

Cynthia Vodopivec Coleto Creek Power, LLC Luminant 6555 Sierra Dr. Irving, TX 75039

September 29, 2020

Sent via email

Mr. Andrew R. Wheeler, EPA Administrator Environmental Protection Agency 1200 Pennsylvania Avenue, N.W. Mail Code 5304-P Washington, DC 20460

Re: Coleto Creek Power Plant Alternative Closure Demonstration

Dear Administrator Wheeler:

Coleto Creek Power, LLC (CCP) hereby submits this request to the U.S. Environmental Protection Agency (EPA) for approval of a site-specific alternative deadline to initiate closure pursuant to 40 C.F.R. § 257.103(f)(1) for the Primary Ash Pond located at the Coleto Creek Power Plant near Fannin, Texas. CCP is requesting an extension pursuant to 40 C.F.R. § 257.103(f)(1) to allow the Primary Ash Pond to continue to receive CCR and non-CCR wastestreams after April 11, 2021, such that retrofits can be completed. The Primary Ash Pond is an eligible unlined CCR surface impoundment as defined under 40 C.F.R. § 257.53.

Enclosed is a demonstration prepared by Burns & McDonnell that addresses all of the criteria in 40 C.F.R. § 257.103(f)(1)(i)-(iii) and contains the documentation required by 40 C.F.R. § 257.103(f)(1)(iv). As allowed by the agency, in lieu of hard copies of these documents, electronic files were submitted to Kirsten Hillyer, Frank Behan, and Richard Huggins via email. If you have any questions regarding this submittal, please contact Renee Collins at 214-875-8338 or renee.collins@luminant.com.

Sincerely,

Cynthin E. Wdy

Cynthia Vodopivec VP - Environmental Health & Safety

Enclosure

cc: Kirsten Hillyer Frank Behan Richard Huggins

Coleto Creek CCR Surface Impoundment Demonstration for a Site-Specific Alternative to Initiation of Closure Deadline

Coleto Creek Power, LLC

Coleto Creek Power Plant Project No. 122702

> Revision 0 September 28, 2020

Burns & McDonnell Engineering Firm F-845

Coleto Creek CCR Surface Impoundment Demonstration for a Site-Specific Alternative to Initiation of Closure Deadline

Prepared for

Coleto Creek Power, LLC Coleto Creek Power Plant Project No. 122702 Fannin, Texas

> Revision 0 September 28, 2020

> > Prepared by

Burns & McDonnell Engineering Company, Inc. Kansas City, Missouri

INDEX AND CERTIFICATION

Coleto Creek Power, LLC Coleto Creek CCR Surface Impoundment Demonstration for a Site-Specific Alternative to Initiation of Closure Deadline

	Report Index	
<u>Chapter</u> Number	Chapter Title	<u>Number</u> of Pages
1.0	Introduction	3
2.0	Documentation of No Alternative Disposal Capacity	15
4.0	Conclusion	1
Appendix A	Site Plan and Water Balance Diagram	2
Appendix B	Schedule	2

Certification

I hereby certify, as a Professional Engineer in the state of Texas, that the information in this document as noted in the above Report Index was assembled under my direct personal charge. This report is not intended or represented to be suitable for reuse by the Coleto Creek Power, LLC or others without specific verification or adaptation by the Engineer.

Randell In Sedland

Randell Lee Sedlacek, P.E. (Texas License No. 99506)

Date: September 28, 2020

TABLE OF CONTENTS

Page No.

2.0	WOF	RKPLAN		2-1
	2.1	No Alte	ernative Disposal Capacity and Approach to Obtain Alternative	
		Capaci	ty - § 257.103(f)(1)(iv)(A)(1)	2-1
		2.1.1	CCR Wastestreams	
		2.1.2	Non-CCR Wastestreams	2-2
		2.1.3	Site-Specific Conditions Supporting Alternative Capacity	
			Approach - § 257.103(f)(1)(iv)(A)(1)(i)	
		2.1.4	Impact to Plant Operations if Alternative Capacity Not Obtained – § 257.103(f)(1)(iv)(A)(1)(ii)	
		2.1.5	Options Considered Both On and Off-Site to Obtain Alternative	
			Capacity	
		2.1.6	Approach to Obtain Alternative Capacity	2-6
		2.1.7	Technical Infeasibility of Obtaining Alternative Capacity prior to April 11, 2021	2-8
		2.1.8	Justification for Time Needed to Complete Development of	
			Alternative Capacity Approach – § 257.103(f)(1)(iv)(A)(1)(iii)	2-9
	2.2		d Schedule to Obtain Alternative Disposal Capacity -	
			03(f)(1)(iv)(A)(2)	
	2.3		ve of Schedule and Visual Timeline - § 257.103(f)(1)(iv)(A)(3)	2-11
	2.4		ss Towards Obtaining Alternative Capacity -	
		§ 257.1	.03(f)(1)(iv)(A)(4)	2-15
3.0	DOC		ATION AND CERTIFICATION OF COMPLIANCE	3-1
	3.1	Owner	's Certification of Compliance - § 257.103(f)(1)(iv)(B)(1)	3-1
	3.2		Representation of Hydrogeologic Information -	
			03(f)(1)(iv)(B)(2)	
	3.3	Ground	lwater Monitoring Results - § 257.103(f)(1)(iv)(B)(3)	3-1
	3.4	Descrip	ption of Site Hydrogeology - § 257.103(f)(1)(iv)(B)(4)	3-2
	3.5		tive Measures Assessment - § 257.103(f)(1)(iv)(B)(5)	
	3.6	Remed	y Selection Progress Report - § 257.103(f)(1)(iv)(B)(6)	3-2
	3.7		ral Stability Assessment - § 257.103(f)(1)(iv)(B)(7)	
	3.8	Safety	Factor Assessment - § 257.103(f)(1)(iv)(B)(8)	3-2
4.0			N	

APPENDIX A – SITE PLAN AND WATER BALANCE DIAGRAM APPENDIX B – SCHEDULE APPENDIX C – COMPLIANCE DOCUMENTS

LIST OF TABLES

Page No.

Table 2-1: Coleto Creek CCR Wastestreams	2-2
Table 2-2: Coleto Creek Non-CCR Wastestreams	2-3
Table 2-3: Alternatives for Disposal Capacity	2-5
Table 2-4: Technology Alternatives Considered for CCR wastestreams	
Table 2-5: Compliance Project Progress Milestones	

LIST OF ABBREVIATIONS

Abbreviation	<u>Term/Phrase/Name</u>	
BMcD	Burns & McDonnell	
ВОР	Balance of Plant	
B&W	Babcock & Wilcox	
ССР	Coleto Creek Power, LLC	
CCR	Coal Combustion Residual	
CFR	Code of Federal Regulations	
Coleto Creek	Coleto Creek Power Plant	
CSC	Compact Submerged Conveyors	
ELG Rule	Effluent Limitations Guidelines and Standards for the Steam Electric Power Generating Point Source Category	
EPA	Environmental Protection Agency	
GWPS	Groundwater Protection Standards	
MAX-LP	Mechanical Ash Extractor - Low Profile	
RCRA	Resource Conservation and Recovery Act	
SAP	Sampling and Analysis Plan	
SGC	Submerged Grind Conveyor	
SSI(s)	Statistically Significant Increases	
SSL(s)	Statistically Significant Levels	
UCC	United Conveyor Corporation	

1.0 INTRODUCTION

On April 17, 2015, the Environmental Protection Agency (EPA) issued the federal Coal Combustion Residual (CCR) Rule, 40 C.F.R. Part 257, Subpart D, to regulate the disposal of CCR materials generated at coal-fueled electric generating units. The rule is being administered under Subtitle D of the Resource Conservation and Recovery Act (RCRA, 42 U.S.C. § 6901 *et seq.*).

On August 28, 2020, the EPA Administrator issued revisions to the CCR Rule that require all unlined surface impoundments to cease receipt of CCR and non-CCR waste and initiate closure by April 11, 2021, unless an alternative deadline is requested and approved. 40 C.F.R. § 257.101(a)(1) (85 Fed. Reg. 53,516 (Aug. 28, 2020)). Specifically, owners and operators of a CCR surface impoundment may seek and obtain an alternative closure deadline by demonstrating that there is currently no alternative capacity available on or off-site and that it is not technically feasible to complete the development of alternative capacity prior to April 11, 2021. 40 C.F.R. § 257.103(f)(1). To make this demonstration, the facility is required to provide detailed information regarding the process the facility is undertaking to develop the alternative capacity. 40 C.F.R. § 257.103(f)(1). Any extensions granted cannot extend past October 15, 2023, except an extension can be granted until October 15, 2024, if the impoundment qualifies as an "eligible unlined CCR surface impoundment" as defined by the rule. 40 C.F.R. § 257.103(f)(1)(vi). Regardless of the maximum time allowed under the rule, EPA explains in the preamble to the Part A rule that each impoundment "must still cease receipt of waste as soon as feasible, and may only have the amount of time [the owner/operator] can demonstrate is genuinely necessary." 85 Fed. Reg. at 53,546.

This document serves as CCP's Demonstration for a site-specific alternative deadline to initiate closure pursuant to 40 C.F.R. § 257.103(f)(1) for the Primary Ash Pond at the Coleto Creek Power Plant (Coleto Creek), located near Fannin, Texas. The Primary Ash Pond qualifies as an "eligible unlined CCR surface impoundment" as defined under 40 C.F.R. § 257.53.

To obtain an alternative closure deadline under 40 C.F.R. § 257.103(f)(1), a facility must meet the following three criteria:

- 1. § 257.103(f)(1)(i) There is no alternative disposal capacity available on-site or off-site. An increase in costs or the inconvenience of existing capacity is not sufficient to support qualification;
- § 257.103(f)(1)(ii) Each CCR and/or non-CCR wastestream must continue to be managed in that CCR surface impoundment because it was technical infeasible to complete the measures necessary to obtain alternative disposal capacity either on or off-site of the facility by April 11, 2021; and

3. § 257.103(f)(1)(iii) - The facility is in compliance with all the requirements of the CCR Rule.

To demonstrate that the first two criteria above have been met, 40 C.F.R. § 257.103(f)(1)(iv)(A) requires the owner or operator to submit a work plan that contains the following elements:

- A written narrative discussing the options considered both on and off-site to obtain alternative capacity for each CCR and/or non-CCR wastestream, the technical infeasibility of obtaining alternative capacity prior to April 11, 2021, and the option selected and justification for the alternative capacity selected. The narrative must also include all of the following:
 - An in-depth analysis of the site and any site-specific conditions that led to the decision to select the alternative capacity being developed;
 - An analysis of the adverse impact to plant operations if the CCR surface impoundment in question were to no longer be available for use; and
 - A detailed explanation and justification for the amount of time being requested and how it is the fastest technically feasible time to complete the development of the alternative capacity.
- A detailed schedule of the fastest technically feasible time to complete the measures necessary for alternative capacity to be available, including a visual timeline representation. The visual timeline must clearly show all of the following:
 - How each phase and the steps within that phase interact with or are dependent on each other and the other phases;
 - All of the steps and phases that can be completed concurrently;
 - The total time needed to obtain the alternative capacity and how long each phase and step within each phase will take; and
 - At a minimum, the following phases: engineering and design, contractor selection, equipment fabrication and delivery, construction, and start up and implementation.
- A narrative discussion of the schedule and visual timeline representation, which must discuss the following:
 - Why the length of time for each phase and step is needed and a discussion of the tasks that occur during the specific step;
 - Why each phase and step shown on the chart must happen in the order it is occurring;
 - The tasks that occur during each of the steps within the phase; and
 - Anticipated worker schedules.
- A narrative discussion of the progress the owner or operator has made to obtain alternative capacity for the CCR and/or non-CCR wastestreams. The narrative must discuss all the steps taken, starting from when the owner or operator initiated the design phase up to the steps occurring when the demonstration is being compiled. It must discuss where the facility currently is on the timeline and the efforts that are currently being undertaken to develop alternative capacity.

To demonstrate that the third criterion above has been met, 40 C.F.R. § 257.103(f)(1)(iv)(B) requires the owner or operator to submit the following information:

- A certification signed by the owner or operator that the facility is in compliance with all of the requirements of 40 C.F.R. Part 257, Subpart D;
- Visual representation of hydrogeologic information at and around the CCR unit(s) that supports the design, construction and installation of the groundwater monitoring system. This includes all of the following:
 - Map(s) of groundwater monitoring well locations in relation to the CCR unit(s);
 - Well construction diagrams and drilling logs for all groundwater monitoring wells; and
 - Maps that characterize the direction of groundwater flow accounting for seasonal variations.
- Constituent concentrations, summarized in table form, at each groundwater monitoring well monitored during each sampling event;
- A description of site hydrogeology including stratigraphic cross-sections;
- Any corrective measures assessment conducted as required at § 257.96;
- Any progress reports on corrective action remedy selection and design and the report of final remedy selection required at § 257.97(a);
- The most recent structural stability assessment required at § 257.73(d); and
- The most recent safety factor assessment required at § 257.73(e).

2.0 WORKPLAN

To demonstrate that the criteria in 40 C.F.R. § 257.103(f)(1)(i) and (ii) have been met, the following is a workplan, consisting of the elements required by § 257.103(f)(1)(iv)(A). Specifically, this workplan documents that there is no alternative capacity available on or off-site for each of the CCR and non-CCR wastestreams that CCP plans to continue to manage in the Primary Ash Pond and discusses the options considered for obtaining alternative disposal capacity. As discussed in more detail below, **CCP has elected to convert to dry ash handling at Coleto Creek.** The workplan provides a detailed schedule for the conversion project, including a narrative description of the schedule and an update on the progress already made toward obtaining the alternative capacity. In addition, the narrative includes an analysis of the site-specific conditions that led to the decision to convert to dry handling and an analysis of the adverse impact to plant operations if Coleto Creek were no longer able to use the Primary Ash Pond.

2.1 No Alternative Disposal Capacity and Approach to Obtain Alternative Capacity - § 257.103(f)(1)(iv)(A)(1)

CCP owns and operates Coleto Creek, a single-unit, 650-megawatt coal-fired facility located in Fannin, Texas that burns Powder River Basin coal. Coleto Creek has one CCR surface impoundment, known as the Primary Ash Pond, which receives both CCR and non-CCR wastestreams. The pond was constructed between 1976 and 1977 during the initial development of the power plant and is approximately 190 acres in size with a storage volume of 2,700 acre-feet. The pond is considered unlined per the requirements of the CCR Rule but meets all location restriction requirements. A groundwater monitoring system was developed for the Primary Ash Pond in 2017 and Assessment Monitoring was initiated in June of 2018, but no statistically significant levels of Appendix IV constituents have been identified. As such, the Primary Ash Pond meets the definition of an eligible unlined CCR surface impoundment. A site plan can be found on Figure 1 in Appendix A and a site water balance diagram can be found on Figure 2 in Appendix A.

2.1.1 CCR Wastestreams

CCP evaluated each CCR wastestream placed in the Primary Ash Pond at Coleto Creek. For the reasons discussed below in Table 2-1, the following CCR wastestreams must continue to be placed in the Primary Ash Pond due to lack of alternative capacity both on and off-site.

Table 2-1: Colet	o Creek CCR Wastestreams
------------------	--------------------------

CCR Wastestream	Average Flow (gpm)	Description	CCP Notes
Fly Ash	Dry Handled with Intermittent Sluices from Silo for Disposal	Fly ash is currently collected dry and conveyed to a storage silo near the Primary Ash Pond. Normally, the ash is hauled offsite for beneficial use. Periodically, the market will not accept the ash due to varying properties or seasonal demand, in which case the ash is sluiced from the silo to the Primary Ash Pond. No conditioning equipment is currently installed to allow for trucking the material offsite for disposal, and no additional CCR units exist onsite at Coleto.	For normal operation, fly ash will continue to be handled dry using the current system and hauled offsite for beneficial use based on market conditions. Equipment will be added at the silo storage area to allow for conditioning of non-marketable ash and offsite disposal in a nearby municipal landfill. The silo will need to be emptied to perform this work, and this will be completed during the same outage used to execute the bottom ash conversion. The existing silo sluice system will be eliminated prior to the requested April 20, 2023 site- specific deadline to initiate closure.
Bottom Ash	Unknown	Bottom ash is currently sluiced to the Primary Ash Pond, where it is either removed for beneficial use or remains. The sluice water overflows from the Primary Ash Pond to the Secondary Settling Pond and is discharged via Outfall 003.	A new dry bottom ash system (CSC) will be installed. Bottom ash, economizer ash, and mill rejects will
Economizer Ash	Unknown	Economizer ash is handled with the bottom ash.	be collected and sent offsite for beneficial use or transported to a nearby municipal landfill. This wastestream will cease flow to the Primary Ash Pond prior to the
Mill Rejects (non-CCR but handled with CCR wastestreams)	Unknown	Mill rejects are handled with the bottom ash.	requested April 20, 2023 site-specific deadline to initiate closure.

2.1.2 Non-CCR Wastestreams

CCP evaluated each non-CCR wastestream placed in the Primary Ash Pond at Coleto Creek. For the reasons discussed below in Table 2-2, each of the following non-CCR wastestreams must continue to be placed in the Primary Ash Pond due to lack of alternative capacity both on and off-site.

Non-CCR Wastestream	Average Flow (gpm)	Description	CCP Notes
Demineralizer Regeneration Flows and RO Reject	Unknown (Intermittent)	Collected in demineralizer sump and pumped to Primary Ash Pond.	Relocation of this flow will require modification of the site discharge permit, adding a minimum of 1000 feet of piping, and potentially replacing the demineralizer sump pumps and upsizing the power feeds. This wastestream will be rerouted to the existing Secondary Pond and/or Evaporation Pond prior to the requested April 20, 2023 site specific deadline to initiate closure.
Boiler Sump Discharges	Unknown (Intermittent)	Collects flow from multiple sources including laboratory drains, hopper overflow (ash contact/quench water), boiler blowdown condensate polisher regeneration, water pretreatment filter backwash, oil/water separator discharge, transformer area sump, stormwater from ash piping trench, fabric filter area wash, air heater wash, and boiler wash. Currently pumped to the Primary Ash Pond or the Evaporation Pond.	During normal operations, this wastestream will be rerouted to the existing Evaporation Pond prior to the April 11, 2021 deadline. During outages, this flow will be directed to the Primary Ash Pond to allow for the air heater wash and boiler wash volumes to be contained within that impoundment and not exceed the capacity of the Evaporation Pond.

Table 2-2: Coleto Creek Non-CCR Wastestreams

Other site flows are currently directed either to the discharge canal or the Evaporation Pond. The existing site water balance is included in Appendix A of this Demonstration (see Figure 2).

2.1.3 Site-Specific Conditions Supporting Alternative Capacity Approach - § 257.103(f)(1)(iv)(A)(1)(i)

The plant has adequate space available for the installation of a compact submerged conveyor system and has selected this solution as the preferred alternative for compliance with both the ELG and CCR Rules. As shown on Figure 1 in Appendix A, Coleto Creek is bounded by the Coleto Creek Reservoir to the north and east and Perdido Creek to the south. The western boundary is formed by FM 2987 (farm to market road). The remaining impoundments onsite (the Secondary Pond, Evaporation Pond and Coal Pile Runoff Pond) are not authorized to receive CCR material. Consequently, in order to continue to operate and generate electricity, Coleto Creek must continue to use the Primary Ash Pond for treatment of both CCR and non-

CCR wastestreams until the plant can be retrofitted with a dry bottom ash handling system, modifications can be made to the fly ash handling system, and non-CCR process flows can be redirected away from the impoundment. As EPA explained in the preamble of the 2015 rule, it is not possible for sites that sluice CCR material to an impoundment to eliminate the impoundment and dispose of the material offsite. *See* 80 Fed. Reg. 21,301, 21,423 (Apr. 17, 2015) ("[W]hile it is possible to transport dry ash off-site to [an] alternate disposal facility that is simply not feasible for wet-generated CCR. Nor can facilities immediately convert to dry handling systems.").

2.1.4 Impact to Plant Operations if Alternative Capacity Not Obtained – § 257.103(f)(1)(iv)(A)(1)(ii)

As described in Sections 2.1.1, 2.1.2, and 2.1.6 of this demonstration, in order to continue to operate, generate electricity, and comply with both the CCR Rule and the discharge permit conditions, Coleto Creek must continue to use the Primary Ash Pond for treatment of both CCR and non-CCR wastestreams until alternative disposal capacity can be developed. If the Primary Ash Pond were removed from service on April 11, 2021, Coleto Creek would be required to cease operation until the conversion project is completed.

Coal-fired generation from plants such as Coleto Creek has provided approximately 17% of the generating capacity in ERCOT in 2020 to date, and the reserve margins available are currently less than this percentage. If coal-fired generation were required to cease in Texas, the stability of the electric grid would be compromised. To continue operation of Coleto Creek, CCP must be allowed additional time to complete the following three primary activities in order to cease routing CCR and non-CCR wastestreams to the Primary Ash Pond:

- Installation of a compact submerged conveyor, storage bunker, and ancillary equipment (eliminates bottom ash, economizer, and pyrites sluice flows to the Primary Ash Pond).
- Installation of a pugmill to allow for conditioning of the fly ash and to allow for the potential offsite disposal in a municipal landfill when market conditions do not support beneficial use (eliminates intermittent fly ash sluice flows to the Primary Ash Pond).
- Reroute of all remaining non-CCR wastestreams to the Secondary Pond and/or Evaporation Pond, including adding piping and potentially replacing the demineralizer sump pumps (eliminates non-CCR flows to the Primary Ash Pond).

2.1.5 Options Considered Both On and Off-Site to Obtain Alternative Capacity

The options considered for alternative disposal capacity of the wastestreams currently routed to the Primary Ash Pond are summarized in Table 2-3. Additional details on the CCR and non-CCR wastestreams included in this demonstration request are found in Table 2-1 and Table 2-2, respectively.

Alternative Capacity Technology	Average Time to Construct (Months) ¹	Feasible at Coleto Creek?	Selected?	CCP Notes
Conversion to dry handling	33.8	Yes	Yes	A dry bottom ash conversion is being performed and design is underway for a CSC system. CCP will add a pugmill at the fly ash silo to eliminate fly ash sluicing as well. CCP expects to complete this project in a total of 33 months (the decision was made to proceed with the conversion in July 2020 and the project will complete in April 2023), primarily driven by the timing of the scheduled major outage for the unit with ERCOT.
Non-CCR wastewater basin	23.5	NA	No	These are not viable alternatives for CCP since the existing Secondary Pond and/or Evaporation Pond has the capacity to receive the non-CCR
Wastewater treatment facility	22.3	NA	No	wastestreams (following permit modifications and redirection of these streams).
New CCR surface impoundment	31	Yes	No	CCP believes construction of the dry ash handling systems will be completed within a similar timeframe. Nor would a new impoundment alone provide compliance with the ELG Rule.
Retrofit of a CCR surface impoundment	29.8	Yes	No	CCP believes construction of the dry ash handling systems will be completed within a similar timeframe and simultaneously allow for ELG compliance.
Multiple technology system	39.1	NA	No	This is not a viable alternative for CCP since the existing Secondary Pond and/or Evaporation Pond has the capacity to receive the non-CCR wastestreams (following permit modifications and redirection of these streams). Dry handling of the ash streams should provide the necessary compliance needs on the fastest feasible schedule for the site.

Table 2-3:	Alternatives	for Dis	posal Ca	pacity

¹ From Table 3. See 85 Fed. Reg. at 53,534.

Alternative Capacity Technology	Average Time to Construct (Months) ¹	Feasible at Coleto Creek?	Selected?	CCP Notes
Temporary treatment system	Not defined	No	No	These systems would not realistically provide the required non-CCR wastewater storage capacity to replace the Primary Ash Pond. Rerouting flow to a temporary treatment system would require similar modifications to those required to reroute to the existing Secondary Pond and/or Evaporation Pond, and CCP has chosen to devote resources to completion of the selected project scope rather than a temporary solution.

2.1.6 Approach to Obtain Alternative Capacity

CCP plans to convert to dry handling of all CCR at Coleto Creek. In May 2019, CCP hired Burns & McDonnell (BMcD) to evaluate potential options for compliance with the Effluent Limitations Guidelines and Standards for the Steam Electric Power Generating Point Source Category (ELG Rule). The options considered are described in Table 2-4, below. BMcD followed this with a review of landfill disposal alternatives following release of the proposed Part A rule in December of 2019.

Technology	Practicability or Feasibility for Coleto Creek
Under boiler Drag Chain Conveyor System	Feasible
Remote Drag Chain Conveyor System	Feasible. Challenging to add remote pumps and power supply for recirculation not required with other options.
Dry Belt/Tray Conveying System	Feasible
Pneumatic Conveying System	Feasible
Vibratory Conveying System	Not practicable; high O&M and not industry standard practice for bottom ash.
Remote Settling Basins	Not practicable; high O&M and both water balance and safety concerns; challenging to add remote pumps and power supply for recirculation not required with other options.
Remote Dewatering Bins	Not practicable; high O&M and no longer industry standard practice for bottom ash (replaced by remote conveyors for similar costs).

