777 & 0.5879 & 0.03315 & 0.03315 \\
\hline 11 & 33.00 & 1. 25 & 0.01959 & 0.7097 & 0.04246 & 0.04246 \\
\hline 12 & 38.00 & 1. 25 & 0.02117 & 0.8061 & 0.05206 & 0.05206 \\
\hline 13 & 43.00 & 1. 25 & 0.02223 & 0.8912 & 0.06193 & 0.06193 \\
\hline 14 & 48.00 & 1. 25 & 0.02302 & 0.9647 & 0.07209 & 0.07209 \\
\hline 15 & 53.00 & 1. 25 & 0.02348 & 1.018 & 0.08196 & 0.08196 \\
\hline 16 & 58.00 & 1. 25 & 0.02364 & 1. 05 & 0.09198 & 0.09198 \\
\hline 17 & 63.00 & 1. 25 & 0.02373 & 1. 067 & 0.1021 & 0.1021 \\
\hline 18 & 68.00 & 1. 25 & 0.02364 & 1. 064 & 0.1126 & 0.1126 \\
\hline 19 & 73.00 & 1. 25 & 0.02385 & 1. 029 & 0.123 & 0.123 \\
\hline 20 & 78.00 & 1. 25 & 0.02424 & 0.9962 & 0.1333 & 0.1333 \\
\hline 21 & 83.00 & 1. 25 & 0.0247 & 0.969 & 0.1436 & 0.1436 \\
\hline 22 & 88.00 & 1. 25 & 0.02532 & 0.941 & 0.1542 & 0.1542 \\
\hline 23 & 93.00 & 1. 25 & 0.02591 & 0.9196 & 0.1648 & 0.1648 \\
\hline 24 & 98.00 & 1.25 & 0.02646 & 0.9006 & 0.1754 & 0.1754 \\
\hline 25 & 103.00 & 1. 25 & 0.02715 & 0.8831 & 0.1859 & 0.1859 \\
\hline 26 & 108.00 & 1. 25 & 0.02788 & 0.8749 & 0.1964 & 0.1964 \\
\hline 27 & 113.00 & 1. 25 & 0.02879 & 0.8695 & 0.2068 & 0.2068 \\
\hline 28 & 118.00 & 1. 25 & 0.02939 & 0.8679 & 0.2174 & 0.2174 \\
\hline 29 & 123.00 & 1. 25 & 0.03015 & 0.871 & 0.2277 & 0.2277 \\
\hline 30 & 128.00 & 1. 25 & 0.03082 & 0.8718 & 0.2378 & 0.2378 \\
\hline 31 & 133.00 & 1. 25 & 0.03154 & 0.8706 & 0.248 & 0.248 \\
\hline 32 & 138.00 & 1. 25 & 0.03235 & 0.8772 & 0.2577 & 0.2577 \\
\hline 33 & 143.00 & 1. 25 & 0.03304 & 0.8858 & 0.2673 & 0.2673 \\
\hline 34 & 148.00 & 1.25 & 0.0338 & 0.8955 & 0.2769 & 0.2769 \\
\hline 35 & 153.00 & 1. 25 & 0.03439 & 0.9017 & 0.2872 & 0.2872 \\
\hline 36 & 158.00 & 1. 25 & 0.03505 & 0.9064 & 0.2972 & 0.2972 \\
\hline 37 & 163.00 & 1. 25 & 0.03568 & 0.9091 & 0. 3074 & 0.3074 \\
\hline 38 & 168.00 & 1. 25 & 0.0363 & 0.9185 & 0.3176 & 0.3176 \\
\hline 39 & 173.00 & 1. 25 & 0.03691 & 0.922 & 0.3276 & 0.3276 \\
\hline 40 & 178.00 & 1.25 & 0.03753 & 0.9262 & 0. 3377 & 0.3377 \\
\hline 41 & 183.00 & 1. 25 & 0.03808 & 0.9321 & 0.3476 & 0.3476 \\
\hline 42 & 188.00 & 1. 25 & 0.03874 & 0.9282 & 0.3578 & 0.3578 \\
\hline 43 & 193.00 & 1. 25 & 0.0393 & 0.929 & 0.3678 & 0.3678 \\
\hline 44 & 198.00 & 1. 25 & 0.03976 & 0.9309 & 0.3779 & 0.3779 \\
\hline 45 & 203.00 & 1. 25 & 0.04033 & 0.941 & 0.3884 & 0.3884 \\
\hline 46 & 208.00 & 1. 25 & 0.04084 & 0.9383 & 0.399 & 0.399 \\
\hline 47 & 213.00 & 1. 25 & 0.04139 & 0.9371 & 0.4095 & 0.4095 \\
\hline 48 & 218.00 & 1. 25 & 0.04193 & 0.9379 & 0.42 & 0.42 \\
\hline 49 & 223.00 & 1. 25 & 0.04244 & 0.9356 & 0.4307 & 0.4307 \\
\hline 50 & 228.00 & 1. 25 & 0.04296 & 0.936 & 0.4413 & 0.4413 \\
\hline 51 & 233.00 & 1. 25 & 0.04351 & 0.9391 & 0.4517 & 0.4517 \\
\hline 52 & 238.00 & 1. 25 & 0.04403 & 0.9406 & 0.462 & 0.462 \\
\hline 53 & 243.00 & 1. 25 & 0.04459 & 0.9476 & 0.4723 & 0.4723 \\
\hline 54 & 248.00 & 1.25 & 0.04511 & 0.9566 & 0.4823 & 0.4823 \\
\hline
\end{tabular}


APPENDIX C: SLIDE 7.0 STABILITY ANALYSIS MODELS



Bullock, Bennett \& Associates, LLC














Coleto Creek Primary/Secondary Pond, Cross Section B-B'
Design Section, Max Storage Pool, Total Stress Analysis, Non-circular













APPENDIX D: LIQUEFACTION ASSESSMENT CALCULATIONS

\section*{APPENDIX D \\ LIQUEFACTION FACTOR OF SAFETY ASSESSMENT METHODOLOGY Coleto Creek Power Plant}

Sources: Coduto, Donald P., Geotechnical Engineering Principles and Practices. Prentice-Hall. Rauch, Alan F., May 1997. EPOLLS: An Empiracle Method for Predicting Surface Displacements Due to Liquefaction-Induced Lateral Spreading in Earthquakes. Dissertation Submitted to Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for degree of Doctor of Philosophy in Civil Engineering.
United States Environmental Protection Agency (USEPA), April 1995. RCRA Subtitle D (258) Seismic Design Guidance for Municipal Solid Waste Landfill Facilities. Office of Research and Development. Washington, DC. EPA/600/R-95/051

Methodology: Standard Penetration Test (SPT)

Step 1: Compute the standardized value of number of blow counts per foot normalized for overburden stress at the depth of the test
\[
\left(N_{1}\right)_{60}=N_{S P T} \cdot C_{N} \cdot C_{E} \cdot C_{B} \cdot C_{S} \cdot C_{R}
\]
where:
\(\left(N_{1}\right)_{60}=\) Measured blowcount normalized for overburden stress at the depth of the test \(\mathrm{C}_{\mathrm{N}}=\) Correction factor to normalize the measured blowcount to an equivalent value under one atmosphere of effective overburden stress
\[
\mathrm{C}_{\mathrm{N}}=\sqrt{\frac{P a}{\sigma^{\prime}{ }_{v o}}} \leq 2.0
\]
where:
\(\mathrm{Pa}=\) one atmosphere of pressure ( 101.325 kPa ) in the same units as \(\sigma_{v o}^{\prime}\)
\(\sigma_{\mathrm{vo}}^{\prime}=\) vertical efffective stress at depth of \(\mathrm{N}_{\text {SPT }}\)
\(\mathrm{C}_{\mathrm{E}}=\) Correction factor of the measured SPT blowcount for level of energy delivered by the SPT hammer, 1.0 for safety hammer type with rope and pulley hammer release
\(\mathrm{C}_{\mathrm{B}}=\) Correction factor for borehole diameters outside the recommended range of 2.5 to 4.5 inch, 1.0 for borehole inside range
\(\mathrm{C}_{5}=\) Correction factor for SPT samplers used without a sample liner, 1.0 for standard sampler
\(C_{R}=\) Correction factor for loss of energy through reflection in short lengths of drill rod:
where:
For \(z<3 \mathrm{~m} ; \mathrm{C}_{\mathrm{R}}=0.75\)
For \(3<z<9 m ; C_{R}=(15+z) / 24\)
For \(z>9 m ; C_{R}=1.0\)
where: \(\mathrm{z}=\) length of drill rod in meters (approximately equal to depth of \(\mathrm{N}_{\text {SPT }}\) )

Step 2: Compute a clean-sand equivalent value of \(\left(\mathrm{N}_{1}\right)_{60}\)
\[
\left(N_{1}\right)_{60}-c s=\left(N_{1}\right)_{60}+\Delta\left(N_{1}\right)
\]
where:
\(\Delta\left(\mathrm{N}_{1}\right)_{60}=\) correction factor computed as follows:
For \(\mathrm{FC}<5 \%, \Delta\left(\mathrm{~N}_{1}\right)_{50}=0.0\)
For \(5<\mathrm{FC}<35 \%, \Delta\left(\mathrm{~N}_{1}\right)_{60}=7^{*}(\mathrm{FC}-5) / 30\)
For \(\mathrm{FC}>35 \%, \Delta\left(\mathrm{~N}_{1}\right)_{60}=7.0\)
where:
FC = Fines content (percent finer than 0.075 mm )
Note: Where data was available, those FC were used. Otherwise, representative values from the USGS standard soil classification were used for the soil type observed during drilling.

Step 3: Compute the cyclic resistance ratio for a standardized magnitude 7.5 earthquake (CRR M7.5 )
\[
100 \cdot C R R_{M 7.5}=\frac{95}{34-\left(N_{1}\right)_{60}-c s}+\frac{\left(N_{1}\right)_{60}-c s}{1.3}-\frac{1}{2}
\]

Note: A value of \(\left(\mathrm{N}_{1}\right)_{60}-\mathrm{cs}>30\) indicates an unliquefiable soil with an infinite CRR. Designated as UL in the calculation tables.

Step 4: Adjust the standardized cyclic resistance ratio for the worst-case magnitude of earthquake for the area
\[
C R R=C R R_{M 75} \cdot M S F \cdot K \sigma \cdot K \alpha
\]
where:
MSF = magnitude scaling factor computed as follows:
\[
\text { For } M_{w}<7.0 ; \text { MSF }=10^{3.00} * M_{w}^{-3.46}
\]
where:
\(\mathrm{M}_{\mathrm{w}}=\) estimated worst-case magnitude eartquake, 6.1 taken from Figure 3.3 Seismic Source Zones in the Contiguous United States (USGS, 1982) and Table 3.1 Parameters for Seismic Source Zones (USGS, 2982) (USEPA, 1995)

Note: Two additional correction factors are potentially applicable for liquefiable soil deposits subject to significant overburden with a stress factor greater than 1 tsf ( 2000 psf ) ( \(\mathrm{K} \sigma\) ) or static shear stresses such as significant slopes ( \(K \alpha\) ). K \(\sigma\) values were interpolated using Figure 5.7 Curves for Estimation of Correction Factor (Harder 1988, and Hynes 1988, as Quoted in Marcuson, et.al., 1990) (USEPA, 1998). No K \(\alpha\) factor was applied due to the relatively flat ground surface in the area.