Table 2-4: Technology Alternatives Considered for CCR wastestreams

As part of the review, BMcD recommended conversion to a "dry" bottom ash handling system based on the Babcock & Wilcox (B&W) Submerged Grind Conveyor (SGC) or United Conveyor Corporation (UCC) Mechanical Ash Extractor - Low Profile (MAX-LP) system. These systems are referred to as Compact Submerged Conveyors (CSC) herein. Of the feasible under boiler options presented in Table 2-4, this alternative should have the shortest equipment lead time and the shortest plant outage requirement as it will not require removal and replacement of the current bottom ash hoppers. For this and other business factors, CCP has selected this technology for implementation at Coleto Creek for compliance with the ELG rule requirements to eliminate discharge of ash transport water. Until the installation of the B&W SGC or UCC MA-LP system is complete, the Primary Ash Pond will need to receive CCR and non-CCR wastestreams similar to the existing configuration; however, after the tie-in outage the Primary Ash Pond can be removed from service and closed.

For the dry bottom ash handling conversion at Coleto, a new CSC system would replace the boiler hopper ash sluicing system. During operation, bottom ash falls from the boiler into the hopper and is routed through the crusher. The crushed ash is removed by the conveyor, which consists of a chain with metal flight bars that drags ash along the bottom of the conveyor to the inclined "dewatering" section. The dewatering section contains a chain conveyor that pulls bottom ash up an inclined ramp while water gravity drains back into the CSC. The inclined ramp drops dewatered ash into a three-walled bottom ash bunker. Typically, ash collects in the bunker and is loaded into haul trucks with a front-end loader. Alternatively, the bunker can be configured so that haul trucks can back into the bunker and accept ash directly.

Economizer ash and mill rejects typically require a separate system. Economizer ash will likely be handled with a series of dry flight conveyors that route the ash from the existing economizer hoppers to the CSC in a dry condition, thus eliminating the use of ash transport water. This ash is comingled with bottom ash in the CSC and deposited in the bunker with the bottom ash. The economizer ash could potentially be incorporated with the fly ash system if additional testing indicates that this would not impact marketability of the fly ash for beneficial use. The existing bottom ash sluice pumps are replaced with smaller pumps dedicated to the mill rejects and hopper flushing system, which sluice mill rejects directly to the bottom ash hoppers. Sluice flows from the mill reject system are not considered ash transport water since mill rejects are considered pre-combustion waste (i.e. not CCR).

Seal trough and hopper makeup to the existing boiler are maintained using the existing service water connections. Discharge from these systems, and overflow from the mill rejects sluice cycles, continue to be removed by the existing bottom ash sump pumps near the hopper. This overflow is classified as quench water rather than transport water and may also be conveyed to a process pond.

Per the BMcD ELG compliance review and landfill alternatives assessment, conversion to a dry bottom ash handling system such as the CSC at Coleto Creek would include the following general scope:

- Install 4 submerged conveyors and 2 new clinker grinders.
- Install two new dry flight conveyors to capture economizer ash and route it to the new submerged bottom ash conveyor system.
- Install a new concrete bunker equipped with drainage trenches and sumps to route any contact stormwater or excess quench water to the boiler sump.
- Install an overflow tank and pumps to allow for the pyrites to be sluiced into the boiler hopper and comingled with the bottom ash, similar to current operations (where they are comingled at the pond). This water is not considered ash transport water since pyrites are a pre-combustion material. Any excess water from the overflow tank will be routed to the boiler sump through existing piping.
- All bottom ash produced will be removed by Boral and sent offsite for beneficial use, similar to current operations. Any material that cannot be marketed will likely be disposed of in an offsite municipal landfill.

BMcD also reviewed current fly ash operations and water handling. As noted above, fly ash stored in the existing fly ash silos may currently be sluiced to the Primary Ash Pond during periods which Boral is not able to market the fly ash for beneficial reuse. CCP will need to remove this system and install a pugmill so fly ash can instead be loaded onto trucks for disposal.

BMcD noted in their review that CCP plans to modify the discharge permit as part of the Primary Ash Pond closure (or earlier) to reroute flows from the from the Coal Pile Runoff Pond and Sewage Treatment Plant effluent from the Evaporation Pond directly to the condenser discharge canal. Additionally, CCP will need to redirect the remaining non-CCR process flows (Demin Sump and Boiler Sump discharges) to the Secondary Pond and/or Evaporation Pond concurrently with the elimination of the bottom ash transport water to allow for initiation of the Primary Ash Pond closure.

2.1.7 Technical Infeasibility of Obtaining Alternative Capacity prior to April 11, 2021

Based on the foregoing facts, CCP cannot cease all CCR and non-CCR wastestreams and initiate closure of the Primary Ash Pond until the wet-to-dry ash handling conversion project is complete. The Primary Ash Pond is an "eligible unlined CCR surface impoundment" under § 257.53 and not previously subject to closure. CCP began its selected compliance project execution for Coleto Creek with scoping studies in 2019

and is developing specifications to procure the necessary long-lead equipment items in 2021. CCP investigated the possibility for meeting the alternate liner demonstration allowed under the proposed Part B Rule. The final requirements for this are unknown at this time; however, CCP has since elected to proceed with modifying plant operations and installing the CSC dry handling technology at Coleto Creek. This work is in progress but has not yet completed. There is a 28-day major outage scheduled for the Spring of 2021; however, it is not technically feasible to procure the equipment, perform the necessary detailed design, and complete the pre-outage construction activities over the course of the next six months. The conversion is forecasted to be completed in the Spring of 2023 as part of the next scheduled major outage (longer than 10 days). Consequently, it is not possible to implement the measures discussed above in a way that would likely be successful by April 11, 2021.

The conditions at Coleto Creek demonstrate that no alternative disposal capacity is available on-site or offsite, satisfying the requirement of 40 C.F.R. § 257.103(f)(1)(i), and CCP respectfully requests a site-specific extension of the deadline to initiate closure of the Primary Ash Pond until April 20, 2023.

2.1.8 Justification for Time Needed to Complete Development of Alternative Capacity Approach – § 257.103(f)(1)(iv)(A)(1)(iii)

The schedule for developing alternative disposal capacity is described in more detail in Sections 2.2 and 2.3. The schedule milestones and current progress are summarized in Table 2-5 below. CCP believes the schedule provided represents the fastest technically feasible timeframe for compliance at Coleto Creek, driven primarily by the need for a major outage to allow for removal of the current sluicing equipment and installation of the new crushers and conveyors. These outages are coordinated with ERCOT and are not easily modified due to the limited reserve generating capacity and resulting potential impacts to grid stability. Moreover, the project duration of approximately 33 months (after selection) including the current stage of scope development (including laser scanning and development of technical specifications for the procurement of the major equipment) until startup of the dry ash handling system is comparable to the average dry ash conversion timeline identified by EPA in the final Part A rule. See Table 3, 85 Fed. Reg. at 53,534.

Year or Progress Reporting Period	Status	Milestone Description	CCP Notes
2020	Completed	Selection of dry ash handling solution and preparation of request for alternative site- specific deadline for initiation of closure of the Primary Ash Pond.	The bottom ash, economizer, fly ash, and pyrites wastestreams will be eliminated in the scheduled major outage in the Spring of 2023. Equipment must be procured to support the pre- outage construction schedule.
2020	On Schedule	FEED study and detailed scope development and specifications for dry bottom ash equipment	
April 30, 2021	Scheduled	Receive management approval for project based on budget estimate, issue conveyor specifications for bid, initiate permitting activities	Normal operation of the boiler sump discharge will be directed to the Evaporation Pond; however, outage flows will continue to be directed to the Primary Ash Pond.
October 31, 2021	Scheduled	Award contract for conveyor design and submittal development, receive initial submittals, and initiate detailed engineering design for BOP systems	Detailed design for conveyors and BOP systems, and initiation of permitting activities will be occurring in 2021.

Table 2-5: Compliance Project Progress Milestones

Year or Progress Reporting Period	Status	Milestone Description	CCP Notes					
April 30, 2022	Scheduled	Submit application for NPDES permit modifications, provide full notice to proceed to conveyor manufacturer to initiate fabrication of equipment	Fabrication released to support delivery dates during the scheduled pre-outage construction period.					
October 31, 2022	Scheduled	Award construction contracts, perform site preparation activities (including necessary utility relocation), and initiate bunker construction	Allows contractors to procure necessary commodities to support pre-outage construction before the Spring 2023 major outage.					
April 20, 2023	Scheduled	Completion of dry bottom ash conversion, pugmill installation, and re-route of non- CCR wastestreams	Normal flows of CCR wastewater to the Primary Ash Pond will cease by this date. Non-CCR wastestreams will be routed to the Secondary Pond and/or Evaporation Pond as described in Table 2-2. Punchlist items will be underway, but the unit will be started up and operating the new dry ash handling system as of April 20, 2023. CCP will no longer be routing wastestreams to the Primary Ash Pond.					

2.2 Detailed Schedule to Obtain Alternative Disposal Capacity - § 257.103(f)(1)(iv)(A)(2)

The required visual timeline representation of the schedule is included in Appendix B of this demonstration and described further in Section 2.3 below.

2.3 Narrative of Schedule and Visual Timeline - § 257.103(f)(1)(iv)(A)(3)

The third section for the workplan is a "detailed narrative of the schedule and the timeline discussing all the necessary phases and steps in the workplan, in addition to the overall timeframe that will be required to

obtain capacity and cease receipt of waste." 85 Fed. Reg. at 53,544. As EPA explained in the preamble to the Part A rule, this section of the workplan must discuss "why the length of time for each phase and step is needed, including a discussion of the tasks that occur during the specific stage of obtaining alternative capacity. It must also discuss the tasks that occur during each of the steps within the phase." 85 Fed. Reg. at 53,544. In addition, the schedule should "explain why each phase and step shown on the chart must happen in the order it is occurring and include a justification for the overall length of the phase" and the "anticipated worker schedule." 85 Fed. Reg. at 53,544. EPA notes the overall "discussion of the schedule assists EPA in understanding why the time requested is accurate." 85 Fed. Reg. at 53,544

<u>Outage:</u> The primary activity impacting the project schedule is the outage time required for installation of the dry ash handling system. There is a significant amount of work that is scheduled to take place during the unit outage, including removing the existing ash sluicing equipment, installing the new ash and pyrites handling equipment, completing piping ties, completing electrical ties, and performing startup of the new equipment and tuning of the ash and pyrites handling systems. CCP has major outages scheduled for the Spring of every other year. Based on generation capacity in Texas, the grid operator (ERCOT) does not typically allow CCP to adjust these outages or perform them in the summer months. It is not feasible to procure the necessary equipment to meet the Spring 2021 outage given the steps required for internal project approvals, the permitting efforts required for the project, and the lead time required for the equipment (which has not yet been bid but typically takes 9-12 months from award to receipt). The current schedule in Appendix B allows for a longer lead time but is focused on completion of the design, delivery of the equipment, and completion of pre-outage construction in advance of the Spring 2023 outage.

Design, Procurement, and Permitting Activities: CCP hired BMcD to prepare an AACE Class 3 Budgetary and Feed Study to develop preliminary engineering, a Level 2 schedule, and budgetary cost data to support owner review of the proposed dry bottom ash conversion project. This effort typically requires three months to get budgetary quotes from equipment suppliers and local subcontractors and will include laser scanning to identify interferences and firm up project scope as well as preparing specifications to procure the necessary ash handling equipment (which is part of the critical path for the project). Following the completion of the project budget under the Feed Study, CCP has included a three-month period for review, modifications to the project scope, and management approval for the project. A portion of this period will be impacted by the year-end holidays. Following management approval, CCP will develop the commercial terms for the contracts and package them with the technical specifications. This work is anticipated to take four weeks based on CCP procurement experience. CCP will bid and award a contract for the engineering (under limited notice to proceed (LNTP)) and fabrication (under full notice to proceed (FNTP)) of the bottom ash, economizer ash, pyrites handling, and fly ash pugmill equipment. CCP has included four weeks to bid the equipment contract and two months to select the preferred supplier and negotiate the contract terms for the LNTP.

The balance of plant (BOP) design will be completed by an engineering firm which will procure site survey and pilot trenching services to support detailed engineering while the equipment vendor prepares the initial submittals for their scope of supply. These submittals are usually received two to three months after equipment award and after these submittals are approved, the vendor typically starts with fabrication and the engineer begins the detailed design effort based on this information. Design will proceed, but the fabrication will be delayed slightly to support delivery of the equipment in the pre-outage construction period. The typical lead time on this equipment is 9-12 months; however, CCP expects this lead time to increase in the coming months as much of the industry will be procuring similar equipment. CCP has included 11 months for fabrication from the FNTP date, which essentially extends the lead time to 16 months total but provides for delivery once the mechanical contractor is onsite to receive the equipment in the necessary pre-outage construction period. If the lead time grows beyond what is allotted due to increased demand from industry, it could affect CCP's ability to get the conveyors onsite in time to support preconstruction activities for the Spring 2023 outage. This risk is reduced by accelerating the engineering of the equipment (with LNTP) as shown in the current project schedule.

The BOP engineer will prepare bid documents for site preparation and below-grade construction, DCS equipment, above-grade mechanical/structural construction, and above-grade electrical construction. These contracts can be prepared following award of the CSC package since procurement of the CSC equipment will have the longest lead time and the design for these construction packages will hinge on the submittals received from the CSC vendor. The current schedule includes a total of ten months for this design based on BMcD's experience with similar projects, including overlapping activities of four months for civil and underground design, five months for structural design of the bunkers and mechanical design (including pipe routing and development of specifications for contractor-supplied materials), and five months for electrical design, including cable tray and conduit routing, lighting plans, grounding plans, etc. CCP has included three weeks to review, address comments, and issue each contract, and this overlaps as the last three weeks of the total 10-month duration shown for engineering. The construction packages can be issued and awarded sequentially as allowed by the design process and will include a four-week bid period and eightweek selection and award period. This includes time to review bids, short-list the bidders, interview the short-listed firms, identify the preferred contractor, and negotiate the terms and conditions for the work. The bid and award of the construction contracts will be performed concurrently with acquiring the necessary permits for this project and must be completed as necessary to support the pre-outage construction. These construction contracts will purchase balance of plant items and commodities such as structural steel, piping,

valves, raceway, cable, and other commodities as necessary to support the construction, and these preplanning and mobilization activities are included in advance of the pre-outage construction period.

<u>Construction Activities</u>: The durations shown on the project are estimates by BMcD and are based on an average work schedule of five days per week, are subject to delays in procuring and delivering new equipment and construction labor, and are based on the following scope of work which may be performed in the sequence listed below:

- Consultant/surveyor(s) shall perform and transmit data from site survey (six weeks) and pilot trenching scope (six weeks).
- Contractors shall mobilize to the site as required per the schedule.
- Site Prep and Below-Ground Construction Contractor shall complete site preparation and belowgrade construction (e.g. utility reroutes, laydown, and parking areas as well as any road improvements required). This activity is expected to take two months.
- Above-Ground Mechanical/Structural Contractor shall perform structural excavation, bunker construction, and conveyor support foundations). This must be completed before mechanical erection can begin. This activity is expected to take two months.
- Above-Ground Mechanical/Structural Contractor shall install CSC system (estimated at four months of pre-outage work, followed by one month of work during the available outage duration) to include:
 - Receipt of equipment from equipment vendor
 - o Installation of support steel and platforms to provide access for the new conveyors.
 - o Installation of submerged conveyors and clinker grinders.
 - o New dry flight conveyors to capture economizer ash and route it to the new CSC system.
 - New bunker sump pumps and piping to route any contact stormwater or excess quench water to the boiler sump.
 - An overflow tank and pumps to allow for the pyrites to be sluiced into the boiler hopper and comingled with the bottom ash.
 - Installation of a new pugmill at the fly ash silo (two months of work finishing during the outage). Includes new water supply piping, support steel, and isolation valves.
 - Redirect process flows from the Primary Ash Pond to the Secondary Pond and/or Evaporation Pond (two months of labor for piping installation after permit modifications and pump/power supply modifications).

• The Electrical Contractor will install new electrical equipment (if new motor control centers are required), cable tray, conduit, and cable in accessible areas prior to the outage, as well as install new lighting at the bunker area. During the outage, the Electrical Contractor will terminate the power feeds and finish routing to new equipment following behind the Mechanical Contractor. The current schedule shows three months of pre-outage electrical work and the electrical contractor should finish prior to the end of the unit outage.

CCP will provide ongoing schedule updates in the required semi-annual progress reports.

2.4 Progress Towards Obtaining Alternative Capacity - § 257.103(f)(1)(iv)(A)(4)

In the preamble to the final Part A rule, EPA explains that this "section [of the workplan] must discuss all of the steps taken, starting from when the owner or operator initiated the design phase all the way up to the current steps occurring while the workplan is being drafted." 85 Fed. Reg. at 53,544. The discussion also "must indicate where the facility currently is on the timeline and the processes that are currently being undertaken at the facility to develop alternative capacity." 85 Fed. Reg. at 53,545.

As show in Appendix B and described in Section 2.1.6 and Table 2-5, CCP has made progress toward creating alternative disposal capacity for the CCR and non-CCR wastestreams at Coleto Creek. The conceptual design has been evaluated and the technical solution for compliance has been identified. As part of this process, a laser scan of the boiler area has been completed and transmitted to the equipment supplier(s). The equipment suppliers are providing budgetary quotes and three-dimensional modeling activities to identify potential interferences. BMcD will review the information received from the vendors to complete the preliminary design and develop the overall project scope and budget as well as the necessary equipment specifications. The remaining activities are provided in Appendix B and summarized in Table 2-5.

3.0 DOCUMENTATION AND CERTIFICATION OF COMPLIANCE

To demonstrate that the criteria in 40 C.F.R. § 257.103(f)(1)(iii) has been met, the following information and submissions are submitted pursuant to 40 C.F.R. § 257.103(f)(1)(iv)(B) to demonstrate that the Primary Ash Pond at Coleto Creek is in compliance with the CCR Rule.

3.1 Owner's Certification of Compliance - § 257.103(f)(1)(iv)(B)(1)

In accordance with 40 C.F.R. § 257.103(f)(1)(iv)(B)(1), I hereby certify that, based on my inquiry of those persons who are immediately responsible for compliance with environmental regulations for the CCR surface impoundments at Coleto Creek, the Primary Ash Pond is in compliance with all of the requirements contained in 40 C.F.R. Part 257, Subpart D – Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments. Coleto Creek's CCR compliance website is up-to-date and contains all the necessary documentation and notification postings.

COLETO CREEK POWER LLC

inthin E Ubdy

Cynthia Vodopivec VP - Environmental Health & Safety September 28, 2020

3.2 Visual Representation of Hydrogeologic Information - § 257.103(f)(1)(iv)(B)(2)

Consistent with the requirements of § 257.103(f)(1)(iv)(B)(2)(i) - (iii), CCP has attached the following items to this demonstration:

- Map(s) of groundwater monitoring well locations in relation to the CCR unit (Attachment C1)
- Well construction diagrams and drilling logs for all groundwater monitoring wells (Attachment C2)
- Maps that characterize the direction of groundwater flow accounting for seasonal variations (Attachment C3)

3.3 Groundwater Monitoring Results - § 257.103(f)(1)(iv)(B)(3)

Tables summarizing constituent concentrations at each groundwater monitoring well through the first 2020 semi-annual monitoring period are included as Attachment C4.

3.4 Description of Site Hydrogeology - § 257.103(f)(1)(iv)(B)(4)

A description of site hydrogeology and stratigraphic cross-sections of the site are included as Attachment C5.

3.5 Corrective Measures Assessment - § 257.103(f)(1)(iv)(B)(5)

Background sampling began at the Primary Ash Pond in March of 2017 and continued through July for eight rounds of background sampling. The first semiannual detection monitoring samples were collected in November 2017. The first assessment monitoring samples were collected in June 2018. The results, through the first 2020 semi-annual monitoring period, indicate the Primary Ash Pond is currently in assessment monitoring, with no exceedances recorded. Accordingly, an assessment of corrective measures is not currently required.

3.6 Remedy Selection Progress Report - § 257.103(f)(1)(iv)(B)(6)

As noted above, an assessment of corrective measures and the resulting remedy selection efforts are not currently required for the Primary Ash Pond.

3.7 Structural Stability Assessment - § 257.103(f)(1)(iv)(B)(7)

Pursuant to § 257.73(d), the initial structural stability assessment report for the Primary Ash Pond was prepared in October 2016 and revised in January 2018 (to remove the Secondary Pond). The revised report is included as Attachment C6. As required for compliance, another stability assessment will be completed in October 2021.

3.8 Safety Factor Assessment - § 257.103(f)(1)(iv)(B)(8)

Pursuant to § 257.73(e), the initial safety factor assessment report for the Primary Ash Pond was prepared in October 2016 and revised in January 2018 (to remove the Secondary Pond). The revised report is included as Attachment C6. As required for compliance, another stability assessment will be completed in October 2021.

4.0 CONCLUSION

Based upon the information submitted in this demonstration, the Primary Ash Pond at Coleto Creek qualifies for a site-specific alternative deadline for the initiation of closure as allowed by 40 C.F.R. § 257.103(f)(1).

Therefore, CCP requests that EPA approve the demonstration and grant an alternative deadline of April 20, 2023 to complete the dry bottom ash conversion at Coleto Creek, cease routing all CCR and non-CCR wastestreams to the Primary Ash Pond which is subject to closure under 40 C.F.R. § 257.101(a), and initiate closure as required. As discussed previously, this date is subject to delays in procuring and delivering new bottom ash handling equipment and several other factors. CCP will update EPA on the project and any potential schedule impacts as part of the semi-annual progress reports required at 40 C.F.R. § 257.103(f)(1)(x), and if a need for a later compliance deadline is determined, CCP will seek additional time as described in 40 CFR § 257.103(f)(1)(vii).

APPENDIX A – SITE PLAN AND WATER BALANCE DIAGRAM

FILE INFO: J:\12261-IPA\12261-GO2 Coleto Creek Power Exp-Env Permitting\Water Permitting\2008 TPDES Application\02-TPDES Attachments\01-Final Attachments\Attach 10 Flow Schematic\Phase I Flow Diagram.dwg

APPENDIX B – SCHEDULE

D	Task Name	Duration	Start	Finish	Half 1, 2020 D J F M A M		2, 2020 OND	Half 1, 2021 J F M A M J	Half 2, 2021 J A S O N I
1	CCR Compliance Efforts	2091 days	Fri 4/17/15	Fri 4/21/23				J I IVI A IVI J	J A J U N I
2	Final CCR Rule Published in Federal Register	0 days	Fri 4/17/15	Fri 4/17/15					
3	Installed Groundwater Monitoring Wells	10 days	Tue 2/28/17	Mon 3/13/17					
4	Background Groundwater Sampling	83 days	Tue 3/28/17	Thu 7/20/17					
5	Completed Liner Documentation	0 days	Thu 10/13/16	5 Thu 10/13/16					
6	Prepared Surface Impoundment History of Construction	0 days	Thu 10/13/16	5 Thu 10/13/16					
7	First Detection Monitoring Samples	2 days	Tue 11/7/17	Wed 11/8/17					
8	Assessment Monitoring Program - First Round	36 days	Tue 6/19/18	Tue 8/7/18					
9	Assessment Monitoring Program - Second Round	19 days	Tue 9/18/18	Fri 10/12/18					
10	Assessment Monitoring Program - Third Round	30 days	Mon 6/3/19	Fri 7/12/19					
11	Assessment Monitoring Program - Fourth Round	25 days	Wed 10/2/19	Tue 11/5/19					
12	EPA Published Proposed Draft ELG Rule and CCR Holistic Approach to Closure Part A Rule	21 days	Mon 11/4/19	Mon 12/2/19	1				
13	Semi-Annual Progress Report #1	0 days	Fri 4/30/21	Fri 4/30/21				♦ 4/30	
14	Semi-Annual Progress Report #2	0 days		Sun 10/31/21					10/3
15	Semi-Annual Progress Report #3	0 days	Sat 4/30/22						
16	Semi-Annual Progress Report #4	0 days		2Mon 10/31/22					
17	Cease CCR and non-CCR wastestreams to Primary Ash Pond	0 days	Fri 4/21/23						
18	Bottom Ash Conversion - Engineering	860 days	Wed 5/1/19	Tue 8/16/22					
19	BMcD Screening Level ELG Assessment	43 days	Wed 5/1/19	Fri 6/28/19					
20	BMcD Landfill Alternatives Analysis	35 days	Mon 1/27/20	Fri 3/13/20					
21	Luminant Review Alternatives, Select Preferred Option, and Prepare Demonstration for Site-Specific Alternate to Intiation of Closure Deadline	75 days	Mon 3/16/20	Fri 6/26/20					
22	AACE Class 3 Budgetary and Feed Study	86 days	Mon 8/10/20	Mon 12/7/20		•			
23	Kickoff Meeting	1 day	Mon 8/10/20	Mon 8/10/20		Ь			
24	Perform Laser Scan & Transmit Results	15 days	Tue 8/25/20	Mon 9/14/20					
25	Initial Vendor Budget Quotes	15 days	Tue 9/15/20	Mon 10/5/20		1			
26	Prepare Scope Documents and Subcontract Packages	25 days	Tue 9/22/20	Mon 10/26/20					
27	Local Subcontractor Budget Quotes	15 days) Mon 11/16/20					
28	Develop Technical Specification (for Conveyor Equipment)	40 days		Mon 11/30/20					
29	Finalize Estimate and Report	15 days	Tue 11/17/20) Mon 12/7/20					
30	Owner Review & Management Approval	60 days	Tue 12/8/20						
31	Prepare Air Permit Application (if required)	90 days		Mon 5/10/21					
32	TCEQ Review of Air Permit Application (if required)	300 days	Tue 5/11/21						
33	Prepare Application for NPDES Permit Modification	120 days		Tue 12/7/21					
34	TCEQ NPDES Permit Modification	180 days	Wed 12/8/21	Tue 8/16/22					Ì
35	Detailed Engineering	219 days		Mon 4/25/22					
36	Bottom Ash Conversion - Procurement	461 days	Tue 3/2/21	Tue 12/6/22				l i i i i i i i i i i i i i i i i i i i	
37	Compact Submerged Conveyor System	440 days		Mon 11/7/22				t <u>+</u> +++	
38	Develop Commercial Documents/Issue Bid Package	20 days		Mon 3/29/21					
39	Bid Period	20 days		Mon 4/26/21					
40	Bid Evaluation/Award LNTP for Engineering	40 days		Mon 6/21/21					
41	Receive Initial Vendor Submittals	60 days		Mon 9/13/21					
42	Review and Approve Submittals	30 days	Tue 9/14/21	Mon 10/25/21					
	- Coloto Crook CCP Surface Impoundment		Proje	ct Summary	l In	active Milestone	۲	Manual Summar	y Rollup
Droioct	: Coleto Creek CCR Surface Impoundment Split		Exter	nal Tasks	In	active Summary		Manual Summar	y l
Project	Extension Demonstration								
	Thu 9/24/20 Milestone	•	Exter	nal Milestone	♦ M	lanual Task		Start-only	E

D	Task Name	Duration	Start	Finish	1, 2020 A M J	2,2020	Half 1, 2021 J F M A M	Half 2, 2021 J J A S O N
43	Release FNTP for Fabrication	20 days	Tue 10/26/22	1 Mon 11/22/21	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
44	Conveyor Fabrication	240 days	Tue 11/23/2	1 Mon 10/24/22				i
45	Delivery Window	20 days	Tue 10/11/22	2 Mon 11/7/22				
46	DCS	65 days	Tue 9/14/21	Mon 12/13/21				
47	Develop Spec	20 days	Tue 9/14/21	Mon 10/11/21				
48	Issue Bid Package	5 days	Tue 10/12/2	1 Mon 10/18/21				
49	Bid Period	20 days	Tue 10/19/2	1 Mon 11/15/21				
50	Bid Evaluation/Award	20 days	Tue 11/16/2	1 Mon 12/13/21				
51	Site Survey	60 days	Wed 6/23/2	1 Tue 9/14/21				ı
52	Bid/Negotiate/Award	30 days	Wed 6/23/21	1 Tue 8/3/21				
53	Perform & Transmit	30 days	Wed 8/4/21	Tue 9/14/21				
54	Pilot Trenching	60 days	Wed 7/7/21	Tue 9/28/21				I
55	Bid/Negotiate/Award	30 days	Wed 7/7/21	Tue 8/17/21				
56	Perform & Transmit	30 days	Wed 8/18/21	1 Tue 9/28/21				
57	Site Prep & B/G Constuction	235 days	Wed 9/29/2	1 Tue 8/23/22				
58	Develop Drawings and Specs	80 days	Wed 9/29/21	1 Tue 1/18/22				
59	Owner Review/Issue Bid Package	15 days	Wed 1/19/22	2 Tue 2/8/22				
60	Bid Period	20 days	Wed 2/9/22	Tue 3/8/22				
61	Bid Evaluation/Award	40 days	Wed 3/9/22	Tue 5/3/22				
62	Pre-Plan, Procure, and Mobilize	80 days	Wed 5/4/22	Tue 8/23/22				
63	A/G Mechanical/Structural Constuction	280 days	Tue 9/14/21	Mon 10/10/22				1
64	Develop Drawings and Specs	115 days	Tue 9/14/21	Mon 2/21/22				
65	Owner Review/Issue Bid Package	15 days	Tue 2/22/22	Mon 3/14/22				
66	Bid Period	20 days	Tue 3/15/22	Mon 4/11/22				
67	Bid Evaluation/Award	40 days	Tue 4/12/22	Mon 6/6/22				
68	Pre-Plan, Procure, and Mobilize	90 days	Tue 6/7/22	Mon 10/10/22				
69	A/G Electrical Constuction	296 days	Tue 10/19/2	1 Tue 12/6/22				· · · · ·
70	Develop Drawings and Specs	120 days	Tue 10/19/2	1 Mon 4/4/22				
71	Owner Review/Issue Bid Package	15 days	Tue 4/5/22	Mon 4/25/22				
72	Bid Period	20 days	Tue 4/26/22	Mon 5/23/22				
73	Bid Evaluation/Award	40 days	Tue 5/24/22	Mon 7/18/22				
74	Pre-Plan, Procure, and Mobilize	101 days	Tue 7/19/22	Tue 12/6/22				
75	Bottom Ash Conversion - Construction & Startup	188 days	Wed 8/24/22	2 Thu 5/11/23				
76	Site Prep & B/G Constuction	40 days	Wed 8/24/22	2 Tue 10/18/22				
77	A/G Pre-Outage Mech/Struct Construction	101 days	Tue 10/11/22	2 Tue 2/28/23				
78	A/G Pre-Outage Elect Construction	60 days	Wed 12/7/22	2 Tue 2/28/23				
79	Outage	38 days	Wed 3/1/23	Thu 4/20/23				
80	Startup	15 days	Sat 4/1/23	Thu 4/20/23				
81	Final Walkdown & Punchlist	15 days	Fri 4/21/23	Thu 5/11/23				
82	Other Construction	98 days	Wed 12/7/22	2 Thu 4/20/23				
83	Install Pugmill at Fly Ash Silo	45 days	Mon 2/20/23	3 Thu 4/20/23				
84	Install new piping and pumps to reroute demin sump	60 days	Wed 12/7/22	2 Tue 2/28/23				
85	Finalize Tie-ins for Water Redirects	5 days	Wed 3/1/23	Tuo 3/7/23				

	Task		Project Summary	Inactive Milestone	\diamond	Manual Summary Rollup	
Project: Coleto Creek CCR Surface Impoundment Extension Demonstration	Split		External Tasks	Inactive Summary	0	Manual Summary	1
Date: Thu 9/24/20	Milestone	•	External Milestone	Manual Task		Start-only	C
	Summary	 1	Inactive Task	Duration-only		Finish-only	3

APPENDIX C – COMPLIANCE DOCUMENTS

APPENDIX C1 – MAP OF GROUNDWATER MONITORING WELL LOCATIONS

APPENDIX C2 – WELL CONSTRUCTION DIAGRAMS AND DRILLING LOGS

MONITORING WELL BORING LOGS

Appendix B: CCR Groundwater Monitoring Well System Boring Logs

Wells W-4 to W-6 and Well W-8 by Sargent & Lundy Engineers (March and April 1978). These monitoring wells are also designated as MW-4 to MW-6 and MW-8, respectively.

Wells W-9 and W-10 by Bullock, Bennett & Associates, LLC (May 2016). These monitoring wells are also designated as MW-9 and MW-10, respectively.

Well MW-11 by Bullock, Bennett & Associates, LLC (April 2017)

Wells BV-5 and BV-21 by Black & Veatch (August and September 2008)

` ·

	Ĩ			g.					Γ	Γ	-	NCT: 1	B NO, W-B Talain Frank Rejers Assilan Control Frank & Light Co. Telepring Well W-1	1	MW-4
	Culture of	Areas, and and a second and a	antoni/18: 44 ileanen Baaranarite (⁴ 11)	PLANE POSTANTAN	read interaction of the second s		a terr fill	enes turis	ADDER BECORDERT (153)		3555		reliering doll 0-4 toping: 34.1374 (roma, sorn: 64.3.76 13662 (1960) sorn: essere socialization (1970) (sort: 6.3.76 Visity Testing, Laboratories, inc. farguet 6.10047 frigting testing Laboratories, inc. . Experimented		•
		ปียงห รู	. (20)			60	स्र	ЛЪ				_	6420, slity, brown. 6420, slopey, modiem to fins, brown and yelles.	27.52	
	4	Q072	(ev)		<u> </u>	·			-	┢╸	30383				
4		512 (1917)	(100)		ų,,	-43		БА I	 	-	1910			6	
	, in the second s	UDT4	1,100	:										n -	
	(D	615	(61)); 	13,5			64	ļ,		20332				
10 1		jesto	7-33-48 (100)								00-00-000	,	- good of centered and between 21 Fr and 25 Fr.	²⁰⁻ 13-32	
,	8	_ E37	14-17-4 (100)								1. 1. 1. S	57* 57	SARD, codina to fica, tenza alis, poliza.	60.31 60.31	
-yu]840	109) (109)					D6					CLAT, offey, seese codius to first sand, calacresso, yellow.	107.32	
		Ptrp .	- 16-20-1 (100)		ŀ				┢	ŀ		という	6450, endion is flat, yillow, CLAY, utility and couly, yillow. SADD, Silip, pograe to flat, trace grave yallow.	10-19.31 10.33	
40,	and the second se	5539	×1-19-1					<u></u>			a na se		- enzoriad lapor. - predec to no graval, while	4.32 43.32 92.31	
	يناي] <u>en</u>	47 (100)				 ,	BA.			2.42.5		 gradou za updium to flan. gradas sa everen su fluo utsti grarak é existan. 	40 - ⁴¹ - 31	
4 ⁰ .	a di secondo di second	3613	105/4 (109)			•	- 					ı ات	-	00- ^{56,32}	
55		5913	32-40-							. 				-	
69		1	26 (100)									÷.	Cidy, vonty, pallow cad gray,	74.01 74.32	
	لأتعم	1814	32-30- 34 {100}			·		, PA	ſ		102020	5. S	SAD and Gravel, «layor, grop, with reported layors.		
65	and set of the	pars	40-100/ 2 (100)									a.	CLAI, comiy, Gray. - Dimiya te palisa	59.32 03.02	1
70	يتعمل فمجمعه	5816	10-)7- 109/5 (109)		 			B Ă	 	⊧		18.	SAW, olley, coarse to flee, yellaw. Calicha, (Draib)	8]:63 .02	
73		983.7	37-46- 64 (100)				۱. 	œ.					ALES, elity, starto to fino, polico. ELAT, olity, littlo cidien to fino sadi, gary and bran with pachate of Coltaba.	38.32	
60 '		933B	19-31- 36 (100)			40	23	8 4							
85	أ تمخ	3519	37-)3- 04 (100)							 			gen av 203122 - 04.5 Ft Generatures accountated at 42.8 ft.	ы, ar	
98													210.5	بساسف	
	فسيصطعف							-						, ,	
	-		•					l.		ĺ					

ATTACHMENT 11

Renamed MW-5 BORING NO. W-5 SHEET ! OF 2 PROJECT: Colero Creek Power Station CLIENT: Central Power & Light Co. FEATURE: Monitoring Well H-5 (I) ., MSL) POCKET PENETROMETER SANSPLER Ł TOTAL DEPTH: 71.SEt MEASUREMENT (191.) FIELD MOISTURE CONTENT (%) SURFACE ELEVATION: 119.57 Ft 1961 LOCATION: N 30+07.7 E 31+50.6 DEPTH (M.) 8 RECOVERY DEPTH TO WATER OLASHS DRILLING :40.0 Ft DATE: 3-30-78 Ξ (RECOVERY , %) TEATO SAUPLE RUDDER LIMIT ELEVATION LIMIT BLOWS/6" ON ORILLED BY: Trinity Testing Laboratories, Inc. DEPTH . AHD TYPE (%) PL ASTIC LOGGED BY: Sargent & Lundy OTHER LIQUID CORE TESTED BY: Trinity Testing Laboratories, Inc. RQD SYMBOLS DESCRIPTION 19.57 19.07 o 0 The second SAND, SILLY, brown (lopsoil) SAND, clayey, medium to fine, brown. lsc ST1 12.8 SA (75) 5 -114.07 5 CLAY, siley, gray, with Caliche. ST2 (83) CL 111.57 (83) ST3 SC. SAND, clayey, brown, with layers of Caliche. 10 -108.57 10 ST4 (83) CLAY, silty, yellow and white, with α lenses and pockets of Caliche. 15 -104.57 15 ST5 (78) 3.1 SA SF-SAND, medium to fine, white. 20 -20 J 556 8-13-20 SA (100) 25 26 3.57 7-47-100 557 SC SAND, clayey, calcarecus, white. /4.5 (100) (Caliche) 10.57 30 30-SAND, silty and clayey, white, with SH--558 6-13-31 sc lenses and seems of Caliche (100) -'grades to gray. 85 -35 SS9 14-36-31 (100) 54 ≚ 40 \$9.57 40 S\$10 1-27-31 (100) sч SAND, silty, coarse to fine, white 45 48 \$3.57 SS11 16-67-100/5.5 (100) **b**4 CLAY, silty, gray, with seems of 15 СL Caliche. 50 1 60 DATE COLETO CREEK POWER STATION DESCRIPTION REVISION APPROVED BY LOG OF BORING W-5 10-24-2P Corrent <u>For Use</u> CENTRAL POWER & LIGHT CO. SARGENT&LUNDY ENGINEERS PROJECT NUMBER 4857

ч. т**і**

: = 3

. . . BORING NO. W-5 (cont'd) SHEET 2 OF 2 Renamed POCKET FENETAOMETER MEASUREMENT (101) FIELD MOSTURE CONTENT (%) MW-5 ELEVATION (11., MOL) BLOW3/6" ON SAMPLER (%) (%) 05PTH (11.) Ciquid Limit (%) RECOVERY SAMPLE HUMBER (RECOVERY , %) CEPTH (11) PLASTIC LIMIT OTHEN TESTS AND TYPE (%) CORE **6** 20 20 SYMBOLS DESCRIPTION 50 69.57 SAND, silty and clayey, calcareous, white, very dense. (Caliche) SM-SC SS12 72-100/ SA (100) **1**66.57 SM SAND, silty, white. 55 50-74-130/5.5 SS13 -62.57 SAND, silty and clayey, calcareous, white and brown, very dense. (100) s SH--∦ sc (Caliche) 60 14 S٨ SS14 100/3.5 18 (100) 65 153.57 \$\$15 18-78-100/4.5 CL CLAY, silty; brown. (100) 70 5516 END OF BORING - 71.5 Ft 9-17-21 (100) 48.07 Groundwater encountered at 40.0 Ft. and rose to 32.5 Ft. 75 DATE REVISION DESCRIPTION **COLETO CREEK POWER STATION** APPROVED BY LOG OF BORING W-5 (cont'd) 10-24-75 R. 6. Bodi For Use Bolis CENTRAL POWER & LIGHT CO. SARGENT&LUNDY PROJECT NUMBER 4857

יו_ם

4.

Bull	165 N	nnett & Associates . Lampasas Stree tram, TX 78605			LOG	OF	BORING W-9 (Page 1 of 1)
COLE		EK POWER STATION NNIN, TX	Easting : 2 Northing : 13 Top of Casing	5/2015 543670.9 451651.2 NAVD 88	Di Di Di	iller ill Rig illing M	ompany : EnviroCore : Craig Schena (Lic. #4694) : CME75 lethod : Hollow Stem Auger - 6" Method : Split-Spoon
		t No. 15215	Logger : EE				
DEPTH (feet)	Surface Elevation	DESCRIPTIC	ON	uscs	GRAPHIC	Recovery (ft/ft)	WELL DIAGRAM/REMARKS
0.0	- 128	(0-2.0) - Fill Material: CLAYEY SA	ND, mottled light gray and	sc	177	1.5/2	
- 5.0	- 126	reddish brown, moist (2.0-5.5) - Fill Material; Silty CLAY gray to while, soft to firm, Sand is common caliche gravel, moist	//Clayey SAND, brownish fine to coarse grained,	SC/CL		2/2 2/2 2/2	
- 10.0	- 120	(5.5-10.0) - Silty CLAY, dark gray motlling, firm to hard, medium pla gravel, minor roots, moist	lo gray with orangish brown slicity, common caliche	CL		2/2 2/2	Well Construction: Riser -3.0' AGL - 40.0' BGL
- 15.0	- 116	(10.0-20.5) - Predominantly Calich to white, Caliche is weakly cemeni	e and Silly CLAY, light gray	ML/CL		2/2 2/2 2/2 2/2	Neat Cement: 0' - 2.0' BGL Benlonite chips seal: 2.0' - 38.0' BGL Sand Pack: 38.0' - 60.0' BGL Screen: 40.0' - 60.0' BGL
- 20.0	- 112		eu, iuw piesuluity, dry			2/2 2/2	
	- 108	(20.5-22.0) - SILTY SAND, very lig coarse grained, trace of gravel, mo	ht brownish gray, fine to sist	SM		2/2	
- 25.0	- 104					2/2 2/2 2/2	Waler Level: 25.2' BGL
30.0	- 100					2/2 2/2	Craig En Termett
35.0	- 96	(22.0-44.0) - SAND, very light oran gray, fine to coarse grained, slightl	gish brownish to very light y silty, wet	sw		2/2 2/2	CRAIGE BENNETT
	- 92					2/2 2/2	GEOLOGY
40.0	- 88					2/2 2/2 2/2	$\frac{1}{5} = \frac{1}{2} = \frac{1}{5} = \frac{1}$
45.0	- 84	(44.0-47.0) - SILTY SAND, light gr wet	ay, fine to coarse grained,	SM		2/2	
50.0	- 80	(47.0-54.0) - Silty CLAY/Clayey SA Sand is fine to coarse grained, wet	ND, light gray, soft to firm,	SC/CL		2/2	
55.0	- 76	(54 0.80 0) - Silve Clauser SAND				2/2	
60.0	- 72	(54.0-60.0) - Silty, Clayey SAND, gr wet	ay, inte lo coarse grained,	SC/SM	////_	2/2	

Total Boring Depth = 60 ft Below Ground Level; North and Easting Coordinates from NAD-83, South Central Zone

Bui	165 N	nnett & Associate I. Lampasas Stree tram, TX 78605		[LOG	OF	BORING W-10 Renamed MW-10 (Page 1 of 1)
COL		EK POWER STATION NNIN, TX	Easting : 2 Northing : 13 Top of Casing	7/2015 542864.5 449694.0 NAVD 88		Driller Drill Rig Drilling N	
	Projec	t No. 15215	Logger : EE				
DEPTH (feet)	Surface Elevation	DESCRIPTIO	ON	USCS	GRAPHIC	Recovery (ft/ft)	WELL DIAGRAM/REMARKS
0.0		(0-2.0) - Fill Material: SILTY SAN	D, fine to coarse grained,	SM		2/2	
- 5.0	- 124	brown, clayey, common roots, mo (2.0-8.0) - Silty,Sandy CLAY,molt gray, firm, medium plasticity, mole	ed organish brown and light	CL		0/2	
- 10.0	- 120	(8.0-11.0) - Silly CLAY/Clayey SA medium grained, moist	ND, light gray, Sand is	SC/CL		2/2 1.7/2	Well Construction: Riser ~3.0' AGL - 40.0' BGL Neat Cement: 0' - 2.0' BGL
- 15.0	- 112	(11.0-19.0) - SILTY SAND, very lig grained, abundant caliche, moist	ght gray, medium to coarse	SM		1,8/2 1,8/2 1,8/2	Bentonite chips seal: 2.0° - 38.0° BGL Sand Pack: 38.0° - 60.0° BGL Screen: 40.0° - 60.0° BGL
- 20.0 - 25.0	- 108 - 104 - 100	(19.0-30.0) - SAND, light gray, me occasional gravel, moist	tium to coase grained,	SP		1.8/2 1.8/2 1.8/2 1.8/2 1.8/2	Water Level: 24.8' BGL
- 30.0	- 96	(30.0-32.0) - Silly CLAY/Clayey SA occasional grave) and calicha, mec	ium plasticity, wet	CL/SC	\square	1.8/2 1.8/2	Current OF Frinett
35.0		(32.0-34.0) - CLAYEY SAND, brow wet (34.0-36.0) - SILTY SAND, light gra		SC SM		1.8/2 1.5/2	
40.0	- 88	wat				1.8/2 1.8/2 1.8/2	CRAIGE. BENNETT B. GEOLOGY LIC. # 1205 CENSED CONS
45.0	- 84	(36.0-52.0) - Silly, Clayey SAND, lij grained, wet	jht gray, fine to coarse	SC/SM		1.8/2	5-26-16
50.0	- 80					2/2 2/2 1.8/2	
55.0	- 72	(52.0-60.0) - SILTY SAND, light gra clayey, wet	y, fine to coarse grained,	SM		1.8/2 1.8/2 2/2	
60.0	- 68					1.5/2	

Total Boring Depth = 60 ft Below Ground Level; North and Easting Coordinates from NAD-83, South Central Zone

		Lampasas Street ram, TX 78605		L		ו דר	BORING MW-11 (Page 1 of 1)
COLET		K POWER STATION NIN, TX	Northing 1345 Top of Casing Elevation 118.66 ft M	3727.0 52676.5	Di Di Di	riller rill Rig rilling	Company : EnviroCore : Craig Schena (Lic. #4694) : CME75 Method : Hollow Stem Auger - 6" g Method : Split-Spoon
	· ·	No. 17252	Logger : EEF	1			
DEPTH (feet)	Surface Elevation	DESCRIPTIC	DN	NSCS	GRAPHIC	Recovery (ft/ft)	WELL DIAGRAM/REMARKS
0.0	1	(0-1.0) - Silty CLAY, dark brown, s	oft to firm, medium	CL		2/2	
- 5.0	- 112	plasticity, minor roots, moist (1.0-6.5) - Predominantly Caliche a white, Caliche is weakly cemented wet		CL/ML		2/2 2/2 2/2	
	- 108					2/2	
- 10.0	- 104	(6.5-13.8) - Silty, Clayey SAND, li to medium grained, wet	ght gray to white, very fine	SM		2/2 2/2	Water Level: 11.2' BGL
- 15.0	- 100					2/2 2/2	
- 20.0	- 96	(13.8-28.5) - SAND, very light orar gray, fine to coarse grained, abun	ngish brownish to very light dant gravel, slightly silty, wet	SW		2/2 2/2	
- 25.0	- 92					2/2	Well Construction: Riser ~2.7' AGL - 29.0' BGL Neat Cement: 0' - 1.0' BGL
	- 88					2/2	Bentonite chips seal: 1.0' - 27.0' BGL Sand Pack: 27.0' - 49.0' BGL Screen: 29.0' - 49.0' BGL
- 30.0	- 84	(28.5-38.0) - Silty, Clayey SAND, g very fine to medium grained, wet	gray to light brownish gray,	SM/SC		2/2 2/2	
- 35.0	- 80				11111 11111 11111 11111 11111	2/2 2/2	
- 40.0	- 76	(38.0-40.0) - Silty CLAY/Clayey S/ caliche cemented, Sand is fine to r	AND, light gray, weakly medium grained, wet	CL/SC		2/2 2/2	SPIE OF THE
- 45.0	- 72	(40.0-46.0) - Silty, Clayey SAND, g grained, wet	gray, fine to medium	SM/SC	11111 11111 11111 11111 11111 11111	0/2 2/2	
	- 68	(46.0-49.0) - Silty CLAY/Clayey S/ caliche cemented, Sand is fine to	AND, light gray, weakly medium grained, wet	sc		1.5/2	Cirig So Finnett

Total Boring Depth = 49 ft Below Ground Level; North and Easting Coordinates from NAD-83, South Central Zone