Step 5: Estimate the average cyclic shear stress (CSR)
\[
\operatorname{CSR}=0.65 \cdot \frac{a_{\max }}{g} \cdot \frac{\sigma_{v o}}{\sigma_{v o}^{\prime}} \cdot r d
\]
where:
\(\mathrm{a}_{\text {max }} / \mathrm{g}=\) peak horizonal acceleration that would occur at the ground surface in the absence of excess pore pressures or liquefaction, 0.03 g taken from the 2014 United States Geological Survey National Seismic Hazard Maps found at
http://earthquake.usgs.gov/hazards/products/conterminous/2014/2014pga2pct.pdf).
\(\sigma_{\mathrm{vo}}=\) total vertical overburden stress
\(\mathrm{g}=\) acceleration due to gravity, \(9.81 \mathrm{~m} / \mathrm{s}^{2}\)
\(r_{d}=\) stress reduction factor calculated as follows for depths up to 30 m :
\[
r_{d}=1.0+1.6^{*} 10^{-6}\left(z^{4}-42 z^{3}+105 z^{2}-4200 z\right)
\]

Step 6: Calculate the Factor of Safety against liquefaction ( SS \(_{\text {liq }}\) )
\[
F S_{l i q}=\frac{C R R}{C S R}
\]

\title{
Coleto Creek Power Plant
}

Primary and Secondary Ash Ponds
\begin{tabular}{|c|c|c|}
\hline Depth to Water \(=\) & 12 & ft \\
\hline Average Unsaturated Soll Unit Weight, \(\mathrm{V}_{\mathrm{d}}=\) & 125 & pcif \\
\hline Average 5aturated Soil Unit Weight, \(y_{2}=\) & 130 & pcif \\
\hline Average Water Unit Weight, \(\chi_{w}=\) & 62.3 & pef \\
\hline Earthquake Magnitude, \(\mathrm{M}_{\mathrm{w}}=\) & 6.1 & \\
\hline Borehole Diameter = & \multicolumn{2}{|l|}{\(4^{\prime \prime}\), to \(50^{\prime} \mathrm{bgs}\)} \\
\hline & \multicolumn{2}{|l|}{\(3^{\prime \prime}, 50\) to end of boring} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Sample \\
Number
\end{tabular} & \begin{tabular}{l}
Depth \\
(ft)
\end{tabular} & \begin{tabular}{l}
Depth \\
(m)
\end{tabular} & Note & \[
\begin{array}{cc} 
& \text { Soil } \\
\mathrm{N}_{\mathrm{SHT}} & \text { Type }
\end{array}
\] & \[
\begin{aligned}
& \sigma_{\mathrm{vq}}^{*} \\
& (\mathrm{psff})
\end{aligned}
\] & \(c_{11}\) & \(\mathrm{C}_{\mathrm{E}}\) & \(\mathrm{C}_{8}\) & \(c_{s}\) & \(\mathrm{c}_{\mathrm{F}}\) & \(\left(\mathrm{N}_{1}\right)_{\text {¢ }}\) & FC & \(\left.\Delta\left(N_{1}\right)^{\prime}\right)_{0}\) & \(\left(\mathrm{N}_{1}\right)_{\text {cos }}\)-cs & CRR \(_{\text {M } 7.5}\) & MSF & Ko & CRR & \(\mathrm{a}_{\mathrm{ma} / \mathrm{g}}\) & \(\sigma_{\mathrm{vo}}\) & \(\mathrm{r}_{4}\) & CSR & \(\mathrm{FS}_{\text {IV9 }}\) \\
\hline 1 & 2 & 0.61 & Unsaturated & 40 sc & 250 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 60.0 & 35 & 7.0 & 67.0 & ut & 1.92 & NA & UL & 0.03 & 250 & 1.00 & U & UL \\
\hline 2 & 4 & 1.22 & Unsaturated & 1350 & 500 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 19.5 & 35 & 7.0 & 26.5 & 0.33 & 1.92 & NA & 0.62 & 0.03 & 500 & 0.99 & 0.019 & 32 \\
\hline 3 & 6 & 1.83 & Unsaturated & 14 SC & 750 & 1.68 & 1.0 & 1.00 & 1.0 & 0.75 & 17.6 & 35 & 7.0 & 24.5 & 0.29 & 1.92 & NA & 0.55 & 0.03 & 750 & 0.99 & 0.019 & 28 \\
\hline 4 & 8 & 2.44 & Unsaturated & 15 SC & 1000 & 1.45 & 1.0 & 1.00 & 1.0 & 0.75 & 16.4 & 90.6 & 7.0 & 23.4 & 0.26 & 1.92 & NA & 0.51 & 0.03 & 1000 & 0.98 & 0.019 & 26 \\
\hline 7 & 14 & 4.27 & 5aturated & 10 sc & 1635.4 & 1.14 & 1.0 & 1.00 & 1.0 & 0.80 & 9.1 & 35 & 7.0 & 16.1 & 0.17 & 1.92 & NA & 0.33 & 0.03 & 1760 & 0.97 & 0.020 & 16 \\
\hline 8 & 16 & 4.88 & 5aturated & 1350 & 1770.8 & 1.09 & 1.0 & 1.00 & 1.0 & 0.83 & 11.8 & 35 & 7.0 & 18.8 & 0.20 & 1.92 & NA & 0.39 & 0.03 & 2020 & 0.96 & 0.021 & 18 \\
\hline 9 & 18 & 5.49 & Saturated & 9 sc & 1906.2 & 1.05 & 1.0 & 1.00 & 1.0 & 0.85 & 8.1 & 35 & 7.0 & 15.1 & 0.16 & 1.92 & NA & 0.31 & 0.03 & 2280 & 0.96 & 0.022 & 14 \\
\hline 10 & 20 & 6.10 & Saturated & 15 SC & 2041.6 & 1.02 & 1.0 & 1.00 & 1.0 & 0.88 & 13.4 & 39.5 & 7.0 & 20.4 & 0.22 & 1.92 & 0.93 & 0.40 & 0.03 & 2540 & 0.95 & 0.023 & 17 \\
\hline 12 & 24 & 7.32 & Saturated & 13 sc & 2312.4 & 0.96 & 1.0 & 1.00 & 1.0 & 0.93 & 11.6 & 35 & 7.0 & 18.6 & 0.20 & 1.92 & 0.92 & 0.35 & 0.03 & 3050 & 0.94 & 0.024 & 15 \\
\hline 13 & 26 & 7.92 & Saturated & 21 sc & 2447.8 & 0.93 & 1.0 & 1.00 & 1.0 & 0.95 & 18.7 & 35 & 7.0 & 25.7 & 0.31 & 1.92 & 0.92 & 0.54 & 0.03 & 3320 & 0.93 & 0.025 & 22 \\
\hline 14 & 28 & 8.53 & Saturated & 15 SC & 2583.2 & 0.91 & 1.0 & 1.00 & 1.0 & 0.98 & 13.3 & 35 & 7.0 & 20.3 & 0.22 & 1.92 & 0.91 & 0.39 & 0.03 & 3580 & 0.92 & 0.025 & 16 \\
\hline 15 & 30 & 9.14 & Saturated & 2856 & 2718.6 & 0.88 & 1.0 & 1.00 & 1.0 & 1.0 & 24.7 & 35 & 7.0 & 31.7 & UL & 1.92 & 0.91 & UL & 0.03 & 3840 & 0.91 & UL & UL \\
\hline 16 & 32 & 9.75 & Saturated & 12 sc & 2854 & 0.56 & 1.0 & 1.00 & 1.0 & 1.0 & 10.3 & 35 & 7.0 & 17.3 & 0.19 & 1.92 & 0.90 & 0.32 & 0.03 & 4100 & 0.90 & 0.025 & 13 \\
\hline 18 & 34.7 & 10.58 & Saturated & 6 SM & 3036.79 & 0.83 & 1.0 & 1.00 & 1.0 & 1.0 & 5.0 & 15 & 2.3 & 7.3 & 0.09 & 1.92 & 0.90 & 0.15 & 0.03 & 4451 & 0.89 & 0.025 & 6 \\
\hline 18A & 36 & 10.97 & Saturated & 15 SM & 3124.8 & 0.82 & 1.0 & 1.00 & 1.0 & 1.0 & 12.3 & 15 & 2.3 & 14.7 & 0.16 & 1.92 & 0.90 & 0.27 & 0.03 & 4620 & 0.88 & 0.025 & 11 \\
\hline 19 & 36.7 & 11.19 & Saturated & 24 5P & 3172.19 & 0.82 & 1.0 & 1.00 & 1.0 & 1.0 & 19.6 & 1 & 0.0 & 19.6 & 0.21 & 1.92 & 0.89 & 0.36 & 0.03 & 4711 & 0.88 & 0.025 & 14 \\
\hline 19A & 38 & 11.58 & Saturated & 26 SP & 3260.2 & 0.81 & 1.0 & 1.00 & 1.0 & 1.0 & 20.9 & 1 & 0.0 & 20.9 & 0.23 & 1.92 & 0.89 & 0.39 & 0.03 & 4880 & 0.87 & 0.025 & 15 \\
\hline 20 & 40 & 12.19 & Saturated & 39 SP & 3395.6 & 0.79 & 1.0 & 1.00 & 1.0 & 1.0 & 30.8 & 1 & 0.0 & 30.8 & 4 & 1.92 & 0.89 & UL & 0.03 & 5140 & 0.86 & ut & UL \\
\hline 21 & 42 & 12.80 & Saturated & 27 SP & 3531 & 0.77 & 1.0 & 1.00 & 1.0 & 1.0 & 20.9 & 1 & 0.0 & 20.9 & 0.23 & 1.92 & 0.88 & 0.39 & 0.09 & 5400 & 0.84 & 0.025 & 15 \\
\hline 22 & 44 & 13.41 & Saturated & 35 SM & 3666.4 & 0.76 & 1.0 & 1.00 & 1.0 & 1.0 & 26.6 & 15 & 2.3 & 28.9 & 0.40 & 1.92 & 0.88 & 0.68 & 0.03 & 5660 & 0.83 & UL & ut. \\
\hline 23 & 45 & 14.02 & Saturated & 34 SP & 3801.8 & 0.75 & 1.0 & 1.00 & 1.0 & 1.0 & 25.4 & 1 & 0.0 & 25.4 & 0.30 & 1.92 & 0.87 & 0.50 & 0.03 & 5920 & 0.82 & UL & UL. \\
\hline 24 & 48 & 14.63 & Saturated & 66 SP & 3937.2 & 0.73 & 1.0 & 1.00 & 1.0 & 1.0 & 48.4 & 1 & 0.0 & 48.4 & UL & 1.92 & 0.87 & UL & 0.03 & 6180 & 0.80 & UL & UL \\
\hline 25 & 50 & 15.24 & Saturated & 56 SP & 4072.6 & 0.72 & 1.0 & 1.00 & 1.0 & 1.0 & 40.4 & 1 & 0.0 & 40.4 & Ui & 1.92 & 0.86 & ul & 0.03 & 6440 & 0.79 & UL & ul \\
\hline 26 & 52 & 15.85 & Saturated & 50 5P & 4208 & 0.71 & 1.0 & 1.00 & 1.0 & 1.0 & 35.5 & 1 & 0.0 & 35.5 & U. & 1.92 & 0.86 & ut & 0.03 & 6700 & 0.77 & ul & UL \\
\hline 27 & 57 & 17.37 & Saturated & \(50 \mathrm{5P}\) & 4546.5 & 0.68 & 1.0 & 1.00 & 1.0 & 1.0 & 34.1 & 1 & 0.0 & 34.1 & U & 1.92 & 0.85 & Ul. & 0.03 & 7350 & 0.73 & ul & UL \\
\hline 28 & 62 & 18.90 & Saturated & 665 P & 4885 & 0.66 & 1.0 & 1.00 & 1.0 & 1.0 & 43.4 & 1 & 0.0 & 43.4 & Ut & 1.92 & 0.84 & ul & 0.03 & 8000 & 0.68 & UL & UL \\
\hline 29 & 67 & 20.42 & Saturated & 50 sc & 5223.5 & 0.64 & 1.0 & 1.00 & 1.0 & 1.0 & 31.8 & 35 & 7.0 & 38.8 & ut & 1.92 & 0.83 & UL & 0.03 & 8650 & 0.64 & U & UL \\
\hline 30 & 72 & 21.95 & Saturated & 92 SC & 5562 & 0.62 & 1.0 & 1.00 & 1.0 & 1.0 & 56.7 & 35 & 7.0 & 63.7 & UL & 1.92 & 0.81 & UL & 0.03 & 9300 & 0.59 & UL & UL \\
\hline 31 & 75 & 22.86 & Saturated & 5050 & 5765.1 & 0.61 & 1.0 & 1.00 & 1.0 & 1.0 & 30.3 & 35 & 7.0 & 37.3 & UL & 1.92 & 0.81 & UL & 0.03 & 9690 & 0.57 & UL & UL \\
\hline 32 & 81 & 24.69 & Saturated & 50 SP & 6171.3 & 0.59 & 1.0 & 1.00 & 1.0 & 1.0 & 29.3 & 1 & 0.0 & 29.3 & UL & 1.92 & 0.79 & UL & 0.03 & 10470 & 0.52 & UL & UL \\
\hline 33 & 86 & 26.21 & 5aturated & 505 M & 6509.8 & 0.57 & 1.0 & 1.00 & 1.0 & 1.0 & 28.5 & 15 & 2.3 & 30.8 & UL & 1.92 & 0.78 & UL & 0.03 & 11120 & 0.48 & ut. & UL \\
\hline 34 & 91 & 27.74 & Saturated & 50 cl & 6848.3 & 0.56 & 1.0 & 1.00 & 1.0 & 1.0 & 27.8 & 77.9 & 7.0 & 34.8 & ut & 1.92 & 0.77 & UL & 0.03 & 11770 & 0.46 & U & U \\
\hline 35 & 96 & 29.26 & Saturated & 50 Cl & 7186.8 & 0.54 & 1.0 & 1.00 & 1.0 & 1.0 & 27.1 & 90 & 7.0 & 34.1 & ut & 1.92 & 0.76 & UL & 0.03 & 12420 & 0.44 & ut & U \\
\hline 36 & 100 & 30.48 & Saturated & 50 sc & 7457.6 & 0.53 & 1.0 & 1.00 & 1.0 & 1.0 & 26.6 & 35 & 7.0 & 33.6 & UL & 1.92 & 0.75 & U & 0.03 & 12940 & 0.43 & u & Ul \\
\hline 37 & 107 & 32.61 & Saturated & 93 CH & 7931.5 & 0.52 & 1.0 & 1.00 & 1.0 & 1.0 & 48.0 & 90 & 7.0 & 55.0 & UL & 1.92 & 0.74 & Lil & 0.03 & 13850 & 0.44 & UL & UL \\
\hline 38 & 112 & 34.14 & Saturated & 51 cH & 9516 & 0.47 & 1.0 & 1.00 & 1.0 & 1.0 & 24.1 & 90 & 7.0 & 31.1 & UL & 1.92 & 0.68 & UL. & 0.03 & 14500 & 0.47 & U & UL \\
\hline 39 & 117 & 35.66 & Saturated & 38 CH & 9854.5 & 0.46 & 1.0 & 1.00 & 1.0 & 1.0 & 17.6 & 90 & 7.0 & 24.6 & 0.29 & 1.92 & 0.67 & 0.37 & 0.03 & 15150 & 0.51 & 0.015 & 24 \\
\hline
\end{tabular}

Source: AECOM, 2012. (See Appendices A and B for boring logs and laboratory testing results)

\title{
LIQUEFACTION FACTOR OF SAFETY ASSESSMENT
}

TEST BORING B-2-1 \({ }^{1}\)
Coleto Creek Power Plant
Primary and Secondary Ash Ponds
\begin{tabular}{lrl} 
Depth to Water \(=\) & 32 & ft \\
Average Unsaturated Soif Unit Weight, \(Y_{d}=\) & 125 & pcf \\
Average Saturated Soil Unit Weight, \(y_{s}=\) & 130 & pcf \\
Average Water Unit Weight, \(\gamma_{w}=\) & 62.3 & pcif \\
Earthquake Magnitude, \(M_{\mathrm{w}}=\) & 6.1 & \\
Borehole Diameter \(=\) & \(4^{\prime \prime}\), to \(50^{\prime}\) bgs \\
& \(3^{\prime \prime}, 50^{\prime}\) to end of boring
\end{tabular}
Sample Depth Depth Sail \(\sigma_{v o}^{\prime}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Sample \\
Number
\end{tabular} & (ft) & \begin{tabular}{l}
Depth \\
(m)
\end{tabular} & Note & \(\mathrm{N}_{\mathrm{SFr}} \quad\) Type & \[
\begin{gathered}
\sigma_{v o}^{\prime} \\
\text { \{pst\}}
\end{gathered}
\] & \(\mathrm{c}_{4}\) & \(\mathrm{c}_{\mathrm{F}}\) & \(\mathrm{C}_{8}\) & \(c_{s}\) & \(c_{11}\) & \(\left(\mathrm{N}_{1}\right)_{50}\) & FC & \(\Delta\left(N_{1}\right)_{* 0}\) & \(\left(\mathrm{N}_{1}\right)_{\text {cos }}\)-cs & \(\mathrm{CRR}_{\mathrm{M} 7 \mathrm{~S}}\) & MSF & Ko & CRR & \(\mathrm{a}_{\text {max }} / \mathrm{B}\) & \(\sigma_{v o}\) & \(\mathrm{ra}_{\text {d }}\) & CSR & \(\mathrm{FS}_{\mathrm{Ha}}\) \\
\hline 1 & 2 & 0.61 & Unsaturated & 17 sc & 250 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 25.5 & 35 & 7.0 & 32.5 & UL & 1.92 & NA & UL & 0.03 & \({ }^{*} 250\) & 1.00 & ut & \({ }^{\text {Hil }}\) \\
\hline 2 & 4 & 1.22 & Unsaturated & 21 SC & 500 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 31.5 & 35 & 7.0 & 38.5 & UL & 1.92 & NA & UL & 0.03 & 500 & 0.99 & UL & UL \\
\hline 3 & - & 1.83 & Unsaturated & 15 sc & 750 & 1.68 & 1.0 & 1.00 & 1.0 & 0.75 & 18.9 & 35 & 7.0 & 25.9 & 0.31 & 1.92 & NA & 0.60 & 0.03 & 750 & 0.99 & 0.019 & 31 \\
\hline 4 & 8 & 2.44 & Unsaturated & 13 sc & 1000 & 1.45 & 1.0 & 1.00 & 1.0 & 0.75 & 14.2 & 35 & 7.0 & 21.2 & 0.23 & 1.92 & NA & 0.45 & 0.03 & 1000 & 0.98 & 0.019 & 23 \\
\hline 5 & 10 & 3.05 & Unsaturated & 15 sc & 1250 & 1.30 & 1.0 & 1.00 & 1.0 & 0.75 & 14.6 & 37.3 & 7.0 & 21.6 & 0.24 & 1.92 & NA & 0.45 & 0.03 & 1250 & 0.98 & 0.019 & 24 \\
\hline 7 & 14 & 4.27 & Unsaturated & 12 sc & 1750 & 1.10 & 1.0 & 1.00 & 1.0 & 0.80 & 10.6 & 35 & 7.0 & 17.6 & 0.19 & 1.92 & NA & 0.36 & 0.03 & 1750 & 0.97 & 0.019 & 19 \\
\hline 8 & 16 & 4.88 & Unsaturated & 2 sc & 2000 & 1.03 & 1.0 & 1.00 & 1.0 & 0.83 & 17.9 & 35 & 7.0 & 24.9 & 0.29 & 1.92 & NA & 0.56 & 0.03 & 2000 & 0.96 & 0.019 & 30 \\
\hline 9 & 18 & 5.49 & Unsaturated & 95 c & 2250 & 0.97 & 1.0 & 1.00 & 1.0 & 0.85 & 7.4 & 42.3 & 7.0 & 14.4 & 0.15 & 1.92 & NA & 0.30 & 0.03 & 2250 & 0.96 & 0.019 & 15 \\
\hline 11 & 22 & 6.71 & Unsaturated & 14 SC & 2750 & 0.88 & 1.0 & 1.00 & 1.0 & 0.90 & 11.1 & 35 & 7.0 & 18.1 & 0.19 & 1.92 & 0.91 & 0.34 & 0.03 & 2750 & 0.95 & 0.018 & 18 \\
\hline 12 & 24 & 7.32 & Unsaturated & 17 SC & 3000 & 0.84 & 1.0 & 1.00 & 1.0 & 0.93 & 13.3 & 35 & 7.0 & 20.3 & 0.22 & 1.92 & 0.90 & 0.38 & 0.03 & 3000 & 0.94 & 0.018 & 21 \\
\hline 13 & 26 & 7.92 & Unsaturated & 18 SC & 3250 & 0.81 & 1.0 & 1.00 & 1.0 & 0.96 & 13.9 & 35.2 & 7.0 & 20.9 & 0.23 & 1.92 & 0.89 & 0.39 & 0.03 & 3250 & 0.93 & 0.018 & 22 \\
\hline 15 & 30 & 9.14 & Unsaturated & 16 sc & 3750 & 0.75 & 1.0 & 1.00 & 1.0 & 1.0 & 12.0 & 35 & 7.0 & 19.0 & 0.20 & 1.92 & 0.88 & 0.34 & 0.03 & 3750 & 0.91 & 0.018 & 19 \\
\hline 15 & 32 & 9.75 & 5aturated & 22 sc & 4000 & 0.73 & 1.0 & 1.00 & 1.0 & 1.0 & 16.0 & 38.4 & 7.0 & 23.0 & 0.26 & 1.92 & 0.87 & 0.43 & 0.03 & 4000 & 0.90 & 0.018 & 24 \\
\hline 18 & 36 & 10.97 & Saturated & 15 sc & 4270.8 & 0.70 & 1.0 & 1.00 & 1.0 & 1.0 & 10.6 & 35 & 7.0 & 17.6 & 0.19 & 1.92 & 0.86 & 0.31 & 0.03 & 4520 & 0.88 & 0.018 & 17 \\
\hline 19 & 38 & 11.58 & Saturated & 8 SC & 4406.2 & 0.69 & 1.0 & 1.00 & 1.0 & 1.0 & 5.5 & 35 & 7.0 & 12.5 & 0.14 & 1.92 & 0.85 & 0.22 & 0.03 & 4780 & 0.87 & 0.018 & 12 \\
\hline 20 & 40 & 12.19 & Saturated & 16 SC & 4541.6 & 0.68 & 1.0 & 1.00 & 1.0 & 1.0 & 10.9 & 35 & 7.0 & 17.9 & 0.19 & 1.92 & 0.85 & 0.31 & 0.03 & 5040 & 0.86 & 0.019 & 17 \\
\hline 21 A & 42 & 12.80 & Saturated & 14 SP & 4677 & 0.67 & 1.0 & 1.00 & 1.0 & 1.0 & 9.4 & 1 & 0.0 & 9.4 & 0.11 & 1.92 & 0.84 & 0.17 & 0.03 & 5300 & 0.84 & 0.019 & 9 \\
\hline 22 & 44 & 13.41 & Saturated & 27 SP & 4812.4 & 0.66 & 1.0 & 1.00 & 1.0 & 1.0 & 17.9 & 1 & 0.0 & 17.9 & 0.19 & 1.92 & 0.84 & 0.31 & 0.03 & 5560 & 0.83 & 0.019 & 17 \\
\hline 23 & 46 & 14.02 & Saturated & 25 SP & 4947.8 & 0.65 & 1.0 & 1.00 & 1.0 & 1.0 & 5.0 & 1 & 0.0 & 5.0 & 0.07 & 1.92 & 0.84 & 0.11 & 0.03 & 5820 & 0.82 & 0.019 & 5 \\
\hline 24 & 48 & 14.63 & Saturated & 37 SP & 5083.2 & 0.65 & 1.0 & 1.00 & 1.0 & 1.0 & 23.9 & 1 & 0.0 & 23.9 & 0.27 & 1.92 & 0.83 & 0.43 & 0.03 & 6080 & 0,80 & 0.019 & 23 \\
\hline 25 & 50 & 15.24 & Saturated & 35 sp & 5218.6 & 0.64 & 1.0 & 1.00 & 1.0 & 1.0 & 22.3 & 1 & 0.0 & 22.3 & 0.25 & 1.92 & 0.83 & 0.39 & 0.03 & 6340 & 0.79 & 0.019 & 21 \\
\hline 26 & 52 & 15.85 & Saturated & 33 Sm & 5354 & 0.63 & 1.0 & 1.00 & 1.0 & 1.0 & 20.7 & 35 & 7.0 & 27.7 & 0.36 & 1.92 & 0.82 & 0.57 & 0.03 & 6600 & 0.77 & 0.018 & 31 \\
\hline 27 & 56 & 17.07 & Saturated & 39 SC & 5624.8 & 0.61 & 1.0 & 1.00 & 1.0 & 1.0 & 23.9 & 45.7 & 7.0 & 30.9 & ut & 1.92 & 0.81 & UL & 0.03 & 7120 & 0.74 & U. & UL \\
\hline 28 & 61 & 18.59 & Saturated & 43 sc & 5963.3 & 0.60 & 1.0 & 1,00 & 1.0 & 1.0 & 25,6 & 35 & 7.0 & 32.6 & UL & 1.92 & 0.80 & UL & 0.03 & 7770 & 0.69 & ut & UL \\
\hline 29 & 66 & 20.12 & 5aturated & 40 SP -SM & 5301.8 & 0.58 & 1.0 & 1.00 & 1.0 & 1.0 & 23.2 & 10 & 1.2 & 24.3 & 0.28 & 1.92 & 0.79 & 0.43 & 0.03 & 8420 & 0.65 & 0.017 & 25 \\
\hline 30 & 71 & 21.64 & Saturated & 39 SP & 6640.3 & 0.56 & 1.0 & 1.00 & 1.0 & 1.0 & 22.0 & 1 & 0.0 & 22.0 & 0.24 & 1.92 & 0.78 & 0.36 & 0.03 & 9070 & 0.60 & 0.016 & 23 \\
\hline 31 & 76 & 23.16 & Saturated & 50 SM & 6978.8 & 0.55 & 1.0 & 1.00 & 1.0 & 1.0 & 27.5 & 35 & 7.0 & 34.5 & UL & 1.92 & 0.77 & UL & 0.03 & 9720 & 0.56 & UL & U \\
\hline 32 & 81 & 24.69 & Saturated & \(60 \mathrm{CL}-\mathrm{ML}-\mathrm{S}\) : & 7317.3 & 0.54 & 1.0 & 1.00 & 1.0 & 1.0 & 32.3 & 50 & 0.0 & 32.3 & ul & 1.92 & 0.76 & U & 0.03 & 10370 & 0.52 & UL & UL \\
\hline 33 & 86 & 25.21 & 5aturated & 34 CH & 7655.8 & 0.53 & 1.0 & 1.00 & 1.0 & 1.0 & 17.9 & 92.4 & 7.0 & 24.9 & 0.29 & 1.92 & 0.74 & 0.41 & 0.03 & 11020 & 0.48 & 0.014 & 31 \\
\hline 34 & 91 & 27.74 & Saturated & 41 CH & 7994.3 & 0.51 & 1.0 & 1.00 & 1.0 & 1.0 & 21.1 & 90 & 7.0 & 28.1 & 0.37 & 1.92 & 0.73 & 0.52 & 0.03 & 11670 & 0.46 & 0.013 & 40 \\
\hline 36 & 101 & 30.78 & Saturated & 50 SC & 8671.3 & 0.49 & 1.0 & 1.00 & 1.0 & 1.0 & 24.7 & 35 & 7.0 & 31.7 & UL & 1.92 & 0.71 & UL & 0.03 & 12970 & 0.43 & UL & UL \\
\hline 37 & 107 & 32.61 & Saturated & 70 CH & 9077.5 & 0.48 & 1.0 & 1.00 & 1.0 & 1.0 & 33.8 & 90 & 7.0 & 40.8 & ut & 1.92 & 0.70 & UL & 0.03 & 13750 & 0.44 & UL. & UL \\
\hline 38 & 111 & 33.83 & Saturated & 68 CH & 9348.3 & 0.48 & 1.0 & 1.00 & 1.0 & 1.0 & 32.4 & 90 & 7.0 & 39.4 & UL & 1.92 & 0.69 & UL. & 0.03 & 14270 & 0.46 & UL & UL \\
\hline 39 & 116 & 35.36 & Saturated & 58 CH & 9686.8 & 0.47 & 1.0 & 1.00 & 1.0 & 1.0 & 27.1 & 90 & 7.0 & 34.1 & UL & 1.92 & 0.68 & UL & 0.03 & 14920 & 0.50 & U & Ul \\
\hline 40 & 119 & 36.27 & Saturated & 77 CH & 9889.9 & 0.46 & 1.0 & 1.00 & 1.0 & 1.0 & 35.5 & 90 & 7.0 & 42.6 & UL & 1.92 & 0.67 & UL & 0.03 & 15310 & 0,54 & U & UL \\
\hline
\end{tabular}