BORING NO. BV-5

C110		<u> </u>	18 800	2-1 E 1												SHEET 1 OF 3
CLIENT International Pow							-	-			PI	ROJECT				PROJECT NO.
000	100	T L O	Inter	natic	onal	Pow						C	leto Creel)	149116
PRC		T LOO					1							ELEVATIO		TOTAL DEPTH
0 11-		Victo	<u>огіа,</u>	lex	as			<u>v 32</u>	7129	9.3'		2570579.3'		<u>33.0 ft (M</u>		80.0 (feet)
		ECO										ORDINATE S	YSTEM	DATE		DATE FINISHED
Gra						sanc	1				Sta	ate Plane	. 51/	9	/16/08	9/17/08
		SOIL				-		GGED				CHECKEI		•	APPROVED	ВΥ
ш.,	55	ES S	L H		<u>и</u> 1	ı E E E E E	í—	1 1		<u>3hadrira</u>	<u>10</u>	1	/ Bhadrira	ln		1
SAMPLE TYPE	SAMPLE		6		-1	SAMPLE	Ē	Ш	(FEET)	POG						
			KCC	RINC	<u></u>		1 11	2	CLASSIFICATION OF MATERIALS					S	REMARKS	
CORE	RUN NUMBER	RUN LENGTH	RUN RECOVERY	ROD RECOVERV	PERCENT	RQD	DEPTH (FEET)	CLASSIFICATION OF MATERIALS								
							0			X.Y	Clayey S	SAND; brow	nish gray; n	nedium dei	nse; moist;	Boring advanced
SPT	1	3	7	11	18	1.0	2-		- 132 -		fine grai	ned; poorly (graded; son	ne roots		w/ 3-1/4" ID hollow stem auger. SPT
									130							performed w/
SPT	2	13	11	10	21	1.2	4 -		13U -			3.2' yellowish ; roots grade		to mediun	n sand	auto hammer. Sand partings are vertical and
				1	1		-		- 128		م الم مربع	limbt	aaa- 1-1- 1			dry.
SPT	3	6	10	13	23	1.2	-		-		grading	light gray w/	some black	k motuing		
	-					1	6									
				50		1			- 126							
SPT	4	6	10	13	23	1.1	8		•							
			[ĺ	-		- 124							
						1		-								1
	1						10-	\square	•		grading	w/some light	brown stai	ning		
CA	5	6	14	19	33	1.4		$ \setminus $	- 122							
							-	\ŀ								
							12	[]								5
				ļ			-	╞	- 120			/hite; hard; n			quent	
						1					pockets	of gray fine g	grained clay	ey sand		
PT	6	13	16	20	36	1.5	14 -	A I								
							-		- 118							
								-								
							16 -									
					1		-	-	- 116							
								F								
		ĺ					18									
<u>,</u> [,		20]	Νŀ-	- 114		grading v	w/ frequent p	ockets of g	iray & light	brown clay	
`A	7	19	30	28	58	1.5	-	\-								
1		1					20	-				rayish white	moiet fina			1-
								Ē	- 112		poorly gr		, moist, iine	ιο πεσιμη	i grameu,	
							-	ŀ			Poony gi					
							22	ŀ								
[[1	Ľ	110							ļ
							-	-+			aradina r	nedium den:	a witraco c	angular ora	vol	
PT	8	6	8	8	16	1.5	24 –	AF		齫		gravel grade		ingulai yi'd	Y G1	
	-	-		~					108		ע ∠4.0 נ	giavei yidue	3 Out			
							-		100	辛間						Encountered
	ł			ĺ			26	F								Encountered water @ 25.5'
		Í					-	F	100							during drilling
				ļ	Í		1	F	106							adding onling
				ł			28 -	-								
							ł	<u> </u>	ł		oradino v	ery dense				Sand in augers.
	_	i0/5"		_	>50	0.3	-		104			alcareous sa	und nodulee	eome wh	ito cilt w/	Augers being
PT	9 5	10101	- 1													

-		V OR	. V L	. /==1 H \	C L I											SHEET 2 OF 3
CLI	ENT					_					PR	DJECT				PROJECT NO.
	-	<u></u>	Inte	rnati	onal	Pow	<u>er A</u>	mer	<u>ica, Ir</u>	10	<u> </u>	Cc	eto Creek	CUnit Two)	149116
PR(DJEC.						,		RDINA		-				N (DATUM)	TOTAL DEPTH
		Vic	oria	Tex	as			N 32	27129	.3'	E 25	70579.3'	1	<u>33.0 ft (M</u>		80.0 (feet)
1	RFAC											RDINATE S	YSTEM	DATES		DATE FINISHED
Gra	assy,					san					Stat	e Plane		9,	/16/08	9/17/08
					_			GGE	DBY			CHECKE			APPROVED	BY
Щ.,	SAMPLE	SET	2ND	3RD BINCHES	2 L	SAMPLE	<u> </u>	—		lhadriraju	<u> </u>	<u> </u>	/ Bhadriraj	u		1
SAMPLE TYPE	MAN	μZ	2				3		l E							
SA SA	N N N	0 4				S S S		ևա		0						
				_L DRING			티	Ĩ		ŏ			CATION OF		e	REMARKS
	1~			-1 >	-]>	-1	DEPTH (FEET)	SAMPLE TYPE	ELEVATION (FEET)	GRAPHIC LOG		OLAGOIN .	CATION OF		5	I REMARKS
泡目	RUN NUMBER	RUN					Ŧ	1	A	<u></u>						
CORE		D N N	129	្ត៍ខ្លីខ្លីខ្លី		Rob D	1 2	N N	ΙÀ	₹						
•	z	- =	RUN	1 - ŭ	PERCENT	1		l s		5						
							30				chalk nod	ules				driven along w/
		1	1			1		-	- 102							spoon.
				1				-	}							Below 28.5'
							32-	-	-							continued w/
								-	h							rotary wash
	ĺ		Ì	1				1	- 100				_			method using 4"
<u> </u>		-					34 -	A	-				se; wet; fine	e to mediu	m grained;	drag bit &
SPT	10	6	8	10	18	0.9	_	-	-		well grade	ed				bentonite slurry
			1	1	1	[98							as drilling fluid. Driller reported
					1			-	ł							
							36 -]	[trace gravel from 28.5'-38.5'.
				1				-	96							20.3-30.3.
							Ì	-	-							
			ļ				38 -	-	-							
			1			1			1		grading ve	ery dense				
SPT	11	14	33	38	71	1.5	1		- 94		@ 38.5'-3	9.3' vellow	silty clay lag	yer		
							40 -		4.		@ 39.3' gi	ading gray	rish white w	/ fine grain	ed sand &	
			Í					-	-		some silt				10	Based on driller's
							1	-	- 92		Clavev SA	ND [,] light c	ray; dense;	moist fine		comments.
									-		poorly gra		nay, acrise,	moist, me	granica,	
							42 -	1	-		poony gra	000				
						Ì			- 90							
					İ		.		-							
зрт	12	12	16	21	37	1.5	44 -		-							
									- 88							
									- 00	- 54						
							46 -		╞							
					}		-		-							
					1		-		- 86							
							48 -	1	Ľ							
						ľ	40 -	\square	_					1		
	1.2	40	47	20			-		- 84		grading lig	nt brown; s	silt grades o	ut		
SPT	13	12	17	20	37	1.5	-		- 1							
	1					[50 -		-							
					ĺ		-									
									- 82	14						
						ļ	52		-							1
	[-		-							1
							-		- 80							
									-	o de la compañía de la	ıradina fin	e to mediu	m grained			
PT	14	17	40	33	73	0.9	54 -						0			
							-		- 78		ome andi	ılar gravel		-		
	Į	ł					-	ŀ			.onio ungi					
	1		i	· (56 -	-	.							
	I						-	ŀ								
				1						r i i						Driller reported
							-	ł	~ 76	22						Driller reported
	ŗ	-					58		- 76							alternating hard and soft drilling
							5B -		/6		rading w/	white fine	sand: como	day come	untation	alternating hard
PT	15	7	50/3"	-	>50	0.3	- 58 -		- 76	g	rading w/	white fine :	sand; some	clay ceme	entation	alternating hard and soft drilling

BORING NO. BV-5

		K år	VE	AI	CH					BOR	ING LOG	<u></u>				SHEET 3 OF
CLIENT International Pov							or A	mor	ica Ir	10	PROJE		alata Creak I	Init Tw-		PROJECT NO.
PRO	DJEC	TLO	CATI	ON	onar			000	ica, ii RDINA	TES			GROUND EI) N (DATUM)	149116 TOTAL DEPTH
			oria,		as		E E		27129		E 25705	579.3'	1	3.0 ft (M		80.0 (feet)
SUF	RFAC		NDIT				<u>.</u>				COORDI			DATE		DATE FINISHED
Gra					ayey	sanc					State P				/16/08	9/17/08
	<u> </u>	-	. SAN	····	_			GGE	DBY			IECKE			APPROVED	
SAMPLE TYPE	SAMPLE	SET 6 INCHES	2ND 6 INCHES	3RD	입 뜨	SAMPLE	[<u>.</u>		<u>Shadrira</u> I	ju l		V Bhadriraju		[
₩Ł	AM	S N N N N				ANA S			ELEVATION (FEET)							
ŝ	ωz			1		S B	Ē	TYPE	L E	FOG						
	T	_			G -1. >	- 1	оертн (Feet)	≿	l₫		CL	ASSIFI	CATION OF M	ATERIAL	S	REMARKS
Вч							E		AT	H						
CORE	RUN NUMBER	RUN	RUN RECOVERV		PERCENT	Rap	l E	SAMPLE	<u> </u>	GRAPHIC						
	<u> </u>					[]	1	Ś	<u> </u>	Ű						
					1		60	-	ŀ		Silty SAND; w	/hite; v	erv dense; mo	bist: fine	grained: -60.	ased on unlier
							1]	- 72		poorly graded					comments &
					1		62-	-	-		cemented					cuttings from rotary wash.
				1				1	-							
		1	ĺ					1	70 							
зрт	16	50/4'		.	>50	0.2	64 -		ŀ							
, ,	10	00/4		⁻	-30	0.2			- 68							
				ł				-	- 00							
			1			i i	66 -		_							
									- 66							
			1			ĺ	.		-							
				Į	1		68		-							
		Folou	ł						- 64		grading w/ trac			gular gra	vel: clay	
SPT	PT 17 50/3" >50 0.3		0.3	-		-		pockets grade	to trac	ce						
							70		-	一個的						
							-		- 62							
							70									
							72 -		-							
						ĺ	-		- 60							
							- 74				CLAY; dark ta	– – – n: hard		 lasticity:	73.5 some sand	TNo clay cuttings
PT	18	12	17	22	39	1.5	-				@ 74.5' yellow			lastiony,	Some Sand	in drilling fluid
							-		- 58		@ 74.5 yenow	nan gra	зу			return.
							76 -									
				ļ			-	-	·							
							-		- 56							
							78 -		· Í							
							-		- 54							ĺ
PT	19	13	17	22	39	1.5	-	A F	- 54							
-+							80 -			22			·			Bottom of boring
		ĺ	ĺ				1	Ľ	- 52							@ 80.0'. Water
						1	-	-								level recorded @
		ĺ	1				82 -	ŀ								24.6' after 24
				ĺ		1	1	Ļ	- 50							hours. Boring backfilled w/
		ĺ					4	ŀ								bentonite pallets
					- 1	1	84	Ē								to 42.5' on 09/17
			Í				-	-	48							08. Piezometer
					1		-	ŀ								PZ-5 set from
							86 -	ļ.								30.0' to 40.0'. Boring backfilled
1							-	⊢	46							with cement
							-	F							ĺ	bentonite grout to
Ì				1			88	F								ground surface.
				ļ			+	┢	44						1	
							90 -									
							_ ف _ ف									

	ENT	1 4 4 3	L V L		U 11						/ I VEI M			<u></u>				SHEET 1 (<u>JF 3</u>
	LIN I		Inte	rnat	iona	Pou	ver A	me	rica, I	nc			JECT	Nato Cri	eek Unit	Two		PROJECT NO.	
PRO	JEC	TLC	CAT	ION	und				nca, i DRDIN			l.,			ND ELEVA	ATION	(DATUM)	149116 TOTAL DEPTH	
		Vic	toria	, Te	xas		-		2865			E 25	71578.7'	3	128.4 1			80.0 (feet	t)
		ECO	DNDI.	TION	S				-			COOF	RDINATE S			ATE S	TART	DATE FINISHEI	Ď
Le	/el, l		<u>e, sil</u> L sai						ED BY			State		שט ר	<u>l</u>	9/	/8/08 APPROVED	9/8/08	
122	111.0		_	_				100		Bhad	riraiu			/ Bhadr	iralu	ľ	AFFKUVED	10	
SAMPLE TYPE	SAMPLE	SET	2ND	6 INCHES 3RD	뛰 고	VALUE SAMPLE				1				. Jijuul		I		1	
SAN	SAN	0	5	3 8	2 2	SAN		. "	l ü	6									
	1	1	СКС										CLASSIF			RIALS		REMARKS	•
CORE SIZE	RUN			ROD		COVERY ROD	DEPTH (FEET)		ELEVATION (FEET)	GRAPHIC									2
	<u> </u>			Į,				v u	5 🖬	5									
SPT	1	1	2	5	7	0.9))		- 128			<u>\ND;</u> dar aded	k brown;	loose; m	oist; fine :	graine	ed; poorly	Boring advar w/3-1/4" ID	nced
			1	1			2	_							nedium de	ense;	moist; fine	² hollow stem auger. SPT	
									126		974 gr	ained; p	oorly grad	led				performed w	/auto
SPT	2	5	5	6	11	1.5	5		ŀ		4	adina lia	ht gray; so	ma blac	k mottlin-			hammer.	
							4		- 		ra g⊓	aung iigi	ni yray, St	nne piac	v momulá	youra	ace loois		
								-	-{		62 С.С. по	nu w/l	trace chal	k nodule	s: roots a	irade	out		
SPT	3	4	6	9	15	i 1.5	6		-		an an				o, roota y	naue	Juli		
		l	[İ			122									Į	
						ļ		-	-					F				ĺ	
РТ	4	5	6	8	14	1.1	8		- 120		HH Gra	ading w/t	requent s	eams of	chalk not	dules			
									4										
				1		Ì	10-	1	Ĺ				<u>ND;</u> light g	rav: moi	et: fine to		— — — —9.5 ium	j-	
A	5	3	3	4	7	1.5		A	- 118	NOX.			orly grade			meu	um		
	0	5			1	1.5			Ļ						0				
						}	12 -	-	- 116		[/] [] \ gra	iding w/ł	ighly cerr	ented ca	alcareous	sand			
				ĺ				1	- 110				; grayish v				12.0	l-	
									-				orly grade		.,	,	ų 1110		
∍Ţ	6	22	50/3	-	>50	0.7	14 -	A	- 114										
			ĺ																
			ļ				16 -	-	-										
									- 112	포									
								-	-	▼篇								L Water	
					1		18 -	1	- 110				nge; wet;		iedium gr	rained	; trace	- encountered	
эт	7	24	50	50/4	>50	0.9		A	-		iii cal	careous	sand nod	ules				during drilling	@
	ĺ						20		-									17.6'. Driller reports	i
							-		108 -									softer drilling.	
	ĺ				1	[-		-									Below 18.5' continued w/	
							22 -	Í	- 106									rotary wash	
							-		-									method using	4"
			_		ļ		24 -		-			Y light	arav: ven			nlasti	— — —23.5- city; some	drag bit & bentonite slur	n i
Г	8	5	6	14	20	1.5	- 1		- 104				clay pock			Produ	•	as drilling fluid	
		ĺ							-		SAI	VD; liaht	gray; ver	 / dense:	wet; fine	to co:	— — —25.0- arse	White silt & fir	ne
							26		- - 102				ll graded;					sand in botton SPT-8	n of
						1					<u>.</u>						ĺ	JF 1-0	I
			ĺ					ļ	.		5 2								
							28 -	ł	- 100		8								
эт	9	20	48	48	96	1.5	-	A I			í.								
							30			80	2								

CI	ENT		••••									INTO LOO SHEET 2 OF
			Infe		tions			۸	ri	~~ r		PROJECT PROJECT NO.
PRO		T10		<u>энна</u> эом	uona		wer			<u>ca, Ir</u> RDINA		Coleto Creek Unit Two 149116
			toria		vae					8659		GROUND ELEVATION (DATUM) TOTAL DEPTH
SUF	RFAC	E CO	DNDI	1, 1 C	<u>15</u>			<u> </u>	JZ	0009	./	E 2571578.7' 128.4 ft (MSL) 80.0 (feet) COORDINATE SYSTEM DATE START DATE FINISHED
			e, si									
<u> </u>	v GI,		<u>e, si</u> L SA				ī	00	GEF) BY		State 9/8/08 9/8/08 CHECKED BY APPROVED BY
	1			_		1		.00	JEL		Bhadrin	
SAMPLE TYPE	SAMPLE	SET	2ND	6 INCHE	6 INCHES N	VALUE SAMPI F	RECOVERY					aju V Bhadriraju
						0.	, <u>5</u>	E	ц Ш	щ	00	
	1 .					7		Ê	F	NO		CLASSIFICATION OF MATERIALS REMARKS
CORE	RUN	RUN	RUN	RaD	PERCENT	RECOVER	Rap	DEPTH (FEET)	SAMPLE TYPE	ELEVATION (FEET)	GRAPHIC LOG	
								30	 	- 98		grading grayish white; fine grained; poorly graded; w/ trace clay & some gravel
							3	- 12 -		- 96		
						1			[grading fine to medium grained; clay & gravel grade out
врт	10	33	50/4	4" -	>5	io 0.	.4	4-		- 94		@ 34.0'-35.0'
							3	6		- 92		encountered. Hard drilling. Drilled through w
							3	88	-	- 90		4" tricone driller bit. Driller reported
PT	11	9	24	40	64	1.	4 4			· 88		grading w/occasional light brown clay pockets Limestone in cuttings. Continued w/4"
						***	4	2-1		86		2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2
эт	12	13	39	50/4	l" >5() 1	1			84		
A	13	30	45	50/5	^{1*} >50) 1.0	3	- - - -	_[\[82		grading w/limestone nodules
די	14	36	50/5'	-	>50	1.0	48			80		SAND; light gray; wet; fine grained; poorly graded; highly cemented @ 47.2' grading light brown; fine to medium grained;
							50		■ - -	78		Sandy <u>CLAY</u> ; grayish white; hard; dry; low plasticity
							52	فيدلب فالمسا		76		
эт	15	17	30	32	62	1.5	54	-		74		SAND; light brown; very dense; wet; fine to medium grained; poorly graded; some gravel & coarse sand
			- 187. 				56		-7	72		sized chalk nodules; occasional light brown clay pockets
יד 1	16 5	0/4"	-	-	>50	0.3	58			ro		

1/15/2009 4:19 PM Calelo Creek 2

PRELIMINARY BORING LOG

BORING NO. BV-21

												PROJECT NO.				
International Power America, Inc Coleto Creek Unit Two											Ċ.	149116				
PR	OJEC	TLO	CATIO	DN				00	RDINA	ATES		00	GROUND		N (DATUM)	TOTAL DEPTH
		Victe	oria.	Texa	as				8659			<u>E 25</u> 71578.7'		28.4 ft (N	• •	80.0 (feet)
SU	RFAC	Victor E CO	NDIT	IONS						<u></u>		COORDINATE S	YSTEM		START	DATE FINISHED
Le	vel, l	oose	, siltv	v sar	٦d							State			9/8/08	9/8/08
		SOIL						GE	D BY		ı	CHECKED	BY		APPROVED	BY
ш	ша	: ::	្ល	l so		шž			V. E	3hadrira	iu	ν – Ν	/ Bhadriraj	u		
SAMPLE	SAMPLE	SET 6 INCHES	2ND INCHES	3RD 6 INCHES	VALUE	SAMPLE					Ĺ			ч <u>—</u>		
ĕ⊢	N N	ت م	8 2	l e z	Z	AN D			ш							
–	07 2					" č	E.	d	F	0						
<u> </u>	-		KCO				ΗÜ	7	N			CLASSIFIC	CATION OF I	MATERIAL	S	REMARKS
μ _u		_ E	_ <u></u>	_ <u> </u>	L H		E E	벁	AT	Ŭ H						
CORE	RUN	RUN	l₿ğ	1 Å Š	ا تي ا	Rob	DEPTH (FEET)	SAMPLE TYPE	ELEVATION (FEET)	GRAPHIC LOG						
0.	Ĩ		RUN RECOVERY	RQD RECOVERY	PERCENT RECOVERY		DE	SA		19						
		1				<u> </u>	60	<u> </u>	- 68		@ 60	.0' white chalk I	aver			
]									Ĺ
İ		ĺ					-	ļ	F		CLAY	; yellowish gray	/: hard: mois	st: hiah ol	asticity	Liay cuttings
	1						62 -		-							from rotary wash
				ļ	ŀ		-		- 66							
			ſ			ĺ	-		-							
SPT	17	11	20	25	45	1.5	64	A								
351		EI	20	20	40	1.5	-		- 64							
]			20000141043	-							
ĺ					ĺ		66		-							
	1					1			62							
							-		-							
									-							
							68		- 60							
SPT	10			<u>0</u> -	~~		-		-		gradir	ng w/frequent pa	artings of gr	ayish whi	te fine sand	
371	18	18	25	25	50	1.5	-				w/gra	vel sized chalk i	nodules			
							70 -		- 58							
						ļ	-									
							-		-							
				Í			72 -									
							-	Ī	- 56							
							1									
CDT	40		07	07			74 -	A I			@ 73.	5'-74.0' light bro	own			
SPT	19	14	27	27	54	1.5	-	A	- 54		fine so	and partings gra	de to occas	ional		
							- 18	-			1110 30	and parangs gra		sonai		
			ĺ				76 -	ļ								
					ĺ		· 4	ŀ	- 52							
				[-	ŀ								
								Ľ								
		1	ļ				78 -		- 50							
SPT	20	10	10		17		-	x ł						·	79.0-	
	20	18	18	29	47	1.5	_	at.	İ		<u>SAND</u>	; grayish white;	dense; moi	st; fine gr	ained; poorly	
							80 -		- 48	<u>⊢</u> "∖	gradeo	l; trace clay			ſ	Bottom of boring
ļ]	-							_	@ 80.0'. Water
	Ì						4	ŀ							1	level recorded @
					ļ		82 -	t	40							16.3' after 24
]							1	[- 46							hours. Boring
			1				1	-								backfilled w/
					ĺ		84 -	┢								bentonite pallets
				[ĺ	-	F	44							to 42.5' on 09/09/
				ļ			-	Ľ	ļ						ĺ	08. Piezometer PZ-21 set from
							86 -	ŀ								30.0' to 40.0'.
								┝	42							Boring backfilled
							+	r								with cement
							<u> </u>	Ē								bentonite grout to
							88 –	F	40	į I						ground surface.
		[ļ		-	ł							-	-
Ì					1		<u> </u>	F								
			,				90	7		l					,,,,,,, _	

MONITORING WELL CONSTRUCTION FORMS

(and)-Hupper

(Wilder)

EXHIBIT 11 SL-3689

AS-BUILT DETAILS

levation Top of avelpack	Elevation Top Well Screen	Elevation Bottom of Well
89.8	80.2	60.0
93.3	85.0	65.2
97.5	89.5	70.2
110.5	83.8	64.2
85.8	80.1	60.3
82.2	75.1	55.2
80.4	74.9	50.1
103.0	94.8	74.9

SUMMARY OF GROUNDWATER MONITORING WELL DETAILS

SARGENT&LUNDY

ENGINEERS

	STATE OF TEXAS WELL REPORT for Tracking #423117												
Owner:	IPA Operations, Inc.	Owner Well #:	W-9 Renamed MW-9										
Address:	Coleto Creek Power LP PO Box 8	Grid #:	79-23-2										
	Fo Box 8 Fannin, TX 77960	Latitude:											
Well Location:	Coletto Creek Power Plant Fannin, TX 77960	Longitude:											
Well County:	Goliad	Elevation:	No Data										
Type of Work:	New Well	Proposed Use:	Monitor										
Type of Work:	New Well	Proposed Use:	Monitor										

Drilling End Date: 9/17/2015 Drilling Start Date: 9/16/2015 Bottom Depth (ft.) Diameter (in.) Top Depth (ft.) Borehole: 6 0 60 **Hollow Stem Auger Drilling Method:** Filter Packed **Borehole Completion:** Top Depth (ft.) Bottom Depth (ft.) Filter Material Size Filter Pack Intervals: 38 60 Sand 16/30 Top Depth (ft.) Bottom Depth (ft.) Description (number of sacks & material) Annular Seal Data: 0 2 **Cement 1 Bags/Sacks** 2 38 **Bentonite 15 Bags/Sacks** Seal Method: Hand Mixed Distance to Property Line (ft.): No Data Sealed By: Driller Distance to Septic Field or other concentrated contamination (ft.): No Data Distance to Septic Tank (ft.): No Data Method of Verification: No Data Surface Completion: **Surface Slab Installed** Surface Completion by Driller Water Level: 25.2 ft. below land surface on 2015-09-18 Measurement Method: water level meter Packers: No Data

Type of Pump: No Data

Well Tests: No Test Data Specified

	Strata Depth (ft.)	Water Type		
Water Quality:	No Data	No Data		
		Chemical Analysis N	lade: No	
	Did the driller	knowingly penetrate any strata w contained injurious constitue		
Certification Data:	driller's direct superv correct. The driller u	nat the driller drilled this well (or the ision) and that each and all of the nderstood that failure to complete eturned for completion and resubr	e statements he the required it	rein are true and
Certification Data: Company Information:	driller's direct superv correct. The driller u the report(s) being re	ision) and that each and all of the nderstood that failure to complete	e statements he the required it	rein are true and
	driller's direct superv correct. The driller u the report(s) being re	ision) and that each and all of the nderstood that failure to complete aturned for completion and resubr	e statements he the required it	rein are true and
	driller's direct superv correct. The driller u the report(s) being re EnviroCore, Inc. 7525 Idle Hour Dr.	ision) and that each and all of the nderstood that failure to complete eturned for completion and resubr	e statements he the required it	rein are true and

Report Amended on 5/26/2016 by Request #17930

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description		
0	2	fill material		
2	5.5	silty clay/clayey sand;brownish gray to white		
5.5	10	silty clay; dark gray		
10	20.5	caliche and silty clay;light gray to white		
20.5	22	silty sand;brownish gray		
22	44	sand; light orangish brown		
44	47	silty sand; light gray		
47	54	silty clay/clayey sand; light gray		
54	60	silty, clayey sand; gray		

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
2	Riser	New Plastic (PVC)	40	-3	40
2	Screen	New Plastic (PVC)	10	40	60

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

STATE OF TEXAS WELL REPORT for Tracking #423118					
Owner:	IPA Operations, Inc.	Owner Well #:	W-10 Renamed MW-10		
Address:	Coleto Creek Power LP PO Box 8	Grid #:	79-23-2		
	Fannin, TX 77960	Latitude:			
Well Location:	Coletto Creek Power Plant Fannin, TX 77960	Longitude:			
Well County:	Goliad	Elevation:	No Data		
Type of Work:	New Well	Proposed Use:	Monitor		
Type of Work:	New Well	Proposed Use:	Monitor		

Drilling End Date: 9/15/2015 Drilling Start Date: 9/15/2015 Bottom Depth (ft.) Diameter (in.) Top Depth (ft.) Borehole: 6 0 60 **Hollow Stem Auger** Drilling Method: Filter Packed **Borehole Completion:** Top Depth (ft.) Bottom Depth (ft.) Filter Material Size Filter Pack Intervals: 38 60 Sand 16/30 Annular Seal Data: No Data Seal Method: Hand Mixed Distance to Property Line (ft.): No Data Sealed By: Driller Distance to Septic Field or other concentrated contamination (ft.): No Data Distance to Septic Tank (ft.): No Data Method of Verification: No Data **Surface Slab Installed** Surface Completion by Driller Surface Completion: Water Level: 24.8 ft. below land surface on 2015-09-18 Measurement Method: water level meter Packers: No Data Type of Pump: No Data

Well Tests: No Test Data Specified

	Strata Depth (ft.)	Water Type		
Water Quality:	No Data	No Data		
		Chemical Analysis N	lade: No	
	Did the driller	knowingly penetrate any strata w contained injurious constitue		
Certification Data:	driller's direct superv correct. The driller u	nat the driller drilled this well (or the ision) and that each and all of the nderstood that failure to complete eturned for completion and resubr	e statements he the required it	rein are true and
Certification Data: Company Information:	driller's direct superv correct. The driller u the report(s) being re	ision) and that each and all of the nderstood that failure to complete	e statements he the required it	rein are true and
	driller's direct superv correct. The driller u the report(s) being re	ision) and that each and all of the nderstood that failure to complete aturned for completion and resubr	e statements he the required it	rein are true and
	driller's direct superv correct. The driller u the report(s) being re EnviroCore, Inc. 7525 Idle Hour Dr.	ision) and that each and all of the nderstood that failure to complete eturned for completion and resubr	e statements he the required it	rein are true and

Report Amended on 5/26/2016 by Request #17931

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description		
0	2	fill material		
2	8	silty sandy clay; orangish brown		
8	11	silty clay/clayey sand; light gray		
11	19	silty sand; light gray		
19	30	sand; light gray		
30	32	silty clay/clayey sand; light gray		
32	34	clayey sand; brownish gray		
34	36	silty sand; light gray		
36	52	silty, clayey sand; light gray		
52	60	silty sand; light gray		

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
2	Riser	New Plastic (PVC)	40	-3	40
2	Screen	New Plastic (PVC)	10	40	60

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

STATE OF TEXAS WELL REPORT for Tracking #462686					
Owner:	Dynegy Inc.	Owner Well #:	MW-11		
Address:	Coleto Creek Power Station PO Box 8	Grid #:	79-23-2		
	Fannin, TX 77960	Latitude:	28° 43' 37.02" N		
Well Location:	Coleto Creek Power Station Fannin, TX	Longitude:	097° 12' 18.36" W		
Well County:	Goliad	Elevation:	No Data		
Type of Work:	New Well	Proposed Use:	Monitor		

Drilling Start Date: 4/25/2017 Drilling End Date: 4/25/2017

	Diameter	(in.)	Top Depth (ft.)	Bottom Dept	h (ft.)	
Borehole:	6		0	49		
Drilling Method:	Hollow Stem A	uger				
Borehole Completion:	Filter Packed					
	Top Depth (ft.)	Bottom Depth (ft.)	Filter	Material	Size	
Filter Pack Intervals:	27	49	Sa	and	16/30	
	Top Depth (ft.)	Bottom Depth	(ft.) De	escription (number of sa	er of sacks & material)	
Annular Seal Data:	0	1		Cement 1 Bags	Bags/Sacks	
	1	27		Bentonite 13 Bag	gs/Sacks	
Seal Method: Ha	and Mixed		Distance to P	Property Line (ft.): N	lo Data	
Sealed By: Dr	iller			tic Field or other ontamination (ft.):	lo Data	
			Distance to	Septic Tank (ft.): N	lo Data	
			Metho	od of Verification: N	lo Data	
Surface Completion:	Surface Slab Ir	nstalled	S	Surface Completio	n by Driller	
Water Level:	No Data					
Packers:	No Data					
Type of Pump:	No Data					

_

	Strata Depth (ft.)	Water Type		
Water Quality:	No Data	No Data		
		Chemical Analysis Made:	No	
	Did the driller	knowingly penetrate any strata which contained injurious constituents?:	Νο	
	described well, in landowner or pers	tify that while drilling, deepening or jurious water or constituents was er son having the well drilled was infor gged in such a manner as to avoid ir	ncountere med that s	d and the such well must be
Certification Data:	driller's direct superv correct. The driller u	nat the driller drilled this well (or the we ision) and that each and all of the state nderstood that failure to complete the r eturned for completion and resubmittal.	ements her required ite	ein are true and
Company Information:	EnviroCore, Inc.			
	7525 Idle Hour Dr. Corpus Christi, T)			
Driller Name:	Craig Schena	License N	Number:	4694
Comments:	No Data			

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Casing: BLANK PIPE & WELL SCREEN DATA

Top (ft.)	Bottom (ft.)	Description
0	1	0-1.0 - Silty CLAY
1	6.5	Predominately Caliche and Silty Clay
6.5	13.8	Silty Clayey Sand
13.8	28.5	Sand with abundant gravel
28.5	38	Silty Clayey Sand
38	40	Silty Clay/Clayey Sand
40	46	Silty Clayey Sand
46	49	Silty Clay/Clayey Sand

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
2	Riser	New Plastic (PVC)	40	-3	29
2	Screen	New Plastic (PVC)	40 10	29	49

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 334-5540

		Lampasas Street ram, TX 78605		L			BORING MW-11 (Page 1 of 1)						
COLET		K POWER STATION NIN, TX	Northing : 134 Top of Casing Elevation 118.66 ft I	3727.0 52676.5	Company : EnviroCore : Craig Schena (Lic. #4694) : CME75 Method : Hollow Stem Auger - 6" g Method : Split-Spoon								
		No. 17252	Logger : EEF	1									
DEPTH (feet)	Surface Elevation	DESCRIPTIC	DN	NSCS	GRAPHIC	Recovery (ft/ft)	WELL DIAGRAM/REMARKS						
0.0	1	(0-1.0) - Silty CLAY, dark brown, s	oft to firm, medium	CL		2/2							
- 5.0	- 112	plasticity, minor roots, moist (1.0-6.5) - Predominantly Caliche a white, Caliche is weakly cemented wet		CL/ML		2/2 2/2 2/2							
	- 108					2/2 2/2							
- 10.0	- 104	(6.5-13.8) - Silty, Clayey SAND, li to medium grained, wet	ght gray to white, very fine	SM		2/2 2/2	Water Level: 11.2' BGL						
- 15.0	- 100					2/2 2/2							
- 20.0	- 96	(13.8-28.5) - SAND, very light orar gray, fine to coarse grained, abun	ngish brownish to very light dant gravel, slightly silty, wet	SW		2/2 2/2							
- 25.0	- 92					2/2	Well Construction: Riser ~2.7' AGL - 29.0' BGL Neat Cement: 0' - 1.0' BGL						
	- 88					2/2 2/2	Bentonite chips seal: 1.0' - 27.0' BGL Sand Pack: 27.0' - 49.0' BGL Screen: 29.0' - 49.0' BGL						
- 30.0	- 84	(28.5-38.0) - Silty, Clayey SAND, g very fine to medium grained, wet	gray to light brownish gray,	SM/SC	- 11111 - 11111 - 11111 - 11111 - 11111	2/2 2/2							
- 35.0	- 80				11111 11111 11111 11111 11111 11111	2/2 2/2							
- 40.0	- 76	(38.0-40.0) - Silty CLAY/Clayey S/ caliche cemented, Sand is fine to r	AND, light gray, weakly medium grained, wet	CL/SC		2/2 2/2	SPIE OF THE						
- 45.0	- 72	(40.0-46.0) - Silty, Clayey SAND, g grained, wet	gray, fine to medium	SM/SC		0/2 2/2							
	- 68	(46.0-49.0) - Silty CLAY/Clayey S/ caliche cemented, Sand is fine to	AND, light gray, weakly medium grained, wet	sc		1.5/2	Craig 58 Frunett						

Total Boring Depth = 49 ft Below Ground Level; North and Easting Coordinates from NAD-83, South Central Zone

BORING NO. BV-5

		<u> </u>	12 6(. <u></u>		SHEET 1 OF 3
CLI	=N f					-	-					PROJECT	leto Creek	r 1		PROJECT NO.
000			Inter	natic	onal	Pow					l	Co	149116			
איין		T LOO					1				-				N (DATUM)	TOTAL DEPTH
C 11-		Victo	<u>огіа,</u>	Tex	as			1 32	7129	9.3'		2570579.3'		<u>33.0 ft (M</u>		80.0 (feet)
				IONS								OORDINATE S	YSTEM	DATE		DATE FINISHED
Gra						sanc	1				S	tate Plane	. 51/	9	/16/08	9/17/08
		T		PLIN		-		GE	D BY			CHECKE		•	APPROVED	ВΥ
Щ.,,	55	ES S	L H		<u>и</u> 1	ı E E E E E	í —	· · ·		<u> 3hadrira</u>	<u>u</u>		/ Bhadriraj	ln		1
SAMPLE TYPE							Ē	PE	(FEET)	POG						
	<u> </u>		KCC	RINC	<u></u>		1 11	2	No.	1		CLASSIFI	CATION OF	MATERIAL	S	REMARKS
CORE	RUN NUMBER	RUN LENGTH	RUN RECOVERY	ROD RECOVERV	PERCENT	RQD	ОЕРТН (FEET)	SAMPLE TYPE	ELEVATION (FEET)	GRAPHIC						
		_					0		-	X.Y	Clayey	SAND; brow	nish gray; m	nedium dei	nse; moist;	Boring advanced
SPT	1	3	7	11	18	1.0	2-		- 132 - -		fine gr	ained; poorly	graded; son	ne roots		w/ 3-1/4" ID hollow stem auger. SPT
									- 130							performed w/
SPT	2	13	11	10	21	1.2	4-		13U -			-3.2' yellowist is; roots grade		to mediun	n sand	auto hammer. Sand partings are vertical and
				1	1		-		- 128				acer-1			dry.
SPT	3	6	10	13	23	1.2	-				gradine	g light gray w/	some black	k mottling		
	-					1	6		-							
						1	-	╞	- 126							
						1	_ ~		-							
SPT	4	6	10	13	23	1.1	8									
						ĺ	1		- 124							
						1										
		:					10-	\square			grading	g w/some light	brown stai	ning		
CA	5	6	14	19	33	1.4	-	$ \setminus $	- 122							
								\ -								
	1						12 -									5-
							-	┝	- 120			white; hard; n			quent	
											pocket	s of gray fine	grained clay	ey sand/		
PT	6	13	16	20	36	1.5	14 -	N								
							-		- 118							
							_ +	ŀ								
							16 -	ļ								
					1		-	╞	- 116							
								ŀ								
		Ì					18									
<u>,</u> [,	10	20		ED			\setminus +	- 114		grading) w/ frequent p	ockets of g	ray & light	brown clay	
CA	7	19	30	28	58	1.5	-	\-								
							20	Ť			 SAND∙	grayish white		to mediun	— — — —20.0 a grained:	
								F	- 112		poorly g		, nota, inte		n granieu,	
							-	ŀ			From 5					
							22	Ę	i							
						f]	Ĺ	110							
							+	+	-		oradino	medium den	se w/trace a	angular ora	vel	1
PT	8	6	8	8	16	1.5	24 -	M t				' gravel grade				
							Ţ.		108		e =	3.2.0. 3.000				
							-	ŀ		오 []]						Encountered
	F			1			26	F								water @ 25.5'
Ì]	Ľ	106							during drilling
	1			ļ]	F	100							
				1			28 -	-								
		[-+	4		grading	very dense				Sand in augers.
PT	9 5	0/5"	-	-	>50	0.3		N L	104			calcareous sa	and nodules	: some wh	ite silt w/	Augers being
						Ì	30							,		

				K & . # 1j	wa a														SHEET 2 OF 3		
CLI	=N F					-						PRO	JECT	1 , -	.				PROJECT NO.		
000		TIO	Inte	rnati	onal	Pow	<u>er A</u>	mer	<u>ica, Ir</u>	<u>1C</u>		Coleto Creek Unit Two GROUND ELEVATION (DATUM)						149116			
PRC	JEC		CATI				,		RDINA			pa					• •		TOTAL DEPTH		
C115			toria	<u>, lex</u>	<u>as</u>			N 32	27129	.3'	r	E 257	70579.3'		133	<u>.0 ft (N</u>		-	80.0 (feet)		
			NDI									COORDINATE SYSTEM DATE START					DATE FINISHED				
Gra						san		000	ח היי			State Plane 9/16/08 CHECKED BY APPROVED						9/17/08			
	1		SAN	_	_			995	DBY	ا					••! حدايرات		APPROVE	υb	1		
SAMPLE TYPE	SAMPLE	SET	2ND	3RD	뛰	SAMPLE	۲ <u>ــــــــــــــــــــــــــــــــــــ</u>		1	<u>Ihadrira</u>	<u>uu</u>			v Bna	<u>driraju</u>						
₹₽	d W B				ġ z į	SAMPLE	Š		16		ĺ								1		
S.	NNN N	6			5	> &	<u>م</u> الإ	. ш	E	0											
			CK C				DEPTH (FEET)	SAMPLE TYPE	ELEVATION (FEET)	GRAPHIC LOG			CLASSIFI	CATIO	N OF MA	TERIAL	S		REMARKS		
-	l az				<u></u> ∑ ⊢ 2	2	7 🗉	ш	1 8	<u> </u>											
CORE	RUN NUMBER	RUN	RUN	l e	PERCENT		H H	ᆸ	×	Hd											
85	1 N N	RC N		្ពីខ្ល			Ш	AM	Ē	RA											
	Z			2 2	친 호 분	¥	1		<u> </u>	U U	<u> </u>										
							30	-	ŀ	99	chal	k nodu	les						driven along w/		
		İ				ĺ		-	- 102									Ì	spoon. Below 28.5'		
									t										continued w/		
							32]	Ē		1								rotary wash		
			1					-	- 100										method using 4"		
			1		1		1	-	ł		drad	lina me	edium der	ise! we	et: fine to	o mediu	m grained;	ĺ	drag bit &		
PT	10	6	8	10	18	0.9	34-		E			gradeo			-4 1110 0		granica,		bentonite slurry		
			1						- 98			J							as drilling fluid.		
								-	ł									ļ	Driller reported		
							36 -	+	ŀ										trace gravel from		
			1					1											28.5'-38.5'.		
	:		1			1	1]	- 96										İ		
			1		1		38 -	-	ŀ										Ì		
			1	1				\leftarrow	ŀ		drad	ina ver	y dense								
РТ	11	14	33	38	71	1.5	1		- 94		@ 3	8.5'-39	.3' yellow	siltv o	lav lave	r					
	ĺ						40-		-		ຼ @ 39	9.3' gra	ading gray	ish wł	nite w/ fi	ne grair	ed sand &				
			1					4	-		',som	e silt							Based on driller's		
							1	-	- 92		Clav	av SAM	D light			oist: fin	— — — — 40 e grained;	0.0	comments.		
									-			ly grad		gray, a	unau, m	10131, 111	e grainea,				
							42 -		-		2001	., g.uu									
						1	-		- 90												
					İ		·		-												
PT	12	12	16	21	37	1.5	44 -		-	際創											
				1					- 88												
			ļ				.	┤╏													
			1			1	46 -	$\left\{ \right\}$	-												
ĺ	f			1			.	1													
					1]		- 86												
						1	48 -	╎╎	-												
Ì							-	\square	-		uradi	ina liah	t brown;	silt are	des out						
т	13	12	17	20	37	1.5	-		- 84	14	gradi	ng ngn		ur dia							
		-			.		50 -		. 1										-		
	ĺ			1	ļ	1	³⁰ -														
						1	-	┥┝	- 82												
							[_]		.	6											
	1						52 ~	1 [ЬЙ.											
							-	ļĹ	- 80	974											
	ļ					1	-				aradi	na fino	to mediu	m arei	ned						
т	14	17	40	33	73	0.9	54	₿ F			yıdul	ну ше	to meult	nn yrai							
			.5				-		- 78			one. I				-					
1						1			10		SOLLE	angui	ar gravel								
	ĺ		i		1		56 -	-													
							-	-										\vdash	Driller reported		
					ļ		-	F	- 76	11									alternating hard		
ļ						.	5B	ļ.											and soft drilling		
								\rightarrow	1		aradi		vhite fine	cand•	come el	av.com	antation		efforts.		
эт	15	7	50/3"	-	>50	0.3	-	N H	- 74	7.7	grauli	-19 W/ V		sana, i	some d	ay cerm	AUCTUAL				
	-	•]	60														

BORING NO. BV-5

		K år	VE		CH					BOR						SHEET 3 OF
υLI	ENT		Inte	rnoti	onal	Pow	or A	mor	ica, Ir	1C	PROJE		alata Craale I	Init Tw-	`	PROJECT NO.
PRO	DJEC	TLO	CATI	ON	onar			000	ica, ii RDINA	TES	<u>l</u>		GROUND E) N (DATIJM)	149116 TOTAL DEPTH
			oria,		as		E E		27129		E 2570	579.3'	1	3.0 ft (M	•	80.0 (feet)
SUF	RFAC		NDIT				<u>.</u>				COORDI			DATE		DATE FINISHED
Gra					ayey	sanc					State P			9	/16/08	9/17/08
	<u> </u>	-	. SAN	····	_			GGE	DBY			HECKEI			APPROVED	
SAMPLE TYPE SAMPLE NUMBER SAMPLE 6 INCHES 6 INCHES 6 INCHES 6 INCHES 8 NULE VALUE SAMPLE SAMPLE						<u>.</u>		<u>Shadrira</u>	ju	u V Bhadriraju						
₩Ł	AM	S N N N N				ANA S			ELEVATION (FEET)		1					
ŝ	ωz			1		S B	Ē	TYPE	E	ГОС						
	T	_			G -1. >	- 1	оертн (Feet)	≿	l₫		CL	ASSIF	CATION OF M	ATERIAL	S	REMARKS
ĽШ	RUN NUMBER	RUN	RUN RECOVERV		PERCENT		E	SAMPLE	AT	GRAPHIC						
CORE		L N N	RU RU			Rap	l E	AN	<u> </u>	RA						
	<u> </u>					[]	1	Ś	<u> </u>	Ű						
					1		60	-	ŀ		Silty SAND: V	white: v	ery dense; mo	oist: fine	grained: -60.	ased on unlier
							1]	- 72		poorly graded		pockets of lig			comments &
					1		62-	-	-		cemented					cuttings from rotary wash.
								1	-							
		1	ĺ					1	70 							
зрт	16	50/4'		_	>50	0.2	64 -		ŀ							
, ,	10	00/4		-	-30	0.2			- 68							
				ł				-	- 00							
			1			i i	66 -		_							
									- 66							
			1			ĺ	.		-							
				Į	1		68		-							
		Folou	ł						- 64		grading w/ tra			gular gra	vel; clay	
SPT	17	50/3"	-	-	>50	0.3	-		-		pockets grade	e to trac	ce			
							70		-	一面目						
							-		- 62							
		i					-		-							
							72 -		-							
							-		- 60							
					ĺ		- 74 —				CLAY; dark ta	 In: bard		lasticity:	73.5 some sand	+ No clay cuttings
PT	18	12	17	22	39	1.5								lasticity,	some sand	in drilling fluid
							-		- 58		@ 74.5' yellov	visii gra	ıy			return.
							76 -]
								-	- [
							1		- 56							
1		ľ				ĺ	78 -		.							
							-		·							
PT	19	13	17	22	39	1.5	-	A F	- 54							
_			<u> </u>				80 -			P24-						Bottom of boring
ł		ĺ	İ				1	Ľ	- 52							@ 80.0'. Water
				ĺ	' (-	-	~~							level recorded @
		ĺ	ĺ				82 -	ŀ								24.6' after 24
				ĺ			1	Ļ	- 50							hours. Boring
		1					4	ł								backfilled w/ bentonite pallets
					- 1		84 –	ŀ								to 42.5' on 09/17
			ĺ				-	ļ.	48							08. Piezometer
1							-	ŀ								PZ-5 set from
	Ì						86~	ŀ								30.0' to 40.0'.
]	Ļ	46							Boring backfilled with cement
							<u> </u>	ŀ								bentonite grout to
				1			88	ļ								ground surface.
			ĺ				4	┢	44							
							90 -	ŀ								
							_ ا عد ا									

	ENT		. 48.		<u> </u>						1141							SHEET 1	
	LIN I		Inte	rnat	ionai	Pow	ver A	me	rica, I	nc		PRO	JECT	oleto Cre	ook Hei	t Two		PROJECT NO	
PRC	JEC	T LO	CAT	ION	iund				RDIN			l.,			ND ELEV	L I WO ATION	N (DATUM)	149110 TOTAL DEPT	
		Vic	toria	, Te	<u>xas</u>		-		2865			E 25	71578.7'	3	128.4			80.0 (fee	et)
		ECC	DNDI	TION	S								RDINATE S			DATE S	TART	DATE FINISH	EĎ
Le	/el, l			<u>ty sa</u> NPLII				LOGGED BY) CHECKE	ישר	[9	/8/08 APPROVED	9/8/08	
193	111 10		_		·····			V. Bhadriraju						/ Bhadr	iralu		AFEKUVED	14	
SAMPLE TYPE	SAMPLE	SET	2ND	6 INCHES	뛰 고	VALUE SAMPLE					1			. Jijuul		I		1	
SAN	SAN	S N	5		≚ 2:	SAN			Ц Ш	6									
		<u> </u>								LOG			CLASSIFI				3	REMARI	ks
CORE SIZE	RUN			ROD		COVERY Rod	DEPTH (FEET)	SAMPI E TVPE	ELEVATION (FEET)	GRAPHIC							-		
	" ž							AS.		5									
SPT	1	1	2	5	7	0.9	9		- 128			<u>ND;</u> dar ded	k brown;	loose; m	oist; fine	grain	ed; poorly	Boring adv w/3-1/4" ID	
				İ			2	_							nedium d	lense;	moist; fine	² hollow sten auger. SPT	
			-				_		_ 126 		gra	inea; p	oorly grad	led				performed	
SPT	2	5	5	6	11	1.5	1.	-	t		gra	ding lial	ht grav: so	ome blac	k mottlir	ıg&tr	ace roots	hammer.	
							4	-	- 124			0.00	2 11-			<u> </u>	· 		
	_	1		ĺ					Ţ		gra	ding w/1	trace chal	k nodule:	s; roots	grade	out		
SPT	3	4	6	9	15	i 1.5	6		- 122										
				Ì				-	- 122 -		-								
			İ						ŧ		gra	ding w/f	requent s	eams of	chalk no	dules			
SPT	4	5	6	8	14	1.1	8-		- 120			J							
									- -										
ĺ							10-]	-				<u>VD;</u> light g			o med	 lium	17	
A	5	3	3	4	7	1.5		1	- 118		grai	ned; po	orly grade	ed; trace	gravel				
								\vdash											
					1	Í	12 -	1	- 116		\grac	ding w/t	ighly cerr	ented ca	alcareou	s sano	d 120		
									-				; grayish v		ry dense	e; mois	st; fine		
рт	6	22	50/3		>50	0.7	14 -	A	-		grai	ned; po	orly grade	ed					
- 1		<i>4</i> 2	30/3	-	-50				⊢ 114 -										
									-										
							16 -	1	- 112										
							.		_	- 목									
							18 -		-			line		fine to -			J. 440	Water	
							-		- 110 -				nge; wet; sand nod		ieaium g	raineo	i, trace	- encountered	
PT	7	24	50	50/4	>50	0.9			-									during drillir 17.6'.	ig @
							20 -		- 108									Driller repor	
					}		-		-									softer drilling Below 18.5'	g.
							22 -		-									continued w	1
						1		ŀ	- 106									rotary wash	- 48
									-								73 5-	method usin drag bit &	ıg 4"
т	8	5	6	14	20	1.5	24 -		- - 104						bist; high	ı plasti	icity; some	bentonite slu	
			_ [-		.04				clay pock					as drilling flu	
							1	ļ					gray; ver			e to co		White silt & i sand in botte	
1							26	╞	- 102		grair	nea: wel	ll graded;	w/trace g	gravel			SPT-8	
						1		ļ											
		ĺ					28 -	┝	40.2										
			,_					F	- 100										
PT	9	20	48	48	96	1.5	30	Af											
			- (COLORER.		P + () + 3							ſ		