Source: AECOM, 2012. (See Appendices A and B for boring logs and laboratory testing results)

\title{
LIQUEFACTION FACTOR OF SAFETY ASSESSMENT
}
\begin{tabular}{|c|c|c|}
\hline Depth to Water = & 3.5 & ft \\
\hline Average Unsaturated Sail Unit Weight, \(y_{0}=\) & 125 & pcf \\
\hline Average Saturated Soil Unit Weight, \(\gamma_{5}=\) & 130 & pcf \\
\hline Average Water Unit Weight, \(\gamma_{w}=\) & 62.3 & pcf \\
\hline Earthquake Magnitude, \(\mathrm{M}_{\mathrm{W}}=\) & 6.1 & \\
\hline Borehole Diameter = & \(3{ }^{\prime \prime}\), to end & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Sample \\
Number
\end{tabular} & \begin{tabular}{l}
Depth \\
(ft)
\end{tabular} & \begin{tabular}{l}
Depth \\
(m)
\end{tabular} & Note & \(\mathrm{N}_{\text {Sp }}\) & \[
\begin{aligned}
& \text { Soil } \\
& \text { Type }
\end{aligned}
\] & \[
\begin{aligned}
& \sigma_{v p}^{\prime} \\
& \text { (psf) }
\end{aligned}
\] & \(c_{n}\) & \(\mathrm{c}_{5}\) & \(\mathrm{C}_{\mathrm{B}}\) & \(\mathrm{C}_{5}\) & \(\mathrm{c}_{\mathrm{F}}\) & ( \(\left.\mathrm{N}_{1}\right)_{\text {fo }}\) & FC & \(\Delta\left(N_{1}\right)_{60}\) & \(\left(\mathrm{N}_{1}\right)_{60}-\mathrm{Cs}\) & \(\mathrm{CRR}_{\text {M75 }}\) & MSF & Ko & CRR & \(\mathrm{a}_{\text {max }} / \mathrm{g}\) & \(\mathrm{\sigma}_{\mathrm{vp}}\) & \(\mathrm{f}_{\mathrm{d}}\) & CSR & F5 \\
\hline 1 & 1 & 0.30 & Unsaturated & 5 & OL. & 125 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 7.5 & 50 & 7.0 & 14.5 & 0.16 & 1.92 & NA & 0.30 & 0.03 & 125 & 1.00 & 0.019 & UL \\
\hline 2 & 3 & 0.91 & Unsaturated & 16 & OL & 375 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 24.0 & 50 & 7.0 & 31.0 & 0.55 & 1.92 & NA & 1.05 & 0.03 & 375 & 0.99 & 0.019 & UL \\
\hline 3 & 5 & 1.52 & Saturated & 15 & SC & 510.4 & 2.04 & 1.0 & 1.00 & 1.0 & 0.75 & 22.9 & 35 & 7.0 & 29.9 & 0.46 & 1.92 & NA & 0.88 & 0.03 & 635 & 0.99 & 0.024 & 37 \\
\hline 4 & 7 & 2.13 & Saturated & 16 & Sp & 645.8 & 1.81 & 1.0 & 1.00 & 1.0 & 0.75 & 21.7 & 1 & 0.0 & 21.7 & 0.24 & 1.92 & NA & 0.46 & 0.03 & 895 & 0.99 & 0.027 & 17 \\
\hline 5 & 9 & 2.74 & Saturated & 15 & SP & 781.2 & 1.65 & 1.0 & 1.00 & 1.0 & 0.75 & 18.5 & 1 & 0.0 & 18.5 & 0.20 & 1.92 & NA & 0.38 & 0.03 & 1155 & 0.98 & 0.028 & 13 \\
\hline 6 & 10 & 3.05 & Saturated & 18 & SP & 848.9 & 1.58 & 1.0 & 1.00 & 1.0 & 0.75 & 21.3 & 1 & 0.0 & 21.3 & 0.23 & 1.92 & NA & 0.45 & 0.03 & 1285 & 0.98 & 0.029 & 16 \\
\hline 6 A & 11 & 3.35 & Saturated & 15 & SP & 916.6 & 1.52 & 1.0 & 1.00 & 1.0 & 0.75 & 17.1 & 1 & 0.0 & 17.1 & 0.18 & 1.92 & NA & 0.35 & 0.03 & 1415 & 0.98 & 0.029 & 12 \\
\hline 7 & 14 & 4.27 & Saturaterd & 25 & ML & 1119.7 & 1.37 & 1.0 & 1.00 & 1.0 & 0.80 & 28.6 & 50 & 7.0 & 35.6 & ut & 1.92 & NA & ut & 0.03 & 1805 & 0.97 & U & U \\
\hline 7 A & 15 & 4.57 & 5aturated & 32 & c.L & 1187.4 & 1.34 & 1.0 & 1.00 & 1.0 & 0.75 & 32.0 & 50 & 7.0 & 39.0 & ut & 1.92 & NA & U & 0.03 & 1935 & 0.97 & U & U \\
\hline 8 & 20 & 6.10 & Saturated & 21 & ML & 1525.9 & 1.18 & 1.0 & 1.00 & 1.0 & 0.88 & 21.8 & 50 & 7.0 & 28.8 & 0.40 & 1.92 & NA & 0.76 & 0.03 & 2585 & 0.95 & 0.031 & 24 \\
\hline 9 & 25 & 7.62 & Saturated & 35 & 5p & 1864.4 & 1.07 & 1.0 & 1.00 & 1.0 & 0.94 & 35.1 & 1 & 0.0 & 35.1 & UL & 1.92 & NA & ul & 0.03 & 3235 & 0.93 & U & U \\
\hline 10 & 31 & 9.45 & Saturated & 41 & SP & 2270.6 & 0.97 & 1.0 & 1.00 & 1.0 & 1.02 & 40.4 & 1 & 0.0 & 40.4 & UL & 1.92 & 0.92 & ul & 0.03 & 4015 & 0.91 & U & U \\
\hline 11 & 35 & 10.67 & Saturated & 45 & sc. & 2541.4 & 0.91 & 1.0 & 1.00 & 1.0 & 1.07 & 43.9 & 35 & 7.0 & 50.9 & UL & 1.92 & 0.92 & UL. & 0.03 & 4535 & 0.89 & UL & U \\
\hline 12 & 39 & 11.89 & Saturated & 50 & sc & 2812.2 & 0.87 & 1.0 & 1.00 & 1.0 & 1.12 & 48.6 & 35 & 7.0 & 55.6 & UL & 1.92 & 0.91 & UL & 0.03 & 5055 & 0.86 & UL & UL \\
\hline 13 & 45 & 13.72 & Saturated & 42 & 5 P & 3218.4 & 0.81 & 1.0 & 1.00 & 1.0 & 1.20 & 40.9 & 1 & 0.0 & 40.5 & Ul & 1.92 & 0.89 & UL & 0.03 & 5835 & 0.82 & UL & UL \\
\hline 14 & 50 & 15.24 & Saturated & 26 & CL & 3556.9 & 0.77 & 1.0 & 1.00 & 1.0 & 1.0 & 20.1 & 50 & 7.0 & 27.1 & 0.34 & 1.92 & 0.88 & 0.57 & 0.03 & 5485 & 0.79 & 0.028 & 21 \\
\hline 15 & 54 & 16.46 & Saturated & 56 & sp & 3827.7 & 0.74 & 1.0 & 1.00 & 1.0 & 1.0 & 41.6 & 1 & 0.0 & 41.6 & U & 1.92 & 0.87 & 4. & 0.03 & 7005 & 0.75 & UL & U \\
\hline 15A & 55 & 16.76 & Saturated & 120 & SP & 3895.4 & 0.74 & 1.0 & 1.00 & 1.0 & 1.0 & 88.4 & 1 & 0.0 & 88.4 & UL & 1.92 & 0.87 & UL & 0.03 & 7135 & 0.74 & UL & U \\
\hline 16 & 59 & 17.98 & Saturated & 83 & CL & 4166.2 & 0.71 & 1.0 & 1.00 & 1.0 & 1.0 & 59.2 & 50 & 7.0 & 66.2 & UL & 1.92 & 0.86 & ul & 0.03 & 7655 & 0.71 & UL & UL \\
\hline 17 & 65 & 19.81 & Saturated & 50 & 5M & 4572.4 & 0.68 & 1.0 & 1.00 & 1.0 & 1.0 & 34.0 & 35 & 7.0 & 41.0 & Ul. & 1.92 & 0.85 & U & 0.03 & 8435 & 0.66 & UL & \\
\hline 18 & 70 & 21.34 & Saturated & 56 & CH & 4910.9 & 0.66 & 1.0 & 1.00 & 1.0 & 1.0 & 36.8 & 90 & 7.0 & 43.8 & UL & 1.92 & 0.84 & 4. & 0.03 & 9085 & 0.61 & UL & U \\
\hline
\end{tabular}

\title{
LIQUEFACTION FACTOR OF SAFETY ASSESSMENT \\ TEST BORING B-3-1 \({ }^{1}\) \\ Coleto Creek Power Plant \\ Primary and Secondary Ash Ponds
}
\begin{tabular}{|c|c|c|}
\hline Depth to Water * & 28 & ft (Only saturated strata was found between 28.0 and 28.5 ft bgs ) \\
\hline Average Unsaturated Soil Unit Weight, \(y_{u}=\) & 125 & pcff \\
\hline Average Saturated Soil Unit Weight, \(v_{s}=\) & 130 & pcf \\
\hline Average Water Unit Weight, \(\gamma_{w}=\) & 62.3 & pcf \\
\hline Earthquake Magnitude, \(\mathrm{M}_{\mathrm{W}}=\) & 6.1 & \\
\hline Borehole Diameter \(=\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(4^{\prime \prime}\), to \(30{ }^{\prime \prime}\)
\(3^{\prime \prime}\) to end of boring}} \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Sample \\
Number
\end{tabular} & \begin{tabular}{l}
Depth \\
(ft)
\end{tabular} & \begin{tabular}{l}
Depth \\
(m)
\end{tabular} & Note & \(\mathrm{N}_{\text {SpI }}\) & \[
\begin{gathered}
\text { Soil } \\
\text { Type }
\end{gathered}
\] & \[
\begin{gathered}
\sigma_{v o}^{\prime} \\
(\mathrm{psf})
\end{gathered}
\] & \(\mathrm{C}_{7}\) & \(\mathrm{C}_{\mathrm{f}}\) & \(\mathrm{C}_{8}\) & \(c_{s}\) & \(\mathrm{C}_{\mathrm{r}}\) & \(\left(\mathrm{N}_{1}\right)_{6}\) & FC & \(\Delta\left(N_{1}\right)^{\prime}{ }_{\text {com }}\) & ( \(\mathrm{N}_{1}\) ) \({ }_{\text {cose }}\) & \(\mathrm{CRR}_{\times 77}\) & MSF & Ka & CRR & \(\mathfrak{3}_{\text {mad }} / \mathrm{g}\) & \(\sigma_{\mathrm{va}}\) & \({ }^{14}\) & CSR & \(\mathrm{Fs}_{5 \text { bin }}\) \\
\hline 1 & 1 & 0.30 & Unsaturated & 19 & Sc & 125 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 28.5 & 35 & 7.0 & 35.5 & ut & 1.92 & NA & UL & 0.03 & 125 & 1.00 & UL & ul. \\
\hline 2 & 3 & 0.91 & Unsaturated & 17 & sc & 375 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 25.5 & 35 & 7.0 & 32.5 & UL & 1.92 & NA & ul & 0.03 & 375 & 0.99 & UL & UL \\
\hline 3 & 5 & 1.52 & Unsaturated & 26 & sc & 625 & 1.84 & 1.0 & 1.00 & 1.0 & 0.75 & 35.9 & 35 & 7.0 & 42.9 & UL & 1.92 & NA & UL & 0.03 & 625 & 0.99 & UL. & uL \\
\hline 4 & 7 & 2.13 & Unsaturated & 26 & sc & 875 & 1.56 & 1.0 & 1.00 & 1.0 & 0.75 & 30.3 & 35 & 7.0 & 37.3 & ut. & 1.92 & NA & ut & 0.03 & 875 & 0.99 & UL & U \\
\hline 5 & 9 & 2.74 & Unsaturated & 9 & sc & 1125 & 1.37 & 1.0 & 1.00 & 1.0 & 0.75 & 9.3 & 35 & 7.0 & 16.3 & 0.17 & 1.92 & NA & 0.33 & 0.03 & 1125 & 0.98 & 0.019 & 17 \\
\hline 6 & 11 & 3.35 & Unsaturated & 15 & sc & 1375 & 1.24 & 1.0 & 1.00 & 1.0 & 0.75 & 14.0 & 35 & 7.0 & 21.0 & 0.23 & 1.92 & NA & 0.44 & 0.03 & 1375 & 0.98 & 0.019 & 23 \\
\hline 7 & 13 & 3.96 & Unsaturated & 12 & sc & 1625 & 1.14 & 1.0 & 1.00 & 1.0 & 0.79 & 10.8 & 35 & 7.0 & 17.8 & 0.19 & 1.92 & NA & 0.37 & 0.03 & 1625 & 0.97 & 0.019 & 19 \\
\hline 8 & 15 & 4.57 & Unsaturated & 11 & sc & 1875 & 1.06 & 1.0 & 1.00 & 1.0 & 0.75 & 8.8 & 35 & 7.0 & 15.8 & 0.17 & 1.92 & NA & 0.32 & 0.03 & 1875 & 0.97 & 0.019 & 17 \\
\hline 8 A & 16 & 4.88 & Unsaturated & 24 & st & 2000 & 1.03 & 1.0 & 1.00 & 1.0 & 0.83 & 20.5 & 40 & 7.0 & 27.5 & 0.35 & 1.92 & NA & 0.68 & 0.03 & 2000 & 0.96 & 0.019 & 35 \\
\hline 11 & 21 & 6.40 & Unsaturated & 18 & sc & 2625 & 0.90 & 1.0 & 1.00 & 1.0 & 0.89 & 14.4 & 34.8 & 7.0 & 21.4 & 0.23 & 1.92 & 0.91 & 0.41 & 0.03 & 2625 & 0.95 & 0.019 & 22 \\
\hline 12 & 23 & 7.01 & Unsaturated & 21 & CL & 2875 & 0.86 & 1.0 & 1.00 & 1.0 & 0.92 & 16.6 & 50 & 7.0 & 23.6 & 0.27 & 1.92 & 0.90 & 0.46 & 0.03 & 2875 & 0.94 & 0.018 & 25 \\
\hline 14 & 27 & 8.23 & Unsaturated & 19 & 55 & 3375 & 0.79 & 1.0 & 1.00 & 1.0 & 1.0 & 15.0 & 35 & 7.0 & 22.0 & 0.24 & 1.92 & 0.89 & 0.42 & 0.03 & 3375 & 0.93 & 0.018 & 23 \\
\hline 15 & 28.5 & 8.69 & Saturated & 16 & sc & 3533.85 & 0.77 & 1.0 & 1.00 & 1.0 & 1.0 & 12.4 & 35 & 7.0 & 19.4 & 0.21 & 1.92 & 0.88 & 0.35 & 0.03 & 3565 & 0.92 & 0.018 & 20 \\
\hline 15A & 29 & 8.84 & Unsaturated & 20 & 5M & 3627.5 & 0.76 & 1.0 & 1.00 & 1.0 & 1.0 & 15.3 & 35 & 7.0 & 22.3 & 0.25 & 1.92 & 0.88 & 0.42 & 0.03 & 3627.5 & 0.92 & 0.018 & 23 \\
\hline 16 & 31 & 9.45 & Unsaturated & 17 & SM & 3877.5 & 0.74 & 1.0 & 1.00 & 1.0 & 1.0 & 12.6 & 35 & 7.0 & 19.6 & 0.21 & 1.92 & 0.87 & 0.35 & 0.03 & 3877.5 & 0.91 & 0.018 & 20 \\
\hline 17 & 36 & 10.97 & Unsaturated & 65 & 5M & 4502.5 & 0.69 & 1.0 & 1.00 & 1.0 & 1.0 & 44.6 & 35 & 7.0 & 51.6 & UL. & 1.92 & 0.85 & UL & 0.03 & 4502.5 & 0.88 & U & UL \\
\hline
\end{tabular}