CII	ENT										BROJECT SHEEL 2 OF
			Infe		tiona		Wor	۸me	rian I	-	PROJECT PROJECT NO.
PR		T10		<u>лна</u> том	uona	170	wer.	Ame	orica, l ORDIN	NC ATES	Coleto Creek Unit Two 149116
			toria		vae				32865		GROUND ELEVATION (DATUM) TOTAL DEPTH
SUF	RFAC	E CO	DNDI	TION	<u>xas</u> Is			NJ	2000	9./	E 2571578.7' 128.4 ft (MSL) 80.0 (feet) COORDINATE SYSTEM DATE START DATE FINISHED
			e, si								
<u>rc/</u>	v GI,		<u>e, si</u> L SA				T	066	ED BY		State 9/8/08 9/8/08 CHECKED BY APPROVED BY
	1					1		000		Bhadrin	
SAMPLE TYPE	SAMPLE	SET	2ND	6 INCHES	6 INCHES N	VALUE SAMPLE	COVER				aju V Bhadriraju
				1			ž j	<u>-</u>	1 E	00	
	.					<u>></u>		1	- 8		CLASSIFICATION OF MATERIALS REMARKS
CORE	RUN	RUN	LENGTH ACOVERY AND 6 INCH RECOVERY 200 FECCOVERY 6 INCH FECCOVERY 6 INCH FECCOVERY 6 INCH FECCOVERY 7 ALU RCD 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7								
*****							3	0	- 98		grading grayish white; fine grained; poorly graded; w/ trace clay & some gravel
					;		3	2-	96		
							. 34		-		grading fine to medium grained; clay & gravel grade out
SPT	10	33	50/4	ful -	>5	0 0.	4		- 94		@ 34.0'-35.0' boulder encountered.
					-		36	i - -	- 92		Hard drilling. Drilled through w 4" tricone driller
							38		- 90		bit. Driller reported
PT 11	9	24	40	64	1.4	4 40	1	88-88		grading w/occasional light brown clay pockets cuttings. Continued w/4"	
							42		- 86		 @ 40.5' white clayey silt & some chalk nodules Silty CLAY; grayish white; hard; moist; low plasticity; w/ some light gray fine sand pockets paddle bit. 39.0'- 43.2' driller reported clay like drilling.
эт	12	13	39	50/4	-" >5C) 1.1	44		- - - 84 -		
A	13	30	45	50/5	* >50	1.0	46		82		grading w/limestone nodules
ידי	14	36	50/5'	-	>50	1.0	48		- 80		<u>SAND;</u> light gray; wet; fine grained; poorly graded; highly cemented @ 47.2' grading light brown; fine to medium grained;
							50		- 78		Sandy <u>CLAY</u> ; grayish white; hard; dry; low plasticity
							52 -		- 76 -		
эт	15	17	30	32	62	1.5	54 -		- 74 -		SAND; light brown; very dense; wet; fine to medium grained; poorly graded; some gravel & coarse sand
							56 -		- 72		sized chalk nodules; occasional light brown clay pockets
דן א	16 5	0/4"	-	-	>50	0.3	58 -		- 70		

1/15/2009 4:19 PM Calelo Creek 2

PRELIMINARY BORING LOG

BORING NO. BV-21

													PROJECT NO.			
International Power America, Inc Coleto C													leto Crook	l Init Tw	149116	
PR	OJEC	TLO	CATIO	DN				00	RDINA	ATES		00	GROUND		N (DATUM)	TOTAL DEPTH
		Victe	oria.	Tex	as				8659			<u>E 25</u> 71578.7'		28.4 ft (N	• •	80.0 (feet)
SU	RFAC	Victor E CO	NDIT	IONS						<u></u>		COORDINATE S	YSTEM		START	DATE FINISHED
Le	vel, l	oose	, siltv	v sar	٦d							State			9/8/08	9/8/08
		SOIL						GE	D BY		ı	CHECKED	BY		APPROVED	BY
ш	ша		្ល			шž			V. E	3hadrira	iu	ν – Ν	/ Bhadriraj	u		
SAMPLE	SAMPLE	SET 6 INCHES	2ND INCHES	3RD 6 INCHES	VALUE	SAMPLE					Ĺ			ч <u>—</u>		
Ă⊢	N N	σž	8 2	l e z	Z	AN D			ш							
–	07 2					" č	E.	d	F	0						
<u> </u>	-		KCO				ΗÜ	7	N			CLASSIFIC	CATION OF I	MATERIAL	S	REMARKS
μ _u		_ E	_ <u></u>	_ <u>`</u>	L H		E E	벁	AT	Ŭ H						
CORE	RUN	RUN	l₿ğ	18S	ا تي ا	Rob	DEPTH (FEET)	SAMPLE TYPE	ELEVATION (FEET)	GRAPHIC LOG						
0.	Ĩ		RUN RECOVERY	RQD RECOVERY	PERCENT RECOVERY		DE	SA		19						
		1				<u> </u>	60	<u> </u>	- 68		@ 60	.0' white chalk I	aver			
]									Ĺ
ĺ							-	ļ	-		CLAY	; yellowish gray	/: hard: moi	st: hiah pl	asticity	Liay cuttings
	1						62 -		-							from rotary wash
					ŀ		-		- 66							
			ſ			ĺ	-		-							
SPT	17	11	20	25	45	1.5	64	A	-							
351		EI	20	20	40	1.5	-		- 64							
]			20000141043	-							
ĺ					ĺ		66		-							
	1					1			62							
							-		-							
									_							
							68		- 60							
SPT	10			- C-	~~		-		-		gradir	ng w/frequent pa	artings of gr	ayish whi	te fine sand	
371	18	18	25	25	50	1.5	-				w/gra	vel sized chalk i	nodules			
							70 -		- 58							
						ļ	-									
							-		-							
				ĺ			72 -									
							-	Ī	- 56							
							1									
CDT	40		07				74 -	A I			@ 73.	5'-74.0' light bro	own			
SPT	19	14	27	27	54	1.5	-	A	- 54		fine so	and partings gra	de to occas	ional		
							- 18	-			1110 30	and parangs gra		sonai		
			ĺ				76 -	ļ								
					ĺ		· 4	ŀ	- 52							
							-	ŀ								
								Ľ								
		1	ļ				78 -		- 50							
SPT	20	10	10		17		-	x ł						·	79.0-	
	20	18	18	29	47	1.5	_	at.	İ		<u>SAND</u>	; grayish white;	dense; moi	st; fine gr	ained; poorly	
							80 -		- 48	<u>⊢</u> "∖	gradeo	l; trace clay			ſ	Bottom of boring
ļ]	-								@ 80.0'. Water
	Ì						-	ŀ							1	level recorded @
					ļ		82 -	t	40							16.3' after 24
]							1	[- 46							hours. Boring
			1				1	-								backfilled w/
					ĺ		84 -	╞								bentonite pallets
				[ĺ	-	F	44							to 42.5' on 09/09/
				ļ			-	Ľ	ļ						ĺ	08. Piezometer PZ-21 set from
							86 -	ŀ								30.0' to 40.0'.
								┝	42							Boring backfilled
							+	r								with cement
							<u> </u>	Ē								bentonite grout to
							88 –	F	40	į I						ground surface.
		[ļ		-	ł							-	-
Ì							<u> </u>	F								
			,				90	7		l					,,,,,,, _	

STATE OF TEXAS WELL COMPLETION REPORTS

	STATE OF TEXAS WELL REPORT for Tracking #423117			
Owner:	IPA Operations, Inc.	Owner Well #:	W-9 Renamed MW-9	
Address:	Coleto Creek Power LP PO Box 8	Grid #:	79-23-2	
	Fo Box 8 Fannin, TX 77960	Latitude:		
Well Location:	Coletto Creek Power Plant Fannin, TX 77960	Longitude:		
Well County:	Goliad	Elevation:	No Data	
Type of Work:	New Well	Proposed Use:	Monitor	
Type of Work:	New Well	Proposed Use:	Monitor	

Drilling End Date: 9/17/2015 Drilling Start Date: 9/16/2015 Bottom Depth (ft.) Diameter (in.) Top Depth (ft.) Borehole: 6 0 60 **Hollow Stem Auger Drilling Method:** Filter Packed **Borehole Completion:** Top Depth (ft.) Bottom Depth (ft.) Filter Material Size Filter Pack Intervals: 38 60 Sand 16/30 Top Depth (ft.) Bottom Depth (ft.) Description (number of sacks & material) Annular Seal Data: 0 2 **Cement 1 Bags/Sacks** 2 38 **Bentonite 15 Bags/Sacks** Seal Method: Hand Mixed Distance to Property Line (ft.): No Data Sealed By: Driller Distance to Septic Field or other concentrated contamination (ft.): No Data Distance to Septic Tank (ft.): No Data Method of Verification: No Data Surface Completion: **Surface Slab Installed** Surface Completion by Driller Water Level: 25.2 ft. below land surface on 2015-09-18 Measurement Method: water level meter Packers: No Data

Type of Pump: No Data

Well Tests: No Test Data Specified

	Strata Depth (ft.)	Water Type		
Water Quality:	No Data	No Data		
		Chemical Analysis N	lade: No	
	Did the driller	knowingly penetrate any strata w contained injurious constitue		
Certification Data:	driller's direct superv correct. The driller u	nat the driller drilled this well (or the ision) and that each and all of the nderstood that failure to complete eturned for completion and resubr	e statements he the required it	rein are true and
Certification Data: Company Information:	driller's direct superv correct. The driller u the report(s) being re	ision) and that each and all of the nderstood that failure to complete	e statements he the required it	rein are true and
	driller's direct superv correct. The driller u the report(s) being re	ision) and that each and all of the nderstood that failure to complete aturned for completion and resubr	e statements he the required it	rein are true and
	driller's direct superv correct. The driller u the report(s) being re EnviroCore, Inc. 7525 Idle Hour Dr.	ision) and that each and all of the nderstood that failure to complete eturned for completion and resubr	e statements he the required it	rein are true and

Report Amended on 5/26/2016 by Request #17930

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	2	fill material
2	5.5	silty clay/clayey sand;brownish gray to white
5.5	10	silty clay; dark gray
10	20.5	caliche and silty clay;light gray to white
20.5	22	silty sand;brownish gray
22	44	sand; light orangish brown
44	47	silty sand; light gray
47	54	silty clay/clayey sand; light gray
54	60	silty, clayey sand; gray

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
2	Riser	New Plastic (PVC)	40	-3	40
2	Screen	New Plastic (PVC)	10	40	60

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

	STATE OF TEXAS WELL REPORT for Tracking #423118			
Owner:	IPA Operations, Inc.	Owner Well #:	W-10 Renamed MW-10	
Address:	Coleto Creek Power LP PO Box 8	Grid #:	79-23-2	
	Fannin, TX 77960	Latitude:		
Well Location:	Coletto Creek Power Plant Fannin, TX 77960	Longitude:		
Well County:	Goliad	Elevation:	No Data	
Type of Work:	New Well	Proposed Use:	Monitor	
Type of Work:	New Well	Proposed Use:	Monitor	

Drilling End Date: 9/15/2015 Drilling Start Date: 9/15/2015 Bottom Depth (ft.) Diameter (in.) Top Depth (ft.) Borehole: 6 0 60 **Hollow Stem Auger** Drilling Method: Filter Packed **Borehole Completion:** Top Depth (ft.) Bottom Depth (ft.) Filter Material Size Filter Pack Intervals: 38 60 Sand 16/30 Annular Seal Data: No Data Seal Method: Hand Mixed Distance to Property Line (ft.): No Data Sealed By: Driller Distance to Septic Field or other concentrated contamination (ft.): No Data Distance to Septic Tank (ft.): No Data Method of Verification: No Data **Surface Slab Installed** Surface Completion by Driller Surface Completion: Water Level: 24.8 ft. below land surface on 2015-09-18 Measurement Method: water level meter Packers: No Data Type of Pump: No Data

Well Tests: No Test Data Specified

	Strata Depth (ft.)	Water Type		
Water Quality:	No Data	No Data		
		Chemical Analysis N	lade: No	
	Did the driller	knowingly penetrate any strata w contained injurious constitue		
Certification Data:	driller's direct superv correct. The driller u	nat the driller drilled this well (or the ision) and that each and all of the nderstood that failure to complete eturned for completion and resubr	e statements he the required it	rein are true and
Certification Data: Company Information:	driller's direct superv correct. The driller u the report(s) being re	ision) and that each and all of the nderstood that failure to complete	e statements he the required it	rein are true and
	driller's direct superv correct. The driller u the report(s) being re	ision) and that each and all of the nderstood that failure to complete aturned for completion and resubr	e statements he the required it	rein are true and
	driller's direct superv correct. The driller u the report(s) being re EnviroCore, Inc. 7525 Idle Hour Dr.	ision) and that each and all of the nderstood that failure to complete eturned for completion and resubr	e statements he the required it	rein are true and

Report Amended on 5/26/2016 by Request #17931

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	2	fill material
2	8	silty sandy clay; orangish brown
8	11	silty clay/clayey sand; light gray
11	19	silty sand; light gray
19	30	sand; light gray
30	32	silty clay/clayey sand; light gray
32	34	clayey sand; brownish gray
34	36	silty sand; light gray
36	52	silty, clayey sand; light gray
52	60	silty sand; light gray

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
2	Riser	New Plastic (PVC)	40	-3	40
2	Screen	New Plastic (PVC)	10	40	60

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

STATE OF TEXAS WELL REPORT for Tracking #462686				
Owner:	Dynegy Inc.	Owner Well #:	MW-11	
Address:	Coleto Creek Power Station PO Box 8	Grid #:	79-23-2	
	Fannin, TX 77960	Latitude:	28° 43' 37.02" N	
Well Location:	Coleto Creek Power Station Fannin, TX	Longitude:	097° 12' 18.36" W	
Well County:	Goliad	Elevation:	No Data	
Type of Work:	New Well	Proposed Use:	Monitor	

Drilling Start Date: 4/25/2017 Drilling End Date: 4/25/2017

	Diameter	(in.)	Top Depth (ft.)	Bottom Dept	h (ft.)
Borehole:	6		0	49	
Drilling Method:	Hollow Stem A	uger			
Borehole Completion:	Filter Packed				
	Top Depth (ft.)	Bottom Depth (ft.)	Filter	Material	Size
Filter Pack Intervals:	27	49	Sa	and	16/30
	Top Depth (ft.)	Bottom Depth	(ft.) De	escription (number of sa	ocks & material)
Annular Seal Data:	0	1		Cement 1 Bags	/Sacks
	1	27		Bentonite 13 Bag	gs/Sacks
Seal Method: Ha	and Mixed		Distance to P	Property Line (ft.): N	lo Data
Sealed By: Dr	iller			tic Field or other ontamination (ft.):	lo Data
			Distance to	Septic Tank (ft.): N	lo Data
			Metho	od of Verification: N	lo Data
Surface Completion:	Surface Slab Ir	nstalled	S	Surface Completio	n by Driller
Water Level:	No Data				
Packers:	No Data				
Type of Pump:	No Data				

_

	Strata Depth (ft.)	Water Type		
Water Quality:	No Data	No Data		
		Chemical Analysis Made:	No	
	Did the driller	knowingly penetrate any strata which contained injurious constituents?:	Νο	
	described well, in landowner or pers	tify that while drilling, deepening or jurious water or constituents was er son having the well drilled was infor gged in such a manner as to avoid ir	ncountere med that s	d and the such well must be
Certification Data:	driller's direct superv correct. The driller u	nat the driller drilled this well (or the we ision) and that each and all of the state nderstood that failure to complete the r eturned for completion and resubmittal.	ements her required ite	ein are true and
Company Information:	EnviroCore, Inc.			
	7525 Idle Hour Dr. Corpus Christi, T)			
Driller Name:	Craig Schena	License N	Number:	4694
Comments:	No Data			

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Casing: BLANK PIPE & WELL SCREEN DATA

Top (ft.)	Bottom (ft.)	Description
0	1	0-1.0 - Silty CLAY
1	6.5	Predominately Caliche and Silty Clay
6.5	13.8	Silty Clayey Sand
13.8	28.5	Sand with abundant gravel
28.5	38	Silty Clayey Sand
38	40	Silty Clay/Clayey Sand
40	46	Silty Clayey Sand
46	49	Silty Clay/Clayey Sand

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
2	Riser	New Plastic (PVC)	40	-3	29
2	Screen	New Plastic (PVC)	40 10	29	49

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 334-5540

MONITORING WELL DEVELOPMENT DOCUMENTATION

WELL D	EVELO	PMENT	RECOR	D			PA	GE1of1
Project Numbe	er:	15215	Project Nam	ne: Coleto C	reek Power, LP		I	Date: 7. 22. 2-1
ell Location (well ID, etc.	.): W-'	9 Rena			Starting Wa	iter Level (ft	. BMP):
Developed by:	C. Winkle	r/E, FLC	<u>.</u> Kri	9				<u>3</u> n 5
Measuring Poir	nt (MP) of W	/ell:	TOC/PVC					BGL): 25.15
Screened Inter	val (ft. BGL)	: 40	-60					b. 2
Filter Pack Inte	rval (ft. BGL							. 7,3
				,		1		15.P
QUALITY AS	SURANC)E						
METHODS (de	escribe):	Submersib	le pump and/or	surge block	cleaned between w	rells		
Cleaning Equ	ipment:		water triple rin					
Purging:		Water qua	lity stabilization	n	_Surge Equipment	: Submersible	nump	
Disposal of Di	scharged W				in 55-gallon drums			
INSTRUMEN	TS (Indic							
Water Level:	Water line	300			Thermometer:	Horiba U50		
pH Meter:	Horiba U5	0			- Field Calibration:	B		
Conductivity N	leter:	Horiba U50			Field Calibration:			
Other:			9		_		latooal	
DEVELOPN		EASURE	MENTS					
Time	Cum. Vol.	Flow Purge Rate		Water Qual	ity Spec. Cond.	Appea	arance	
lo26	(gal. / L)	(gal. / L pm)	Temp. (°C)	pH	(μΣ/cm)	Color	Turbidity & Sediment	Remarks
1230	8	1.25	23.99	7.33	0.663	TON: COUNTRY	1000	2.0.0.92
1.34	5	1)	23.90		0,657	71	1000	D. 0. 0, 65
1038	10	N	23.4.	7.26	0.652	اد	1000	P.O. 0. 54
1045	15	-0,75		7,25	0.650	GERMAN	1,500	WL= 29.80
1051	05		23,40	7-25	0.659	\overline{D}	12000	D.O. D. 78
1059	25	20.25	23.56	7.25	0,65.3	わ	6	WL= 29. 00
1108	22	10,55	23,78	2.25	0.698	11	1079	D.N. J.42
1135	42	20.45	24.10	7.28	0,652	~~	1000	12.2.0.40
1142	50	70.85	23.39	7.29	0.656	1,	1000	D.0, 0.35
1156	60	ND,70	23.54	7.24	0.659	U	90000	D.D. D. 3]
1206	70	~1,00	23.49	7.21	0,662	NUETCAL	727	0.0. 0.30
1212	75	10.85	23.41	7.21	0.663	pt	996	D.Q. D. 29
1216	10	~1.25	23.41	7.21	0.663	n	8.43	Dr D.28
otal Discharge (gallons):	83			·			
bservations/Cor								
purbas w						Bulloc	k. Bennett &	Associates, LLC
AR. Aget F	EDU RAT	EDURT	TO BATTL	1 Powla		24.00	165 N. Larr	npasas St.
DRAW ON 69	N. Sur 70	CHRI 72 V	Gollekr.			(512) 355-9	Bertram, T 198	X 78605 Fax (512) 355-9197
			······································			(0.2)000-8		, ux (012) 000-9191

WELL D	EVELO	PMENT	RECORL	>			PAC	SE1_	of1
Project Numbe	r: .	15215	Project Nam	e: Coleto Cr	reek Power, LP			Date:	9.22.18
ell Location (well ID, etc.): k/-	IS Rena			Starting Wat	ter Level (ft.	BMP): _	17.73
Developed by:	C. Winkle	r/E.fic	MW-1	0		Casing Stick	(tt.):		~ 3. 2 2
Measuring Poir	nt (MP) of W	ell:	TOC/PVC			Starting Wat	ter Level (ft. I	BGL): _	24,73
Screened Inter	val (ft. BGL)	-43	- 6 0'			Total Depth	(ft. BGL):		-623
-ilter Pack Inter						Casing Diam	neter (In ID):_		2, 5
						Casing Volur	me (gal.):		- 5.30
QUALITY AS	SURANC	E							
METHODS (de	escribe):	Submersibl	le pump and/or	surge block o	cleaned between we	ells			
Cleaning Equ	ipment:	Deionized	l water triple rin	se					
Purging:		Water qua	ality stabilization	า	Surge Equipment:	: Submersible	pump		
Disposal of Di	scharged W				in 55-gallon drums				
NSTRUMEN		·····		······					
Water Level:	Water line	300			_Thermometer:	Horiba U50			······································
pH Meter:	Honba U5)			Field Calibration:	Horiba U50 A	lutocal		
Conductivity M	leter:	Horiba U50			Field Calibration:	Horiba U50 A	utocal		
Other:					-			,	
EVELOPN	/ENT MI	EASUREI	MENTS					·	
Time	F Cum. Vol. (gal. / L)	Flow Purge Rate (gal. / L pm)	Temp. (°C)	Water Qual	ity Spec. Cond. (μΣ/cm)	Appea Color	rance Turbidity & Sediment		Remarks
0828	(34, 2)			1	(µ230111)	TAN			
0832	5	1.75	29,48	8.83	1.27	ELPusy	1390	5	. 6.39
0836	10	11	24.54	6.79	1,26	11	1000	1	5.14
0820	15	. /	24.55	6.77	1.27	18	دودا	Da	3.93
0899	20	19	29.51	6.76	1.37	NUPPOSe	1000	WL =	
0849	25	91	24.57	6.76	1.32	11	5-11		41.51
9853	30	10	29.53	6.77	1.30	19	<u> </u>	1,	42473
0857	35	39	29.57	6.75	1.33	er .	348		
901	40	11	2021	6.76	1.32	40	120	D. J.	0.62
905	45	11	2100	6.76	1.32	4	127	D. 3.	0.60
909	50	le	24.73	4 2/			251	1	0.62
701	55		29.33	6.70	1.32	11 Na	202	D.2.	9.60
<u>1915</u>	1	17	24.55	6.76	1.32		216	WL :	~
918	60	4 V	24.52	6.73	1.34			<u> </u>	
Al Bischarge (24.71	6.75	1.34	98	181	D.J. =	0.62
oservations/Co				ELL				•	
FIGN E		ELL VOLU	Precel) 6 1		Bulloc	k, Bennett, 8 165 N. Larr		
	A.L.A	£667					Bertram, T		
LOWRER PI	MAL M	raci				(512) 355-9	9198	Fav (5	12) 355-9197