Source; AECOM, 2012. (See Appendices A and B for baring logs and laboratory testing results)

\title{
LIQUEFACTION FACTOR OF SAFETY ASSESSMENT
}

TEST BORING B-3-2 \({ }^{1}\)
Coleto Creek Power Plant
Primary and Secondary Ash Ponds
\begin{tabular}{lcl} 
Depth to Water = & 14 & ft \\
Average Unsaturated Soil Unit Welght, \(\mathrm{y}_{4}=\) & 125 & pcf \\
Average Saturated Soil Unit Weight, \(y_{\mathrm{s}}=\) & 130 & pcf \\
Average Water Unit Weight, \(y_{w}=\) & 62.3 & pcf \\
Earthquake Magnitude, \(M_{w}=\) & 6.1 & \\
Borehale Diameter = & \(3^{\prime \prime}\), to end of boring
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Sample \\
Number
\end{tabular} & \begin{tabular}{l}
Depth \\
(ft)
\end{tabular} & \begin{tabular}{l}
Depth \\
(m)
\end{tabular} & Note & \(\mathrm{N}_{\text {spr }}\) & \[
\begin{gathered}
\text { 5oil } \\
\text { Type }
\end{gathered}
\] & \[
\begin{aligned}
& \sigma_{\mathrm{vo}}^{\prime} \\
& (\mathrm{psf})
\end{aligned}
\] & \(\mathrm{C}_{\mathrm{H}}\) & \(\varepsilon_{\varepsilon}\) & \(C^{8}\) & \(c_{5}\) & \(\mathrm{C}_{\mathrm{g}}\) & \(\left\{\mathrm{N}_{\mathrm{y}} \mathrm{l}_{\text {en }}\right.\) & FC & \(\Delta\left(N_{1}\right)_{\text {co }}\) & \(\left\langle\mathrm{N}_{1}\right\}_{60} \mathrm{cos}^{-\mathrm{Cs}}\) & \(\mathrm{CRF}_{\text {w7. }}\) & M5F & Ko & CRR & \(\mathrm{a}_{\text {max }} / \mathrm{F}\) & \(\sigma_{v}\) & \(\mathrm{r}_{4}\) & CSR & \(\mathrm{Fs}_{\text {liq }}\) \\
\hline 1 & 1 & 0.30 & Unsaturated & 12 & 5M & 125 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 18.0 & 35 & 7.0 & 25.0 & 0.29 & 1.92 & NA & 0.56 & 0.03 & 125 & 1.00 & 0.019 & 29 \\
\hline 2 & 3 & 0.91 & Unsaturated & 14 & CL & 375 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 21.0 & 50 & 7.0 & 28.0 & 0.37 & 1.92 & NA & 0.71 & 0.03 & 375 & 0.99 & 0.019 & 36 \\
\hline 2A & 4 & 1.22 & Unsaturated & 18 & CL & 500 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 27.0 & 50 & 7.0 & 34.0 & ul & 1.92 & NA & UL & 0.03 & 500 & 0.99 & UL & UL \\
\hline 3 & 5 & 1.52 & Unsaturated & 18 & CL & 625 & 1.84 & 1.0 & 1.00 & 1.0 & 0.75 & 24.8 & 50 & 7.0 & 31.8 & U & 1.92 & NA & ut & 0.03 & 625 & 0.99 & UL & ut \\
\hline 4 & 7 & 2.13 & Unsaturated & 18 & c. & 875 & 1.56 & 1.0 & 1.00 & 1.0 & 0.75 & 21.0 & 50 & 7.0 & 28.0 & 0.37 & 1.92 & NA & 0.71 & 0.03 & 875 & 0.99 & 0.019 & 37 \\
\hline 5 & 9 & 2.74 & Unsaturated & 19 & ca & 1125 & 1.37 & 1.0 & 1.00 & 1.0 & 0.75 & 19.5 & 50 & 7.0 & 26.5 & 0.33 & 1.92 & NA & 0.63 & 0.03 & 1125 & 0.98 & 0.019 & 33 \\
\hline 6 & 11 & 3.35 & Unsaturated & 47 & SM & 1375 & 1.24 & 1.0 & 1.00 & 1.0 & 0.76 & 44.3 & 35 & 7.0 & 51.3 & UL & 1.92 & NA & UL & 0.03 & 1375 & 0.98 & ul & UL \\
\hline 7 & 15 & 4.57 & Saturated & 23 & 5 P & 1817.7 & 1.08 & 1.0 & 1.00 & 1.0 & 0.82 & 20.3 & 1 & 0.0 & 20.3 & 0.22 & 1.92 & NA & 0.42 & 0.03 & 1880 & 0.97 & 0.020 & 22 \\
\hline 8 & 20 & 6.10 & Saturated & 42 & SM & 2156.2 & 0.99 & 1.0 & 1.00 & 1.0 & 0.75 & 31.2 & 35 & 7.0 & 38.2 & UL & 1.92 & NA & UL & 0.03 & 2530 & 0.95 & UL & U \\
\hline 9 & 24 & 7.32 & 5aturated & 50 & SP & 2427 & 0.93 & 1.0 & 1.00 & 1.0 & 0.93 & 43.4 & 1 & 0.0 & 43.4 & ut & 1.92 & 0.92 & UL & 0.03 & 3050 & 0.94 & UL & UL \\
\hline 10 & 29 & 8.84 & 5aturated & 52 & 5P & 2765.5 & 0.87 & 1.0 & 1.00 & 1.0 & 0.99 & 45.0 & 1 & 0.0 & 45.0 & ut. & 1.92 & 0.91 & UL. & 0.03 & 3700 & 0.92 & U & UL \\
\hline
\end{tabular}

\title{
LIQUEFACTION FACTOR OF SAFETY ASSESSMENT
}

TEST BORING B-4-1 \({ }^{1}\)
Coleto Creek Power Plant
Primary and Secondary Ash Ponds
\begin{tabular}{|c|c|c|}
\hline Depth to Water = & 35.6 & ft \\
\hline Average Unsaturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{d}}=\) & 125 & prf \\
\hline Average Saturated Soil Unit Weight, \(\mathrm{y}_{4}=\) & 130 & pcf \\
\hline Average Water Unit Weight, \(\mathrm{y}_{w}=\) & 62.3 & pcf \\
\hline Earthquake Magnitude, \(\mathrm{M}_{\mathrm{w}}=\) & 5.1 & \\
\hline Borehole Diameter \(=\) & \(3^{\prime \prime}\), to en & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Sample \\
Number
\end{tabular} & \begin{tabular}{l}
Depth \\
(ft)
\end{tabular} & \begin{tabular}{l}
Depth \\
(m)
\end{tabular} & Note & \(\mathrm{N}_{\text {sFt }}\) & \begin{tabular}{l}
Soil \\
Type
\end{tabular} & \[
\begin{aligned}
& \sigma_{v o}^{*} \\
& (\mathrm{psf})
\end{aligned}
\] & \(c_{n}\) & \(c_{E}\) & \(C_{8}\) & \(c_{5}\) & \(\mathrm{C}_{\mathrm{R}}\) & \(\left(\mathrm{N}_{1}\right)_{\text {co }}\) & FC & \(\Delta\left(N_{i}\right)_{60}\) & \(\left(\mathrm{N}_{1}\right)_{60-\mathrm{cs}}\) & CRR \(_{\text {M } 7.5}\) & MSF & Ko & CRR & \(\overline{\mathrm{a}}_{\text {max }} / \mathrm{g}\) & \(\sigma^{0}\) & \(\mathrm{T}_{4}\) & CSR & \(\mathrm{FS}_{\text {kif }}\) \\
\hline 1 & 1 & 0.30 & Unsaturated & 17 & sc & 125 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 25.5 & 12.8 & 1.8 & 27.3 & 0.35 & 1.92 & NA & 0.67 & 0.03 & 125 & 1.00 & 0.019 & 34 \\
\hline 2 & 3 & 0.91 & Unsaturated & 12 & sc & 375 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 18.0 & 12.8 & 1.8 & 19.8 & 0.21 & 1.92 & NA & 0.41 & 0.03 & 375 & 0.99 & 0.019 & 21 \\
\hline 3 & 5 & 1.52 & Unsaturated & 12 & 5 C & 625 & 1.84 & 1.0 & 1.00 & 1.0 & 0.75 & 16.6 & 12.8 & 1.8 & 18.4 & 0.20 & 1.92 & NA & 0.38 & 0.03 & 625 & 0.99 & 0.019 & 20 \\
\hline 6 & 11 & 3.35 & Unsaturated & 14 & 5 C & 1375 & 1.24 & 1.0 & 1.00 & 1.0 & 0.76 & 13.2 & 12.8 & 1.8 & 15.0 & 0.16 & 1.92 & NA & 0.31 & 0.03 & 1375 & 0.98 & 0.019 & 16 \\
\hline 8 & 14 & 4.27 & Unsaturated & 21 & sc & 1750 & 1.10 & 1.0 & 1.00 & 1.0 & 0.80 & 18.5 & 12.8 & 1.8 & 20.3 & 0.22 & 1.92 & NA & 0.42 & 0.09 & 1750 & 0.97 & 0.019 & 22 \\
\hline 9 & 17 & 5.18 & Unsaturated & 20 & sc & 2125 & 1.00 & 1.0 & 1.00 & 1.0 & 0.84 & 15.8 & 12.8 & 1.8 & 18.5 & 0.20 & 1.92 & 0.93 & 0.38 & 0.03 & 2125 & 0.96 & 0.019 & 20 \\
\hline 10 & 19 & 5.79 & Unsaturated & 29 & sc & 2375 & 0.94 & 1.0 & 1.00 & 1.0 & 0.87 & 23.8 & 12.8 & 1.8 & 25.6 & 0.31 & 1.92 & 0.92 & 0.59 & 0.03 & 2375 & 0.96 & 0.019 & 31 \\
\hline 11 & 20 & 6.10 & Unsaturated & 16 & cL & 2500 & 0.92 & 1.0 & 1.00 & 1.0 & 0.88 & 13.0 & 50 & 7.0 & 20.0 & 0.22 & 1.92 & 0.92 & 0.41 & 0.03 & 2500 & 0.95 & 0.019 & 22 \\
\hline 11 A & 21 & 6.40 & Unsaturated & 23 & cL & 2625 & 0.90 & 1.0 & 1.00 & 1.0 & 0.89 & 18.4 & 50 & 7.0 & 25.4 & 0.30 & 1.92 & 0.91 & 0.58 & 0.03 & 2625 & 0.95 & 0.019 & 31 \\
\hline 12 & 22 & 6.71 & Unsaturated & 24 & c. & 2750 & 0.88 & 1.0 & 1.00 & 1.0 & 0.90 & 18.9 & 50 & 7.0 & 25.9 & 0.31 & 1.92 & 0.91 & 0.60 & 0.03 & 2750 & 0.95 & 0.018 & 33 \\
\hline 12A & 23 & 7.01 & Unsaturated & 22 & c. & 2875 & 0.86 & 1.0 & 1.00 & 1.0 & 0.92 & 17.4 & 50 & 7.0 & 24.4 & 0.28 & 1.92 & 0.90 & 0.54 & 0.03 & 2875 & 0.94 & 0.018 & 29 \\
\hline 14 & 27 & 8.23 & Unsaturated & 25 & sc & 3375 & 0.79 & 1.0 & 1.00 & 1.0 & 0.97 & 19.2 & 35 & 7.0 & 26.2 & 0.32 & 1.92 & 0.89 & 0.61 & 0.03 & 3375 & 0.93 & 0.018 & 34 \\
\hline 15 & 29 & 8.84 & Unsaturated & 23 & SC & 3625 & 0.76 & 1.0 & 1.00 & 1.0 & 0.99 & 17.4 & 35 & 7.0 & 24.4 & 0.28 & 1.92 & 0.88 & 0.54 & 0.03 & 3625 & 0.92 & 0.018 & 30 \\
\hline 15 & 31 & 9.45 & Unsaturated & 26 & SM & 3875 & 0.74 & 1.0 & 1.00 & 1.0 & 1.0 & 19.2 & 35 & 7.0 & 26.2 & 0.32 & 1.92 & 0.87 & 0.61 & 0.03 & 3875 & 0.91 & 0.018 & 35 \\
\hline 17 & 34 & 10.36 & Unsaturated & 22 & CL & 4242 & 0.71 & 1.0 & 1.00 & 1.0 & 1.0 & 15.5 & 50 & 7.0 & 22.5 & 0.25 & 1.92 & 0.86 & 0.48 & 0.03 & 4242 & 0.89 & 0.017 & 28 \\
\hline 17 A & 36 & 10.97 & Saturated & 28 & SP & 4477.08 & 0.69 & 1.0 & 1.00 & 1.0 & 1.0 & 19.3 & 1 & 0.0 & 19.3 & 0.21 & 1.92 & 0.85 & 0.40 & 0.03 & 4502 & 0.88 & 0.017 & 23 \\
\hline 18 & 41 & 12.50 & 5aturated & 35 & SP & 4815.58 & 0.66 & 1.0 & 1.00 & 1.0 & 1.0 & 23.2 & 1 & 0.0 & 23.2 & 0.26 & 1.92 & 0.34 & 0.50 & 0.03 & 5152 & 0.85 & 0.018 & 28 \\
\hline 19 & 46 & 14.02 & Saturated & 35 & SP & 5154.08 & 0.64 & 1.0 & 1.00 & 1.0 & 1.0 & 22.4 & 1 & 0.0 & 22.4 & 0.25 & 1.92 & 0.83 & 0.48 & 0.03 & 5802 & 0.82 & 0.018 & 27 \\
\hline 20 & 51 & 15,54 & Unsaturated & 60 & \(5 P\) & 6427 & 0.57 & 1.0 & 1.00 & 1.0 & 1.0 & 34.4 & , & 0.0 & 34.4 & UL & 1.92 & 0.79 & UL & 0.03 & 6427 & 0.78 & UL & UL \\
\hline
\end{tabular}

Source: AECOM, 2012. (See Appendices \(A\) and \(B\) for boring logs and laboratory testing results)

\title{
LIQUEFACTION FACTOR OF SAFETY ASSESSMENT \\ TEST BORING B-4-2 \({ }^{1}\) \\ Coleto Creek Power Plant \\ Primary and Secondary Ash Ponds
}
\begin{tabular}{lrl} 
Depth to Water \(=\) & 14 & ft \\
Average Unsaturated Sail Unit Weight, \(\mathrm{y}_{\mathrm{d}}=\) & 125 & pcf \\
Average Saturated Soil Unilt Welght, \(\mathrm{y}_{\mathrm{s}}=\) & 1.30 & pcf \\
Average Water Unit Weight, \(\mathrm{y}_{\mathrm{w}}=\) & 62.3 & pcf \\
Earthquake Magnitude, \(\mathrm{M}_{\mathrm{w}}=\) & 6.1 & \\
Borehole Dlameter = & \(3^{\prime \prime}\), to end of boring
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Sample \\
Number
\end{tabular} & \begin{tabular}{l}
Depth \\
(ft)
\end{tabular} & \[
\begin{aligned}
& \text { Depth } \\
& (\mathrm{m})
\end{aligned}
\] & Note & \(\mathrm{N}_{\text {spt }}\) & \[
\begin{aligned}
& \text { Soil } \\
& \text { Type }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{a}_{\mathrm{v}}^{\prime} \\
& \text { \{psf\}}
\end{aligned}
\] & \(C_{n}\) & \(\mathrm{C}_{\mathrm{E}}\) & \(\mathrm{C}_{\mathrm{f}}\) & \(\mathrm{c}_{5}\) & \(\mathrm{C}_{\mathrm{R}}\) & \(\left(\mathrm{N}_{1}\right)_{\text {co }}\) & FC & \(\Delta\left(N_{1}\right)_{\text {m }}{ }^{\text {a }}\) & \(\left(\mathrm{N}_{1}\right)_{\text {cos }} \cdot \mathrm{cs}\) & CRR \(_{\text {m } 7,5}\) & MSF & Ko & CRR & \(\mathrm{a}_{\text {max }} / \mathrm{B}\) & \(\mathrm{F}_{\mathrm{ym}}\) & \({ }^{\text {d }}\) & CSR & \(\mathrm{FS}_{\mathrm{Hq}}\) \\
\hline 1 & 1 & 0.30 & Unsaturated & 23 & SM & 125 & 2.00 & 1,0 & 1.00 & 1.0 & 0.75 & 34,5 & 35 & 7.0 & 41.5 & UL & 1.92 & NA & UL & 0.03 & 125 & 1.00 & U & UL \\
\hline 2 & 3 & 0.91 & Unsaturated & 33 & 5M & 375 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 49.5 & 35 & 7.0 & 56.5 & UL & 1.92 & NA & UL & 0.03 & 375 & 0.99 & U & UL \\
\hline 3 & 5 & 1.52 & Unsaturated & 28 & ol & 625 & 1.84 & 1.0 & 1.00 & 1.0 & 0.75 & 38.6 & 50 & 7.0 & 45.6 & UL & 1.92 & NA & ul & 0.03 & 525 & 0.99 & 4. & U \\
\hline 4 & 7 & 2.13 & Unsaturated & 22 & 5 C & 875 & 1.56 & 1.0 & 1.00 & 1.0 & 0.75 & 25.7 & 35 & 7.0 & 32.7 & UL & 1.92 & NA & UL & 0.03 & 875 & 0.99 & UL & U \\
\hline 6 & 11 & 3.35 & Unsaturated & 12 & 5M & 1375 & 1.24 & 1.0 & 1.00 & 1.0 & 0.76 & 11.3 & 35 & 7.0 & 18.3 & 0.20 & 1.92 & NA & 0.38 & 0.03 & 1375 & 0.98 & 0.019 & 20 \\
\hline 7 & 15 & 4.57 & Saturaterd & 13 & 5 P & 1817.7 & 1.08 & 1.0 & 1.00 & 1.0 & 0.82 & 11.5 & 1 & 0.0 & 11.5 & 0.13 & 1.92 & NA & 0.24 & 0.03 & 1880 & 0.97 & 0.020 & 12 \\
\hline 8 & 20 & 6.10 & Saturated & 16 & 5P & 2156.2 & 0.99 & 1.0 & 1.00 & 1.0 & 0.75 & 11.9 & 1 & 0.0 & 11.9 & 0.13 & 1.92 & 0.93 & 0.25 & 0.03 & 2530 & 0.95 & 0.022 & 11 \\
\hline 9 & 25 & 7.62 & Saturated & 29 & 5P & 2494.7 & 0.92 & 1.0 & 1.00 & 1.0 & 0.94 & 25.1 & 1 & 0.0 & 25.1 & 0.29 & 1.92 & 0.92 & 0.57 & 0.03 & 3180 & 0.93 & 0.023 & 24 \\
\hline 10 & 29 & 8.84 & Saturated & 12 & 5M & 2765.5 & 0.87 & 1.0 & 1.00 & 1.0 & 0.99 & 10.4 & 35 & 7.0 & 17.4 & 0.19 & 1.92 & 0.91 & 0.36 & 0.03 & 3700 & 0.92 & 0.024 & 15 \\
\hline 10 A & 29.5 & 8.99 & Saturated & 43 & 5 P & 2799.35 & 0.87 & 1.0 & 1.00 & 1.0 & 1.00 & 37.4 & 1 & 0.0 & 37.4 & U. & 1.92 & 0.91 & UL & 0.03 & 3765 & 0.91 & UL & UL \\
\hline
\end{tabular}