Z

	Project N	umber: (*	7252	Project	Name:	(sto	Creek 13	we:	Date:	7.24	e. 17
	Well Loca	ation (well IE	D, etc.):	MW	<u>11</u>		Starting Wate	er Level (ft. B	MP):	<u>13.9</u>	3
	Develope	ed by:	FEF				Casing Stick	up (ft.):	2.7		
	Measurin	g Point (MP) of Well:	To	<u>c</u>		Starting Wate	er Level (ft. B			23
ŀ	Screened	l Interval (ft.	BGL):	29	-49	7	Total Depth (ft. BGC):	_ 51	.83	
	Filter Pac	k Interval (ft	t. BGL):	27 -	-49		Casing Diam	eter (In ID):	2	4	
							Casing Volun	ne (gal.):	6.	/	
	QUALIT	Y ASSUR	RANCE	-							
	METHO	DS (describ	e):		<i>.</i> .		A	\$	•	A_+	
	Cleanin	g Equipmen	nt: Alcon	or So	lation	-rise to	hertright	e ringe	t pr.	~p ~ 1	0510
	Purging	Water	svalty	Stabi	1/2 tim	ge Equipment:	Sp	nasible	Kung		יע
Ĺ	Disposa	al of Dischar	ged Water:	Teno	oraril	& Stores	1 h 5	5-59/10	in a	fren	<u> </u>
1	NSTRU	JMENTS (Indicate n	nake, n	nodel,	l.d.)					
l	Water L	_evel:	Elizit.	300		Thermometer	Hariba	. USO			
	pH Met	er: Ha	riba	050		Field Calibrati	on: Hari	be USE	> A	tocal	
	Conduc	tivity Meter:	Haribe	دں ،	50	Field Calibrati				utac	e./
	Other:	•									
	DEVEL	OPMEN	IT MEAS	UREN	IENTS	5					
	Time	Fl Cum, Vol.	low Purge Rate	Temp.	Water C	Quality Spec. Cond.	Appea	arance Turbidity &		Remarks	w
	, inte	(gal. / L)	(gal. / L pm)	(°C)	pН	(μΣ/cm)	Color	Sediment			
-				24.11	7.56	0.727	white	71000	46		
-	1220	5		26.11	(.)0	0.101	1	11000	76		
	1220 1225	5 10	1.7		7.68		White	(-/6		17.35
	1225 1228		1.7	23.76	7.68	0.717	White White		-/G - Zo		
	1225	15 20			7.68		White	() () ()	-16		17.35
	1225 1228	15	1.7	23:76 ~ 23:31	7.68	0.717	White White	· (-/G - Zo -33 - ZG		
	1225 1228 1231	15 20 25	1.7 1.7 1.7	23.76 	7.68 - 7.65 7.45 7.48	0.717 6. 716 0.719 0.721	White White Chite	() () ()	-/G - Zo -33 - ZG		
<u> </u>	1225 1228 1231 1234	15 20 25	1.7 1.7 1.7	23.76 	7.68 - 7.65 7.45 7.48	0.717 6. 716 0.719 0.721	White White Chite Cloudy Clear	 	-/6 - 20 -33		
يترب والمسترك ومسترك ومسترك ومسترك والمست	1225 1218 1231 1234 1237	15 20 25 36	1.7 1.7 1.7 1.7	23.76 	7.68 - 7.65 7.45 7.48 7.76	0.717 	White White Uhite Clocky Clear Clear	" " 775 642	-/6 -20 -33 -26 -5		17,8. /sw
	1225 1218 1231 1234 1237 1241	15 20 25 36 35	1.7 1.7 1.7 1.7	23.76 ~ 23.31 23.16 23.16 24.33 24.07	7.68 - 7.65 7.45 7.48 7.76	0.717 6.716 0.719 0.721 0.721 0.743 0.742	White White Chite Cloudy Clear	" " 775 642 704	-/6 -20 -33 -26 -5 44		(7,8,
<u> </u>	1225 1218 1231 1234 1237 1247 1317	15 20 25 30 35 40 45	1.7 1.7 1.7 1.7	23.76 	7.68 - 7.65 7.45 7.48 7.76 7.76	0.717 6.716 0.719 0.721 0.721 0.742 0.735	White White Uhite Clocky Clear Clear Clear Clear Clear	" " ?75 G42 704 358 319	-16 -20 -33 -26 -5 44 4		17,8. /sw
	1225 1228 1231 1234 1237 1247 1317 1322 1327	15 20 25 30 35 40 45	1.7 1.7 1.7 1.7	23.76 	7.68 - 7.65 7.45 7.48 7.76 7.76 7.68 7.60 7.47	0.717 	White White Uhite Clocky Clear Clear Clear Clear Clear	" " " 775 642 704 358 319 Z06	-16 -20 -33 -26 -5 44 4 4 6		17,8. /sw
	1225 1218 1231 1234 1237 1247 1317 1317	15 20 25 30 35 40 45 50 55	1.7 1.7 1.7 1.7	23.76 	7.68 - 7.65 7.45 7.48 7.76 7.76 7.68 7.60 7.47 7.35	0.717 6.716 0.719 0.721 0.721 0.743 0.742 0.735 0.735 0.733	White White White Clocky Clear Clear Clear Clear Clear Clear	" " ?75 642 704 358 319 206 187	-16 -20 -33 -26 -5 44 4 4 6 -7		17,8. /sw
	1225 1218 1231 1234 1237 1247 1317 1322 1327 1322 1337	15 20 25 30 35 40 45 50 55 55 60	1.7 1.7 1.7 1.7	23.76 	7.68 - 7.65 7.45 7.48 7.76 7.76 7.68 7.60 7.47 7.35 7.39	0.717 6.716 0.716 0.719 0.721 0.721 0.743 0.743 0.745 0.735 0.735 0.733 0.732	White White White Claudy Clear Clear Clear Clear Clear Clear Clear	" " ?75 G42 704 358 319 206 187 176	-/6 -20 -33 -26 -5 44 4 6 -7 -18		(7, 8, /sw 10.1
	1225 1218 1231 1234 1237 1247 1317 1317 1322 1327 1322 1327 1322 1327 1322	15 20 25 30 35 40 45 50 55 50 55 60 55	1.7 1.7 1.7 1.7 0.5 1 1 1 1 1	23.76 	7.68 - 7.65 7.45 7.48 7.76 7.76 7.68 7.60 7.47 7.35	0.717 	White White White Clocky Clear Clear Clear Clear Clear Clear	" " ?75 642 704 358 319 206 187	-16 -20 -33 -26 -5 44 4 6 -7 -18 -1		(7, 8, /sw 10.1
r	$ \begin{array}{r} 1225 \\ $	15 20 23 36 35 40 45 50 55 60 55 60 65 65 55 60 65 65 55	1.7 1.7 1.7 1.7 0.5 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	23.76 	7.68 - 7.65 7.45 7.48 7.76 7.76 7.68 7.60 7.47 7.35 7.39	0.717 6.716 0.716 0.719 0.721 0.721 0.743 0.743 0.745 0.735 0.735 0.733 0.732	White White White Claudy Clear Clear Clear Clear Clear Clear Clear	" " ?75 G42 704 358 319 206 187 176	-16 -20 -33 -26 -5 44 4 6 -7 -18 -1		(7, 8, /sw 10.1
r	1225 1218 1231 1234 1237 1241 1317 1317 1322 1337 1332 1337 1342 Total Disc Observat	15 20 25 30 35 40 45 50 55 50 55 60 55	1.7 1.7 1.7 1.7 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1	23.76 	7.68 - 7.65 7.45 7.48 7.76 7.76 7.68 7.60 7.47 7.35 7.39	0.717 6.716 0.716 0.719 0.721 0.721 0.743 0.743 0.745 0.735 0.735 0.733 0.732	White White Uhite Cloudy Clear Clear Clear Clear Clear Clear Clear Clear Clear	" " " " ?75 642 704 358 319 206 187 176 132	-16 -20 -33 -26 -5 44 4 4 6 -7 -18 -1 -11		17.8. /sw 18
٢	1225 1218 1231 1234 1237 1247 1317 1317 1322 1337 1337 1342 Total Disc Observat	$\frac{15}{20}$ $\frac{20}{25}$ $\frac{30}{35}$ $\frac{40}{45}$ $\frac{45}{50}$ $\frac{55}{60}$ 55	1.7 1.7 1.7 1.7 0.5 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	23.76 	7.68 - 7.65 7.45 7.48 7.76 7.76 7.68 7.60 7.47 7.35 7.39	0.717 6.716 0.716 0.719 0.721 0.721 0.743 0.743 0.745 0.735 0.735 0.733 0.732	White White Uhite Cloudy Clear Clear Clear Clear Clear Clear Clear Clear Clear	(((()) ()) ()) ()) ()) ()) () ())) ()))))))))))))	-16 -20 -33 -26 -5 414 4 6 -7 -18 -1 -11 Associant pasas S	tes, LLC	17.8. /sw 18
r	1225 1218 1231 1234 1237 1247 1317 1317 1322 1337 1337 1342 Total Disc Observat	$\frac{15}{20}$ $\frac{20}{25}$ $\frac{30}{35}$ $\frac{40}{45}$ $\frac{45}{50}$ $\frac{55}{60}$ 55	1.7 1.7 1.7 1.7 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1	23.76 	7.68 - 7.65 7.45 7.48 7.76 7.76 7.68 7.60 7.47 7.35 7.39	0.717 6.716 0.716 0.719 0.721 0.721 0.743 0.743 0.745 0.735 0.735 0.733 0.732	White White Uhite Cloudy Clear Clear Clear Clear Clear Clear Clear Clear Clear	(, , , , , , , , , , , , , , ,	-/6 -20	tes, LLC	17. 8. /sw 18.

÷.

.

WELL	DEVE	LOPME	NT R	ECO	RD	:	PAGI	E of
Project N	umber: /	7258	Project	Name:	Coleto	Creek	,	Date: 3,21,17
	ation (well II		<u>BV-</u>	-21	•	Starting Wate	er Level (ft. BN	ир):
Develope	d by: E	<u>EF</u>				Casing Sticku	ıp (ft.):	~3
Measuring	g Point (MP		Toe	THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPERTY OF THE REAL PROPERTY OF THE REAL PROPERTY OF THE REAL PROPERTY OF THE REAL PROPERTY OF THE REAL PROPERTY OF THE REAL PROPERTY OF THE REAL PROPERTY OF THE REAL PROPERTY OF THE REAL PROPERTY OF THE REAL PROPE		Starting Wate	er Level (ft. BC	GL): <u>15.88</u>
Screened	Interval (ft.	BGL):	30-4	the second second second second second second second second second second second second second second second s		Total Depth (ft. BGL):	GL): 15.88 40,71
Filter Pac	k Interval (f	t. BGL):	30-	40		Casing Diam	eter (In ID):	2
						Casing Diam Casing Volun	ne (gal.):	3.5
QUALIT	Y ASSUF	RANCE		•		· · · · · · · · · · · · · · · · · · ·		
METHO	DS (describ	e):	,					A A A A
Cleanin	g Equipmer	nt: H/COADI	(Soli	tion 1	inse than	Triple rit	se at po	-p & to bing with
Purging	: Water	- quality	Stal	vizgur	ge Equipment:	Sibe	nersible	Junp
Disposa	l of Discha	rged Water:	Ten	00(41)	ile Store	ed in S	S-selle.	- drun
		Indicate m					1	
Water L	.evel:	Slinst	- 301	>	Thermometer:	H	172	50
pH Mete	er:	Horiba	USO	5	Field Calibration	on:	briba u	150 Autocal
					Field Calibration			USS Astrical
Other:								
	OPMEN	IT MEAS	UREN	IENTS	3			
Time	F Cum. Vol.	low Purge Rate	Temp.	Water C	Quality Spec. Cond.	Арреа	rance Turbidity &	Remarks
	(gal. / L)	(gal. / L pm)	(°C)	рH	(μΣ/cm)	Color	Sediment	
1400	5		24.42	7.12	0.707	White Cloud	71000	
1405	10	1	23.58			11 cc	71000	WL = 19.50 WV = 19.50
1410	15	1		6.78		u 1	71000	WV=1950
1425	20	0,5		6.90		1. 4	71000	WL= 19.10
1430	25)	I	26.99		,	71000	*
1440	٥٤	05		6.99	0.721	fr le	71000	
1450	35	0.5	23.99	7.04	0.723	re 4	429	
1500	40	0,5	24.19	7.12	0.725	es 11	792	
Total Disc	harge (gall	ons): 41		•		• <u>•••</u> •••		
	ions/Comm							
	Purgu	,	We.	1		Bullo	ck. Bennett. &	Associates, LLC
U	some						165 N. Lam	ipasas St.
						(512) 355	Bertram, T	X 78605 Fax (512) 355-9197
				ê;		(012) 000	-0100	1 an (012) 000-8181

APPENDIX C3 – MAPS OF THE DIRECTION OF GROUNDWATER FLOW

Explanation CCR Rule Monitoring Well Non-CCR Rule Monitoring Well \wedge **March 2017 Potentiometric Surface** Elevation Contour (ft. MSL) CCR Monitored Unit Groundwater Flow Direction OF \mathbf{X} CRAIG E. BENNETT GEOLOGY LIC #1205 CENSE Ref: Orthoimagery from ArGIS World Imagery Server □ Feet 2,000 0 1:12,000 COLETO CREEK POWER STATION Primary Ash Pond (Unit Id: 141) Uppermost Aquifer Unit Potentiometric Surface Map Round 1: March 28-30, 2017 PROJECT: 17258 BY: EEF REVISIONS DATE: Oct 2017 CHECKED: CEB

bt Date: 10/4/2017 - 2:04:56 PM, Plotted by: E.Ficker awing Path: D:\BBA\Coleto Creek\CCR\MXDs\Final Pot Maps\Round 2 May 201;

Explanation CCR Rule Monitoring Well Non-CCR Rule Monitoring Well \land May 2017 Potentiometric Surface Elevation Contour (ft. MSL) CCR Monitored Unit Groundwater Flow Direction OF X CRAIG E. BENNETT GEOLOGY LIC #1205 CENSE? Ref: Orthoimagery from ArGIS World Imagery Server □ Feet 2,000 0 1:12,000 COLETO CREEK POWER STATION Primary Ash Pond (Unit Id: 141) Uppermost Aquifer Unit Potentiometric Surface Map Round 2: May 9-11, 2017 PROJECT: 17258 BY: EEF REVISIONS DATE: Oct 2017

DATE. OCI 2017	CHECKED. CLD					
Bullock, Bennett & Associates, LLC						
Eng	ineering and Geoscie	nce				
Texas Registrations:	Engineering F-8542	, Geoscience 50127				

Explanation CCR Rule Monitoring Well Non-CCR Rule Monitoring Well \wedge May 2017 Potentiometric Surface Elevation Contour (ft. MSL) CCR Monitored Unit Groundwater Flow Direction OF X CRAIG E. BENNETT GEOLOGY LIC #1205 CENSE Ref: Orthoimagery from ArGIS World Imagery Server □ Feet 2,000 0 1:12,000 COLETO CREEK POWER STATION Primary Ash Pond (Unit Id: 141) Uppermost Aquifer Unit Potentiometric Surface Map Round 3: May 15-17, 2017 PROJECT: 17258 BY: EEF REVISIONS DATE: Oct 2017 CHECKED: CEB

ot Date: 10/4/2017 - 2:10:39 PM, Plotted by: E.Ficker awing Path: D'\BBA\Colein Creek(CCR\MXDs\Einal Pot Mans\Bound 4, lune 20

Explanation CCR Rule Monitoring Well Non-CCR Rule Monitoring Well \wedge **June 2017 Potentiometric Surface** Elevation Contour (ft. MSL) CCR Monitored Unit → Groundwater Flow Direction OF X CRAIG E. BENNETT GEOLOGY LIC #1205 CENSE Ref: Orthoimagery from ArGIS World Imagery Server ⊐ Feet 2,000 0 1:12,000 COLETO CREEK POWER STATION Primary Ash Pond (Unit Id: 141) Uppermost Aquifer Unit Potentiometric Surface Map Round 4: June 6-8, 2017 PROJECT: 17258 BY: EEF REVISIONS DATE: Oct 2017 CHECKED CEB

DATE: OCI 2017	CHECKED: CED	
Bullock, B	ennett & Assoc	iates, LLC
Eng	ineering and Geoscie	nce
Texas Registrations	Engineering F-8542	, Geoscience 50127

it Date: 10/4/2017 - 2:12:49 PM, Plotted by: E.Ficker awing Path: D:\BBA\Coleto Creek\CCR\MXDs\Final Pot Maps\Round 5 June 20

Explanation

	CCR	Rule Monitoring	Well
\land	Non-C	CR Rule Monito	ring Well
<u>\105</u>		2017 Potentiome tion Contour (ft. I	
	CCR	Monitored Unit	
(Ref:	THE PROPERTY OF	AIG E. BENNET GEOLOGY LIC #1205 LIC #1205 JONAL & GEOSCIE DID-4-2017 gery from ArGIS World I	nett magery Server
0		1:12,000	Feet 2,000
COL	ETO C		R STATION
Р	Uppe otenti	Ash Pond (Uni ermost Aquifer ometric Surfa I 5: June 20-22	[·] Unit ce Map
ROJECT: 17	7258	BY: EEF	REVISIONS
ATE: Oct 2	2017	CHECKED: CEB	

Explanation

	CCR	Rule Monitoring	ı Well
\triangle	Non-C	CR Rule Moni	toring Well
∖105 ∖		2017 Potention tion Contour (ft	
	CCR	Monitored Unit	
	Groun	dwater Flow D	irection
(Ref:	PROFE	AIG E. BENNE GEOLOGY LIC #1205 SS ONAL GEOS DIO-4-2017 gery from ArGIS Worl	d Imagery Server
0		1:12,000	2,000
COL	ето с		ER STATION
Р	Uppe otenti	Ash Pond (U ermost Aquife ometric Surf I 6: June 26-2	er Unit ace Map
PROJECT: 17		BY: EEF CHECKED: CEB	REVISIONS

<u>Explanation</u>

	CCR	Rule Monitori	۱g	Well	
\triangle	Non-C	CR Rule Mor	nito	ring Well	
<u>\105</u>		017 Potentior tion Contour (
	CCR	Monitored Uni	it		
(Ref:	THE PROPERTY OF	AIG E. BENN GEOLOGY LIC #1205 V/CENSED V/AL & GEOS V/AL & GEOS V/AL & GEOS	ET CAN	mett	
0		1:12,000		Feet 2,000	
COL	ETO C	REEK POW	/EF	R STATION	-
Р	Uppe otenti	Ash Pond (l ermost Aqui ometric Su d 7: July 10-	fer rfa	^r Unit ce Map	
ROJECT: 17 ATE: Oct 2		BY: EEF CHECKED: CEB		REVISIONS	
ALE: UC(2	.017				

Explanation

	CCR	Rule Monitoring	Well
\triangle	Non-C	CR Rule Monito	oring Well
<u>\105</u>		017 Potentiome tion Contour (ft.	
	CCR	Monitored Unit	
(Ref:	CF PROPERTY	Alg E. BENNET GEOLOGY LIC #1205 V/CENSED V/CENSE	mett
0		1:12,000	Feet 2,000
		,	
COL	ETO C	REEK POWE	R STATION
Р	Uppe otenti	Ash Pond (Un ermost Aquife ometric Surfa d 8: July 18-20	r Unit ce Map
ROJECT: 1		BY: EEF	REVISIONS
ATE · Oct 2	2017	CHECKED CEB	1

CONSULTANT

GOLDER

YYYY-MM-DD	2020-03	
DESIGNED	AJD	
PREPARED	TNB	
REVIEWED	WFV	
APPROVED	WFV	
REV.	FIC	GURE
		1

REFERENCE(S) BASE MAP TAKEN FROM GOOGLE EARTH, IMAGERY DATED 1/22/16. PROJECT NO. 19122449

ŀ

APPENDIX C4 – TABLES SUMMARIZING CONSTITUENT CONCENTRATIONS AT EACH MONITORING WELL

APPENDIX III ANALYTICAL RESULTS COLETO CREEK PRIMARY ASH POND

Sample	Date	в	Са	СІ	FI	field pH	SO ₄	TDS
Location	Sampled	Б	Ca	CI	FI	пеіа рн	304	105
Prediction Limit:		1.26	143	118	0.61	6.51 7.33	148	966
Upgradient Wells								
BV-5	03/29/17	1.15	90.5	118	0.54	7.01	147	860
BV-5	05/11/17	1.03	81.6	106	0.57	6.89	148	862
	05/16/17	1.17	99	107	0.55	6.9	145	832
	06/07/17	1.11	88.8	109	0.56	6.64	147	810
	06/20/17	1.02	90.7	106	0.58	6.54	145	716
	06/27/17	1.14	100	114	0.55	6.76	144	743
	07/12/17	1.07	96.8	112	0.56	6.88	140	430
	07/18/17	1.17	143	117	0.56	6.68	142	817
	11/07/17	1.10	94.2	109	0.62	6.96	136	850
	06/19/18	1.18	56.4	112	0.97		147	775
	09/18/18	1.27	86.2	145	0.667	6.53	146	904
	06/05/19	1.26	82.9	123	0.769	6.89	146	828
	10/03/19	1.31	72.2	141	0.753	7.11	145	806
	06/09/20	1.35	90.4	171	0.498	6.97	159	951
BV-21	03/28/17	0.651	6.89	36	0.61	7.09	69	490
01-21	05/09/17	0.687	65.2	38	0.61	7.04	55	410
	05/17/17	0.709	74.3	39	0.58	7.05	53	454
	06/06/17	0.657	69	40	0.59	7.11	49	452
	06/20/17	0.642	77	40	0.61	6.7	45	356
	06/27/17	0.727	84.9	40	0.6	6.97	46	420
	07/10/17	0.674	90.6	39	0.58	7.22	45	427
	07/18/17	0.618	84.4	39	0.6	6.91	44	380
	11/07/17	0.515	73.6	42	0.64	7.12	46	423
	06/25/18	0.543	69.3	38.4	0.62		38.4	380
	09/18/18	0.624	72.1	33.3	0.479	6.64	36.4	416
	06/05/19	0.576	61.3	30.3	0.602	7.1	34.2	379
	10/03/19	0.534	63.4	23.9	0.588	6.82	33.2	342
	06/09/20	0.447	72.5	34.2	0.522	6.96	18.5	362
MW-8	03/28/17	1.2	7.76	79	0.49	7.06	76	626
	05/09/17	1.21	77.5	77	0.44	7.15	79	564
	05/15/17	1.16	81.2	76	0.44	7.01	79	558
	06/06/17	1.26	78.1	72	0.45	6.92	83.5	570
	06/20/17	1.24	86.5	67	0.43	6.7	89	476
	06/27/17	1.23	89.6	66	0.44	6.85	97	533
	07/10/17	1.24	92.6	63	0.44	7.13	97	533
	07/18/17	1.25	92.9	61	0.46	6.91	100	533
	11/07/17	1.21	78.8	61	0.49	7.08	100	540
	06/25/18	1.25	80.3	65.9	0.52		95.2	565
	09/18/18	1.29	76.5	53.7	0.402	6.70	94.8	543
	06/05/19	1.11	65.2	51.4	0.497	7.10	79	515
	10/03/19	1.2	76.7	58.3	0.419	6.76	90.1	541
	06/09/20	1.33	73.1	46.4	0.392 J	7.04	72.3	511

APPENDIX III ANALYTICAL RESULTS COLETO CREEK PRIMARY ASH POND

Sample	Date	в	Ca	CI	FI	field pH	SO ₄	TDS
Location	Sampled	D	Ga	01		neid pri	004	100
Prediction Limit:		1.26	143	118	0.61	6.51 7.33	148	966
Downgradient Wells								
MW-4	03/28/17	0.287	9.14	102	0.61	9.81	157	794
10100-4	05/09/17	0.395	88.7	101	0.61	7.27	156	668
	05/17/17	0.251	92.1	101	0.6	6.93	157	702
	06/06/17	0.243	90.7	101	0.63	7.13	157	728
	06/20/17	0.254	99.3	101	0.62	6.71	157	626
	06/27/17	0.254	102	101	0.63	6.87	157	690
	07/10/17	0.271	111	101	0.62	7.16	158	670
	07/18/17	0.292	108	101	0.63	6.82	157	717
	11/07/17	0.255	94.5	99	0.62	7.12	155	700
	06/21/18	0.267	92.5	104	0.6		159	665
	09/18/18	0.28	91.8	102	0.582	6.63	155	720
	06/05/19	0.379	85.3	108	0.67	6.92	161	718
	10/03/19	0.367	93.1	102	0.559	6.7	155	693
	06/09/20	0.241	94.9	24.6	0.205 J	6.88	26.8	400
MW-5	03/30/17	0.11	110	140	0.51	6.85	184	830
10100-0	05/10/17	0.115	114	139	0.54	6.86	183	900
	05/16/17	0.215	121	139	0.5	6.81	183	848
	06/08/17	0.122	118	139	0.55	6.8	182	862
	06/21/17	0.122	124	138	0.53	6.6	182	813
	06/26/17	0.121	129	139	0.54	6.79	184	900
	07/11/17	0.111	120	138	0.52	6.91	184	797
	07/19/17	0.001	0.005	137	0.53	6.84	181	857
	11/08/17	0.149	116	138	0.52	6.92	183	883
	06/25/18	0.119	114	140	0.56		183	820
	09/18/18	0.146	114	136	0.493	6.70	183	824
	06/03/19	0.146	113	143	0.596	7.06	187	864
	10/02/19	0.179	111	147	0.543	7.06	202	842
	09/06/20	0.152	117	138	0.370 J	6.84	182	858
MW-6	03/29/17	1.67	73.9	69	0.38	7.34	99	510
10144-0	05/11/17	1.94	70.6	70	0.37	7.1	110	490
	05/16/17	1.84	76.3	70	0.36	7.23	107	506
	06/07/17	1.8	73.8	70	0.37	6.97	103	492
	06/22/17	1.97	79.9	69	0.37	7.11	100	510
	06/28/17	1.74	81.8	69	0.37	7.16	99	570
	07/12/17	1.76	81.6	69	0.35	7.24	98	557
	07/20/17	0.005	0.0002	69	0.39	6.9	97	530
	11/07/17	1.72	76.4	69	0.39	7.41	101	483
	06/22/18	0.0171	76.6	70.7	0.41		107	490
	09/18/18	2.09	70.8	72.5	0.353 J	6.97	114	505
	06/03/19	1.9	73.9	73	0.043	7.31	103	514
	10/02/19	1.83	73.6	76.4	0.357 J	7.29	115	507
	06/09/20	2.51	69.7	80.9	0.4	6.95	122	507