\title{
LIQUEFACTION FACTOR OF SAFETY ASSESSMENT \\ TEST BORING B-5-1 \({ }^{1}\) \\ \\ Coleto Creek Power Plant \\ \\ Coleto Creek Power Plant \\ Primary and Secondary Ash Ponds
}
\begin{tabular}{lrl} 
Depth to Water \(=\) & 32 & ft \\
Average Unsaturated Soil Unit Weight, \(\mathrm{Y}_{\mathrm{d}}=\) & 125 & pcf \\
Average Saturated Scil Unit Weight, \(y_{4}=\) & 130 & pcf \\
Average Water Unit Weight, \(y_{w}=\) & 62.3 & pcf \\
Earthquake Magnitude, \(M_{w}=\) & 6.1 & \\
Borehole Diameter \(=\) & \(3^{\prime \prime}\), to end of boring
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Sample \\
Number
\end{tabular} & \begin{tabular}{l}
Depth \\
(f)
\end{tabular} & \begin{tabular}{l}
Depth \\
(m)
\end{tabular} & Note & \(\mathrm{N}_{\text {spt }}\) & \[
\begin{aligned}
& \text { 5oil } \\
& \text { Type }
\end{aligned}
\] & \[
\begin{aligned}
& \sigma_{\text {vo }}^{\prime} \\
& (\mathrm{psf})
\end{aligned}
\] & \(c_{\text {H }}\) & \(C_{E}\) & \(\mathrm{C}_{\mathrm{B}}\) & \(c_{5}\) & \(\mathrm{C}_{\mathrm{f}}\) & \(\left(\mathrm{N}_{1}\right)_{\text {Ea }}\) & FC & \(\Delta\left(N_{1}\right)_{s}\) & \(\left(\mathrm{N}_{1}\right)_{60} \mathrm{cos}^{-C 5}\) & \(\mathrm{CRR}_{\text {M7. }}\) & M5F & Ko & CRR & \(\mathrm{a}_{\text {max }} / \mathrm{B}\) & \(\sigma_{v n}\) & \(\mathrm{r}_{\mathrm{d}}\) & CSR & \(\mathrm{FS}_{\mathrm{kin}}\) \\
\hline 1 & 1 & 0.30 & Unsaturated & 34 & SC & 125 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 51.0 & 35 & 7.0 & 58.0 & U. & 1.92 & NA & UL & 0.03 & 125 & 1.00 & UL & UL \\
\hline 2 & 3 & 0.91 & Unsaturated & 26 & Sc & 375 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 39.0 & 35 & 7.0 & 45.0 & UL & 1.92 & NA & U. & 0.03 & 375 & 0.99 & UL & UL \\
\hline 3 & 5 & 1.52 & Unsaturated & 23 & sc & 625 & 1.84 & 1.0 & 1.00 & 1.0 & 0.75 & 31.7 & 35 & 7.0 & 38.7 & U & 1.92 & NA & ut & 0.03 & 625 & 0.99 & UL & UL \\
\hline 4 & 7 & 2.13 & Unsaturated & 17 & 50 & 875 & 1.56 & 1.0 & 1.00 & 1.0 & 0.75 & 19.8 & 35 & 7.0 & 26.8 & 0.33 & 1.92 & NA & 0.64 & 0.03 & 875 & 0.99 & 0.019 & 33 \\
\hline 5 & 9 & 2.74 & Unsaturated & 11 & sc & 1125 & 1.37 & 1.0 & 1.00 & 1.0 & 0.75 & 11.3 & 35 & 7.0 & 18.3 & 0.20 & 1.92 & NA & 0.38 & 0.03 & 1125 & 0.98 & 0.019 & 20 \\
\hline 6 & 11 & 3.35 & Unsaturated & 17 & 50 & 1375 & 1.24 & 1.0 & 1.00 & 1.0 & 0.75 & 15.8 & 35 & 7.0 & 22.8 & 0.26 & 1.92 & NA & 0.49 & 0.03 & 1375 & 0.58 & 0.019 & 26 \\
\hline 7 & 12 & 3.66 & Unsaturated & 12 & 5. & 1500 & 1.19 & 1.0 & 1.00 & 1.0 & 0.75 & 10.7 & 35 & 7.0 & 17.7 & 0.19 & 1.92 & NA & 0.36 & 0.03 & 1500 & 0.97 & 0.019 & 19 \\
\hline 7A & 13 & 3.96 & Unsaturated & 18 & 5. & 1625 & 1.14 & 1.0 & 1.00 & 1.0 & 0.75 & 15.4 & 35 & 7.0 & 22.4 & 0.25 & 1.92 & NA & 0.48 & 0.03 & 1625 & 0.97 & 0.019 & 25 \\
\hline 8 & 15 & 4.57 & Unsaturated & 10 & 55 & 2875 & 1.06 & 1.0 & 1.00 & 1.0 & 0.75 & 8.0 & 35 & 7.0 & 15.0 & 0.16 & 1.92 & NA & 0.31 & 0.03 & 1875 & 0.97 & 0.019 & 16 \\
\hline 9 & 17 & 5.18 & Unsaturated & 15 & 50 & 2125 & 1.00 & 1.0 & 1.00 & 1.0 & 0.75 & 11.2 & 35 & 7.0 & 18.2 & 0.20 & 1.92 & 0.93 & 0.37 & 0.03 & 2125 & 0.96 & 0.019 & 20 \\
\hline 10 & 19 & 5.79 & Unsaturated & 32 & sc & 2375 & 0.94 & 1.0 & 1.00 & 1.0 & 0.75 & 22.7 & 35 & 7.0 & 29.7 & 0.44 & 1.92 & 0.92 & 0.85 & 0.03 & 2375 & 0.96 & 0.019 & 45 \\
\hline 11 & 20 & 6.10 & Unsaturated & 20 & 5 C & 2500 & 0.92 & 1.0 & 1.00 & 1.0 & 0.75 & 13.8 & 35 & 7.0 & 20.8 & 0.23 & 1.92 & 0.92 & 0.44 & 0.03 & 2500 & 0.95 & 0.019 & 23 \\
\hline 11 A & 21 & б. 40 & Unsaturated & 28 & CL & 2625 & 0.90 & 1.0 & 1.00 & 1.0 & 0.75 & 18.9 & 83.9 & 7.0 & 25.9 & 0.31 & 1.92 & 0.91 & 0.60 & 0.03 & 2625 & 0.95 & 0.019 & 32 \\
\hline 16 & 31 & 9.45 & Unsaturated & 35 & CL & 3875 & 0.74 & 1.0 & 1.00 & 1.0 & 0.75 & 19.4 & 50 & 7.0 & 26.4 & 0.32 & 1.92 & 0.87 & 0.62 & 0.03 & 3875 & 0.91 & 0.018 & 35 \\
\hline 17 & 33 & 10.06 & Saturated & 33 & 5 M & 4067.7 & 0.72 & 1.0 & 1.00 & 1.0 & 0.75 & 17.9 & 35 & 7.0 & 24.9 & 0.29 & 1.92 & 0.85 & 0.56 & 0.03 & 4130 & 0.90 & 0.018 & 31 \\
\hline 18 & 36 & 10.97 & Saturated & 80 & 5 P & 4270.8 & 0.70 & 1.0 & 1.00 & 1.0 & 0.75 & 42.2 & 1 & 0.0 & 42.2 & U & 1.92 & 0.86 & UL & 0.03 & 4520 & 0.88 & ut & ut \\
\hline 19 & 41 & 12.50 & Saturated & 77 & SP & 4609.3 & 0.68 & 1.0 & 1.00 & 1.0 & 0.75 & 39.1 & 1 & 0.0 & 39.1 & u & 1.92 & 0.85 & UL & 0.03 & 5170 & 0.85 & ul & ut \\
\hline 20 & 46 & 14.02 & Saturated & 42 & SM & 4947.8 & 0.55 & 1.0 & 1.00 & 1.0 & 0.75 & 20.6 & 35 & 7.0 & 27.6 & 0.36 & 1.92 & 0.84 & 0.68 & 0.03 & 5820 & 0.82 & 0.019 & 36 \\
\hline 21 & 50 & 15.24 & Saturated & 50 & 5M & 5218.6 & 0.64 & 1.0 & 1.00 & 1.0 & 0.75 & 23.9 & 35 & 7.0 & 30.9 & UL & 1.92 & 0.83 & UL & 0.03 & 6340 & 0.79 & ut & UL \\
\hline
\end{tabular}

APPENDIX E: GUADALUPE-BLANCO RIVER AUTHORITY LAKE AREA-CAPACITY CURVES

\section*{ATTACHMENT 3-1}

TABLE 1
COLETO CREEK RESERVOIR
AREAS AND CAPACITIES
INITIAL CONDITIONS*
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Elev. & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline & \multicolumn{10}{|c|}{AREA IN ACRES} \\
\hline 50 & & & & & & & & & 0 & 9 \\
\hline 60 & 18 & 26 & 34 & 42 & 50 & 60 & 80 & 100 & 120 & 145 \\
\hline 70 & 170 & 200 & 239 & 277 & 314 & 351 & 397 & 442 & 495 & 547 \\
\hline 80 & 599 & 679 & 758 & 835 & 910 & 984 & 1087 & 1189 & 1299 & 1408 \\
\hline 90 & 1504 & 1650 & 1796 & 1940 & 2084 & 2230 & 2369 & 2514 & 2652 & 2787 \\
\hline 100 & 2918 & 3077 & 3255 & 3461 & 3698 & 3954 & 4207 & 4458 & 4706 & 4949 \\
\hline 110 & 5190 & 5531 & 5910 & 6324 & 6763 & 7234 & 7734 & 8229 & 8725 & 9223 \\
\hline 120 & 9723 & & & & & & & & & \\
\hline
\end{tabular}

CAPACITY IN ACRE-FEET ,
\begin{tabular}{rrrrrrrrrrr}
50 & & & & & & & & 0 & 4 \\
60 & 18 & 40 & 70 & 108 & 154 & 209 & 279 & 369 & 479 & 611 \\
70 & 769 & 954 & 1174 & 1432 & 1727 & 2060 & 2434 & 2853 & 3322 & 3843 \\
80 & 4416 & 5055 & 5774 & 6570 & 7442 & 8389 & 9425 & 10,563 & 11,807 & 13,160 \\
90 & 14,617 & 16,194 & 17,917 & 19,786 & 21,798 & 23,955 & 26,254 & 28,695 & 31,277 & 33,996 \\
100 & 36,849 & 39,846 & 43,012 & 46,370 & 49,949 & 53,744 & 57,855 & 62,187 & 66,769 & 71,597 \\
110 & 76,667 & 82,027 & 87,747 & 93,863 & 100,406 & 107,409 & 114,807 & 122,878 & 131,354 & 140,328 \\
120 & 149,800 & & & & & & & & & \\
\end{tabular}
*Areas and capacities of impoundments behind Dike Nos. 1 and 2 are not included in this tabulation.

ATTACHMENT 3-2
TABLE 2

> COLETO CREEK PROJECT AREAS AND CAPACITIES
> SULPHUR CREEK BEHIND DIKE NO. 1
> INCLUDING FLUME NO. 1
\begin{tabular}{clllllllllll} 
Elev. & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{tabular}
\begin{tabular}{rrrrrrrrrrr}
70 & & & & & & & & 0 & 1 & 2 \\
80 & 3 & 5 & 7 & 10 & 14 & 18 & 22 & 26 & 31 & 36 \\
90 & 49 & 56 & 64 & 73 & 82 & 90 & 101 & 113 & 126 & 138 \\
100 & 151 & 164 & 178 & 193 & 207 & 223 & 240 & 259 & 279 & 303 \\
110 & 329 & 358 & 388 & 419 & 455 & 499 & 540 & 590 & 641 & 699 \\
120 & 770 & & & & & & & & &
\end{tabular}

CAPACITY IN ACRE-FEET
\begin{tabular}{rrrrrrrrrrr}
70 & & & & & & & & 0 & 2 \\
80 & 4 & 8 & 14 & 23 & 35 & 51 & 71 & 95 & 123 & 157 \\
90 & 199 & 251 & 311 & 379 & 456 & 542 & 638 & 745 & 865 & 997 \\
100 & 1141 & 1299 & 1470 & 1656 & 1856 & 2071 & 2303 & 2553 & 2322 & 3113 \\
110 & 3429 & 3773 & 4146 & 4550 & 4987 & 5464 & 5984 & 6549 & 7165 & 7835 \\
120 & 8570 & & & & & & & & &
\end{tabular}

TABLE 3
COLETO CREEK PROJECT
AREAS AND CAPACITIES
TURKEY CREEK BEHIND DIKE NO. 2
INCLUDING FLUME NO. 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Elev. & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline & & & & & AREA IN & ACRES & & & & \\
\hline 70 & & 0 & 1 & 3 & 6 & 9 & 13 & 18 & 24 & 31 \\
\hline 80 & 38 & 46 & 55 & 65 & 76 & 88 & 101 & 115 & 130 & 146 \\
\hline 90 & 167 & 184 & 200 & 217 & 234 & 250 & 270 & 293 & 322 & 355 \\
\hline 100 & 391 & 429 & 467 & 506 & 545 & 583 & 623 & 663 & 705 & 748 \\
\hline 110 & 791 & - 831 & 882 & 947 & 1032 & 1118 & 1206 & 1291 & 1374 & 1458 \\
\hline \multirow[t]{2}{*}{120} & 1537 & & & & & & & & & \\
\hline & \multicolumn{10}{|c|}{CAPACITY IN ACRE-FEET} \\
\hline 70 & & 0 & 0 & 2 & 7 & 14 & 25 & 41 & 62 & 89 \\
\hline 80 & 124 & 166 & 216 & 276 & 347 & 429 & 523 & 631 & 754 & 892 \\
\hline 90 & 1048 & 1224 & 1416 & 1624 & 1850 & 2092 & 2352 & 2634 & 2942 & 3281 \\
\hline 100 & 3654 & 4064 & 4512 & 4998 & 5524 & 6089 & 6691 & 7334 & 8018 & 8744 \\
\hline 110 & 9513 & 10,324 & 11,181 & 12,096 & 13,086 & 14,161 & 15,323 & 16,572 & 17,905 & 19,321 \\
\hline 120 & 20,819 & & & & & & & & & \\
\hline
\end{tabular}

\section*{BURNS MCDONNELL}

CREATE AMAZING.

Burns \& McDonnell World Headquarters
9400 Ward Parkway
Kansas City, MO 64114
O 816-333-9400
F 816-333-3690```


[^0]:    ${ }^{1}$ From Table 3. See 85 Fed. Reg. at 53,534.