APPENDIX III ANALYTICAL RESULTS COLETO CREEK PRIMARY ASH POND

Sample	Date	В	Са	CI	FI	field pH	SO ₄	TDS
Location	Location Sampled							
Prediction Limit:		1.26	143	118	0.61	6.51 7.33	148	966
MW-9	03/30/17	3.38	54.5	71	1.13	7.35	62	406
10100-5	05/10/17	3.16	52.7	66	1.29	7.48	59	410
	05/17/17	3.18	53.3	67	1.26	7.34	58	440
	06/07/17	3.12	52	67	1.26	7.03	57	380
	06/21/17	3.44	60.7	66	1.39	7.09	60	393
	06/26/17	3.31	60.6	67	1.4	7.23	61	407
	07/11/17	3.35	52.1	64	1.3	7.51	60	927
	07/19/17	3.4	50.2	63	1.4	7.29	62	407
	11/08/17	2.84	49.4	62	1.56	7.54	50	397
	06/21/18	2.94	46.9	71.5	1.5		35.7	370
	09/18/18	2.79	51.7	71.4	1.1	6.99	49.1	394
	06/05/19	4.26	48	74.7	1.38	7.4	66.3	421
	10/03/19	3.97	71.3	70.9	1.41	7.37	63.6	462
	09/06/20	4.10	47.4	63.7	1.58	7.21	54.9	397
MW-10	03/30/17	3.74	92.1	151	0.54	6.99	130	804
	05/10/17	7.32	56.1	82	0.83	7.23	96	582
	05/16/17	7.45	62.7	81	0.81	7.28	95	612
	06/08/17	7.54	58.1	77	0.84	7.23	92	604
	06/21/17	9.22	60.7	77	0.84	6.97	92	550
	06/26/17	8.21	63.4	78	0.84	7.14	92	530
	07/11/17	7.99	49.5	76	0.84	7.4	88	617
	07/19/17	8.74	56.6	74	0.86	7.25	86	533
	11/08/17	8.72	77.7	74	0.88	7.35	81	590
	06/22/18	8.47	84.4	76.7	0.88			550
	09/18/18	8.45	51.9	81.4	0.759	6.98	95.1	577
	06/03/19	8.28	43.1	87.2	0.953	7.52	97.7	587
	10/02/19	8.28	44.2	85.5	0.891	7.46	104	575
	06/09/20	7.58	46.9	76.9	0.818	7.13	96.5	575
MW-11	05/10/17	1.35	64.1	55	0.82	7.27	61	394
	05/16/17	1.39	62.3	52	0.85	7.29	58	362
	05/18/17	1.27	61.6	47.8	0.94		52.4	390
	06/07/17	1.23	59.8	48	0.93	7.25	50	372
	06/21/17	1.19	73.1	43.7	1.04	7.15	44	373
	06/26/17	1.15	82	44	1	7.3	43	407
	07/11/17	1.23	44.7	44	1	7.55	42	603
	07/19/17	1.17	48.6	43	1.01	7.21	42	360
	11/08/17	1.13	52.2	43	1.02	7.61	56	367
	06/21/18	1.07	69.6	44.3	0.96		61.4	355
	09/18/18	1.12	39.3	44.6	0.754	7.00	44.4	354
	06/03/19	1.27	43.4	42.2	0.837	7.55	44.8	372
	10/02/19	1.22	43.4	41.4	0.768	7.43	10.8	355
	06/09/20	1.20	56.6	44.4	0.571	6.88	67.7	414

Notes:

1. All concentrations in mg/L. pH in standard units.

2. J - concentration is below sample quantitation limit; result is an estimate.

APPENDIX IV ANALYTICAL RESULTS COLETO CREEK PRIMARY ASH POND

Sample	Date	01-	A -	De	D.	04	0	0.5	-	Pb		11.4	Ma	0.	TI	D- 000	Ra 228	Ra 226/228
Location	Sampled	Sb	As	Ва	Be	Cd	Cr	Co	FI	PD	Li	Hg	Мо	Se		Ra 226	Ra 228	Combined
GWPS:		0.006	0.128	2	0.004	0.005	0.10	0.0499	4	0.015	0.04	0.002	0.10	0.05	0.002			5
Upgradient We	ells																	
BV-5	03/29/17	<0.0025	0.00856	0.04510	<0.001	<0.001	< 0.005	0.0497	0.540	<0.001	0.0206	< 0.0002	0.00925	< 0.005	<0.0015			1.503
	05/11/17	<0.0025	0.00786	0.03680	<0.001	< 0.001	< 0.005	0.0462	0.570	<0.001	0.018	< 0.0002	0.0101	< 0.005	<0.0015			1.555
	05/16/17	<0.0025	0.00885	0.04520	<0.001	< 0.001	< 0.005	0.0495	0.550	0.00151	0.0171	< 0.0002	0.0102	< 0.005	< 0.0015			0.7550
	06/07/17	<0.0025	0.00829	0.03760	<0.001	< 0.001	< 0.005	0.0483	0.560	<0.001	0.0207	< 0.0002	0.01	< 0.005	<0.0015			1.457
	06/20/17	<0.0025	0.00841	0.04010	<0.001	< 0.001	< 0.005	0.0499	0.580	<0.001	0.0208	< 0.0002	0.0114	< 0.005	< 0.0015			0.4920
	06/27/17	< 0.0025	0.0083	0.04120	<0.001	< 0.001	<0.005	0.046	0.550	<0.001	0.0198	< 0.0002	0.00942	< 0.005	<0.0015			2.247
	07/12/17	<0.0025	0.00849	0.04160	<0.001	< 0.001	< 0.005	0.0484	0.560	<0.001	0.0188	< 0.0002	0.0096	< 0.005	< 0.0015			2.139
	07/18/17	< 0.0025	0.00951	0.05780	<0.001	< 0.001	0.00739	0.0453	0.560	0.00288	0.022	< 0.0002	0.0083	< 0.005	< 0.0015			1.260
	06/19/18	<0.0025	0.0106	0.0336	<0.001	<0.001	0.0022 J	0.0513 J	0.970	<0.00074 J	0.016	< 0.0002	0.0139	< 0.005	<0.0015	0.327	<1.680	2.01
	09/18/18	NA	0.00949	0.0436	NA	NA	0.00228 J	0.0487	0.667	0.00039 J	0.0206	NA	0.0102	NA	NA	0.302	<0.608	0.91
	06/05/19	<0.0008	0.0092	0.042	<0.0003	0.0009 J	<0.002	0.0466	0.769	0.00144	0.0201	<0.00008	0.0109	<0.0020	< 0.0005	<0.687	<1.130	<1.82
	10/03/19	<0.0008	0.00941	0.0441	<0.0003	< 0.0003	0.00285 J	0.0437	0.753	0.0039	0.0172	<0.00008	0.0122	<0.0020	< 0.0005	0.928	1.35	2.28
	06/09/20	<0.0008	0.00879	0.0462	<0.0003	< 0.0003	0.00818	0.0486	0.498	0.00162	0.0201	<0.0000800	0.0120	< 0.00200	< 0.000500	0.363	0	0.363
BV-21	03/28/17	<0.0025	0.0954	0.09630	<0.001	< 0.001	< 0.005	0.0083	0.610	<0.001	<0.010	< 0.0002	<0.005	< 0.005	< 0.0015			1.390
	05/09/17	< 0.0025	0.108	0.09720	<0.001	< 0.001	<0.005	0.00852	0.610	<0.001	<0.010	< 0.0002	<0.005	< 0.005	< 0.0015			0.7460
	05/17/17	< 0.0025	0.117	0.09440	<0.001	< 0.001	< 0.005	0.00878	0.580	<0.001	<0.010	< 0.0002	<0.005	< 0.005	< 0.0015			0.9190
	06/06/17	< 0.0025	0.118	0.09540	<0.001	< 0.001	<0.005	0.00806	0.590	<0.001	<0.010	< 0.0002	<0.005	< 0.005	< 0.0015			0.6710
	06/20/17	< 0.0025	0.121	0.1010	<0.001	< 0.001	< 0.005	0.00744	0.610	<0.001	<0.010	< 0.0002	<0.005	< 0.005	< 0.0015			1.672
	06/27/17	< 0.0025	0.128	0.1040	<0.001	< 0.001	<0.005	0.00841	0.600	<0.001	<0.010	< 0.0002	<0.005	< 0.005	< 0.0015			0.5200
	07/10/17	< 0.0025	0.123	0.1100	<0.001	< 0.001	< 0.005	0.0086	0.580	<0.001	<0.010	< 0.0002	<0.005	< 0.005	< 0.0015			0.8050
	07/18/17	< 0.0025	0.115	0.1010	<0.001	< 0.001	<0.005	0.00784	0.600	<0.001	<0.010	< 0.0002	<0.005	< 0.005	< 0.0015			4.812
	06/25/18	<0.0025	0.0697	0.104	<0.001	<0.001	<0.005	0.00682	0.620	<0.00074 J	0.00513 J	< 0.0002	0.00428 J	< 0.005	<0.0015	0.267	<1.417	1.68
	09/18/18	NA	0.0625	0.109	NA	NA	<0.002	0.0064	0.479	0.000555 J	0.00624 J	NA	0.00450 J	NA	NA	<0.31	<0.528	<0.838
	06/05/19	<0.0008	0.0531	0.105	<0.0003	< 0.0003	<0.002	0.00574	0.602	0.000354	0.00558 J	<0.00008	0.00685	<0.0020	< 0.0005	0.65	<0.687	1.337
	10/03/19	<0.0008	0.049	0.0963	<0.0003	< 0.0003	<0.002	0.00542	0.588	0.000333 J	< 0.005	<0.00008	0.00784	<0.0020	< 0.0005	0.346	1.54	1.89
	06/09/20	<0.0008	0.0793	0.132	<0.0003	< 0.0003	0.007	0.00437 J	0.522	0.00033 J	< 0.005	<0.00008	0.00698	<0.0020	< 0.0005	0.211	1.15	1.36
MW-8	03/28/17	<0.0025	0.00839	0.0623	<0.001	<0.001	< 0.005	0.0236	0.490	<0.001	0.0111	< 0.0002	0.0154	< 0.005	<0.0015			0.4520
	05/09/17	< 0.0025	0.00848	0.064	<0.001	< 0.001	<0.005	0.0272	0.440	<0.001	0.0111	< 0.0002	0.0157	< 0.005	< 0.0015			0.4740
	05/15/17	<0.0025	0.00926	0.064	<0.001	< 0.001	< 0.005	0.0311	0.440	<0.001	0.0112	< 0.0002	0.016	< 0.005	<0.0015			0.6140
	06/06/17	<0.0025	0.00912	0.0616	<0.001	< 0.001	0.00744	0.0308	0.450	<0.001	0.0107	< 0.0002	0.0157	< 0.005	< 0.0015			0.1320
	06/20/17	<0.0025	0.00885	0.0669	<0.001	< 0.001	< 0.005	0.0297	0.430	<0.001	0.0121	< 0.0002	0.0171	< 0.005	<0.0015			0.5380
	06/27/17	<0.0025	0.00939	0.0633	<0.001	<0.001	<0.005	0.0314	0.440	<0.001	0.0115	< 0.0002	0.0163	< 0.005	<0.0015			0.9390
	07/10/17	<0.0025	0.00902	0.0631	<0.001	< 0.001	< 0.005	0.031	0.440	<0.001	0.0112	< 0.0002	0.0165	< 0.005	<0.0015			0.8040
	07/18/17	<0.0025	0.00937	0.0635	<0.001	<0.001	<0.005	0.0352	0.460	<0.001	0.0118	<0.0002	0.0185	<0.005	<0.0015			2.113
	06/25/18	<0.0025	0.0101	0.0632	<0.001	<0.001	<0.005	0.029	0.520	0.0011	0.0107	<0.0002	0.017	<0.005	<0.0015	<0.234	<1.204	<1.44
	09/18/18	NA	0.00896	0.0582	NA	NA	<0.00200	0.0237	0.402	< 0.0003	0.0117	NA	0.0178	NA	NA	<0.281	<0.558	<0.84
	06/05/19	<0.0008	0.00946	0.0596	<0.0003	<0.0003	<0.002	0.0217	0.497	0.000355 J	0.011	<0.00008	0.0156	<0.0020	<0.0005	0.528	<0.619	1.147
	10/03/19	<0.0008	0.0083	0.0607	<0.0003	<0.0003	<0.002	0.231	0.419	< 0.0003	0.0106	<0.00008	0.0144	<0.0020	<0.0005	0.224	0.241	0.465
	06/09/20	<0.0008	0.00856	0.0599	<0.0003	< 0.0003	<0.002	0.0174	0.392 J	0.000479 J	0.0104	<0.00008	0.0158	< 0.002	< 0.0005	0.304	2.64	2.94

APPENDIX IV ANALYTICAL RESULTS COLETO CREEK PRIMARY ASH POND

Sample	Date	0h	A -	De	D -	64	0	0.5	-	Dh		11.0	Ma	0.	TI	D - 000	D = 000	Ra 226/228
Location	Sampled	Sb	As	Ва	Be	Cd	Cr	Co	FI	Pb	Li	Hg	Мо	Se		Ra 226	Ra 228	Combined
GWPS:		0.006	0.128	2	0.004	0.005	0.10	0.0499	4	0.015	0.04	0.002	0.10	0.05	0.002			5
Downgradient	Wells																	
MW-4	03/28/17	< 0.0025	0.00738	0.0575	<0.001	< 0.001	< 0.005	0.007	0.610	< 0.001	0.0192	< 0.0002	<0.005	< 0.005	<0.0015			0.4600
	05/09/17	< 0.0025	0.00733	0.0576	< 0.001	< 0.001	< 0.005	0.007	0.610	< 0.001	0.0182	< 0.0002	< 0.005	< 0.005	< 0.0015			0.6940
	05/15/17	< 0.0025	0.00794	0.0556	<0.001	< 0.001	< 0.005	0.007	0.600	< 0.001	0.0166	< 0.0002	<0.005	< 0.005	< 0.0015			1.451
	06/06/17	< 0.0025	0.0077	0.0556	<0.001	< 0.001	< 0.005	0.007	0.630	<0.001	0.0179	< 0.0002	<0.005	< 0.005	< 0.0015			0.1740
	06/20/17	<0.0025	0.0081	0.0596	<0.001	< 0.001	0.00877	0.008	0.620	< 0.001	0.0195	< 0.0002	<0.005	< 0.005	<0.0015			0.5430
	06/27/17	< 0.0025	0.00786	0.0554	<0.001	< 0.001	< 0.005	0.007	0.630	< 0.001	0.0185	< 0.0002	<0.005	< 0.005	< 0.0015			0.6390
	07/10/17	<0.0025	0.00846	0.0582	<0.001	< 0.001	< 0.005	0.009	0.620	< 0.001	0.0187	< 0.0002	<0.005	< 0.005	<0.0015			1.069
	07/18/17	<0.0025	0.00815	0.0549	<0.001	< 0.001	<0.005	0.008	0.630	< 0.001	0.0183	< 0.0002	<0.005	< 0.005	<0.0015			0.1910
	06/21/18	<0.0025	0.00843	0.0591	<0.001	<0.001	< 0.005	0.00711	0.600	<0.00072 J	0.0175	< 0.0002	<0.005	< 0.005	<0.0015	0.370	1.705	2.08
	09/18/18	NA	0.00793	0.0577	NA	NA	< 0.002	0.00673	0.582	< 0.0003	0.019	NA	<0.002	NA	NA	1.610	<0.543	2.15
	06/05/19	<0.0008	0.0079	0.0571	<0.0003	< 0.0003	< 0.002	0.00729	0.670	< 0.0003	0.0195	<0.00008	<0.002	< 0.0020	< 0.0005	0.436	<0.547	0.98
	10/03/19	<0.0008	0.00764	0.0532	<0.0003	< 0.0003	< 0.002	0.00699	0.559	0.00101	0.017	<0.00008	<0.002	<0.002	< 0.0005	1.85	-0.102	1.85
	06/09/20	<0.0008	< 0.002	0.0376	<0.0003	< 0.0003	< 0.002	< 0.003	0.205 J	< 0.0003	0.00751 J	<0.00008	0.0021 J	<0.002	< 0.0005	0.0553	0.264	0.319
MW-5	03/30/17	<0.0025	0.00953	0.0748	<0.001	< 0.001	<0.005	<0.005	0.510	< 0.001	0.0192	< 0.0002	<0.005	< 0.005	<0.0015			1.443
	05/10/17	<0.0025	0.00955	0.0706	<0.001	< 0.001	<0.005	<0.005	0.540	< 0.001	0.0179	< 0.0002	<0.005	< 0.005	< 0.0015			0.6150
	05/16/17	< 0.0025	0.00967	0.0708	<0.001	< 0.001	< 0.005	< 0.005	0.500	< 0.001	0.0181	< 0.0002	<0.005	< 0.005	< 0.0015			0.6410
	06/08/17	<0.0025	0.00908	0.0701	<0.001	< 0.001	<0.005	<0.005	0.550	< 0.001	0.0200	< 0.0002	<0.005	< 0.005	< 0.0015			0.1790
	06/21/17	< 0.0025	0.00917	0.0767	<0.001	< 0.001	< 0.005	< 0.005	0.530	< 0.001	0.0197	< 0.0002	<0.005	< 0.005	< 0.0015			0.1060
	06/26/17	<0.0025	0.00955	0.0735	<0.001	< 0.001	<0.005	<0.005	0.540	< 0.001	0.0204	< 0.0002	<0.005	< 0.005	< 0.0015			1.112
	07/11/17	< 0.0025	0.00945	0.0712	<0.001	< 0.001	< 0.005	< 0.005	0.520	< 0.001	0.0183	< 0.0002	<0.005	< 0.005	< 0.0015			0.5120
	07/19/17	<0.0025	0.00941	0.0735	<0.001	< 0.001	<0.005	<0.005	0.530	< 0.001	0.0186	< 0.0002	<0.005	< 0.005	< 0.0015			0.1910
	06/25/18	< 0.0025	0.00998	0.0733	<0.001	<0.001	< 0.005	< 0.005	0.560	<0.001	0.0182	< 0.0002	<0.005	<0.005	< 0.0015	<0.251	<1.369	<1.62
	09/18/18	NA	0.00945	0.0697	NA	NA	< 0.002	< 0.003	0.493	< 0.0003	0.0195	NA	<0.002	NA	NA	<0.282	<0.606	<0.89
	06/03/19	<0.0008	0.00948	0.0678	<0.0003	<0.0003	<0.002	<0.003	0.596	< 0.0003	0.0206	<0.00008	<0.002	<0.002	<0.0005	<0.619	<0.917	<1.54
	10/02/19	<0.0008	0.00918	0.067	<0.0003	<0.0003	<0.002	< 0.003	0.543	< 0.0003	0.0187	<0.00008	<0.002	<0.002	<0.0005	0.47	0.117	0.587
	06/09/20	<0.0008	0.00891	0.0689	< 0.0003	< 0.0003	< 0.002	< 0.003	0.370 J	< 0.0003	0.0192	<0.00008	<0.002	<0.002	<0.0005	0.171	0.211	0.382
MW-6	03/29/17	<0.0025	0.00827	0.0900	<0.001	< 0.001	<0.005	< 0.005	0.380	< 0.001	<0.010	< 0.0002	0.00749	<0.005	< 0.0015			1.009
	05/11/17	<0.0025	0.00738	0.0758	<0.001	<0.001	<0.005	<0.005	0.370	<0.001	0.0101	<0.0002	0.0176	<0.005	<0.0015			0.8250
	05/16/17	<0.0025	0.00803	0.0784	<0.001	< 0.001	<0.005	< 0.005	0.360	< 0.001	<0.010	< 0.0002	0.0131	<0.005	< 0.0015			0.7740
	06/07/17	<0.0025	0.00772	0.0798	<0.001	<0.001	<0.005	<0.005	0.370	<0.001	<0.010	< 0.0002	0.00949	<0.005	<0.0015			0.6640
	06/22/17	< 0.0025	0.00764	0.083	<0.001	<0.001	<0.005	<0.005	0.370	<0.001	0.0109	< 0.0002	0.0084	<0.005	< 0.0015			0.2150
	06/28/17	<0.0025	0.00779	0.0842	<0.001	<0.001	<0.005	<0.005	0.370	<0.001	<0.010	< 0.0002	0.00806	<0.005	<0.0015			1.730
	07/12/17	<0.0025	0.0077	0.0819	<0.001	<0.001	<0.005	<0.005	0.350	<0.001	<0.010	<0.0002	0.0076	<0.005	<0.0015			1.012
	07/20/17	<0.0025	0.001	0.0010	<0.001	<0.001	<0.005	<0.005	0.390	<0.001	<0.010	<0.0002	0.001	<0.005	<0.0015			0.3660
	06/22/18	<0.0025	0.00861	0.0912	<0.001	<0.001	<0.005	<0.005	0.410	<0.001	0.00924 J	< 0.0002	0.00837	<0.005	<0.0015	< 0.309	<1.243	<1.55
	09/18/18	NA	0.008	0.0828	NA	NA	<0.002	<0.003	0.353 J	0.000349 J	0.0107	NA	0.0274	NA	NA	<0.196	1.06	1.256
	06/03/19	<0.0008	0.00799	0.0894	<0.0003	< 0.0003	<0.002	<0.003	0.438	< 0.0003	0.00968 J	<0.00008	0.00884	<0.0020	<0.0005	<0.407	<0.623	<1.03
	10/02/19	<0.0008	0.00775	0.0876	<0.0003	<0.0003	<0.002	<0.003	0.357 J	<0.0003	0.00875 J	<0.00008	0.00875	<0.0020	<0.0005	0.715	1.23	1.94
	06/09/20	<0.0008	0.00799	0.078	<0.0003	<0.0003	< 0.002	< 0.003	0.4	< 0.0003	0.0113	<0.00008	0.0357	<0.002	< 0.0005	0.00643	0.127	0.134

APPENDIX IV ANALYTICAL RESULTS COLETO CREEK PRIMARY ASH POND

Sample Location	Date Sampled	Sb	As	Ва	Be	Cd	Cr	Co	FI	Pb	Li	Hg	Мо	Se	TI	Ra 226	Ra 228	Ra 226/228 Combined
GWPS:		0.006	0.128	2	0.004	0.005	0.10	0.0499	4	0.015	0.04	0.002	0.10	0.05	0.002			5
MW-9	03/30/17	< 0.0025	0.00909	0.121	< 0.001	< 0.001	<0.005	<0.005	1.130	0.00217	<0.010	< 0.0002	0.0747	<0.005	< 0.0015			1.353
·	05/10/17	< 0.0025	0.00996	0.105	< 0.001	< 0.001	< 0.005	< 0.005	1.290	0.00433	< 0.010	< 0.0002	0.0900	< 0.005	< 0.0015			0.4800
	05/17/17	< 0.0025	0.00958	0.101	< 0.001	< 0.001	< 0.005	< 0.005	1.260	0.00377	< 0.010	< 0.0002	0.0899	< 0.005	< 0.0015			0.3600
·	06/07/17	<0.0025	0.0093	0.100	< 0.001	< 0.001	< 0.005	< 0.005	1.260	< 0.001000	<0.010	< 0.0002	0.0926	< 0.005	< 0.0015			0.4760
·	06/21/17	<0.0025	0.00937	0.119	< 0.001	< 0.001	< 0.005	< 0.005	1.390	0.00136	<0.010	< 0.0002	0.1020	< 0.005	< 0.0015			1.579
	06/26/17	<0.0025	0.0107	0.114	< 0.001	< 0.001	0.0102	< 0.005	1.400	0.00217	<0.010	< 0.0002	0.1060	< 0.005	< 0.0015			1.023
	07/11/17	<0.0025	0.0105	0.103	<0.001	< 0.001	0.00566	< 0.005	1.300	0.00124	<0.010	< 0.0002	0.1050	< 0.005	< 0.0015			0.8630
	07/19/17	<0.0025	0.0103	0.101	< 0.001	< 0.001	< 0.005	< 0.005	1.400	< 0.001000	<0.010	< 0.0002	0.1130	< 0.005	< 0.0015			0.5840
	06/21/18	<0.0025	0.0104	0.100	< 0.001	<0.001	<0.005	< 0.005	1.500	<0.00072 J	<0.01	< 0.0002	0.0617	<0.005	<0.0015	0.608	<1.303	1.91
	09/18/18	NA	0.0103	0.0985	NA	NA	< 0.002	< 0.003	1.100	< 0.000300	0.00639 J	NA	0.0502	NA	NA	0.618	<0.638	1.26
	06/05/19	<0.0008	0.0109	0.102	< 0.0003	< 0.0003	< 0.002	< 0.003	1.380	< 0.0003	0.00545 J	<0.00008	0.0683	< 0.002	< 0.0005	< 0.402	<0.683	<1.085
	10/03/19	<0.0008	0.0109	0.128	0.000689 J	< 0.0003	< 0.002	0.00337 J	1.410	0.00876	0.0064 J	<0.00008	0.0507	0.0041 J	< 0.0005	0.577	0.747	1.32
	06/09/20	<0.0008	0.0126	0.0865	< 0.0003	< 0.0003	< 0.002	< 0.003	1.58	0.000577 J	< 0.005	<0.00008	0.0774	< 0.002	< 0.0005	0.132	-0.0432	0.132
MW-10	03/30/17	<0.0025	0.0110	0.0844	<0.001	<0.001	<0.005	<0.005	0.540	< 0.001	0.0179	< 0.0002	0.0342	<0.005	<0.0015			1.439
	05/10/17	<0.0025	0.0146	0.0554	<0.001	<0.001	0.00533	<0.005	0.830	< 0.001	0.0122	< 0.0002	0.102	<0.005	<0.0015			0.8880
	05/16/17	<0.0025	0.0150	0.0598	<0.001	< 0.001	< 0.005	< 0.005	0.810	< 0.001	0.0123	< 0.0002	0.0987	< 0.005	< 0.0015			0.1830
	06/08/17	<0.0025	0.0144	0.0544	< 0.001	< 0.001	<0.005	<0.005	0.840	< 0.001	0.0115	< 0.0002	0.106	< 0.005	<0.0015			0.06700
	06/21/17	<0.0025	0.0149	0.054	<0.001	< 0.001	< 0.005	< 0.005	0.840	< 0.001	0.0133	< 0.0002	0.113	< 0.005	< 0.0015			0.7090
	06/26/17	<0.0025	0.0160	0.0587	< 0.001	< 0.001	0.0177	<0.005	0.840	< 0.001	0.0137	< 0.0002	0.116	< 0.005	<0.0015			0.7180
	07/11/17	<0.0025	0.0149	0.0508	< 0.001	< 0.001	< 0.005	<0.005	0.840	< 0.001	0.0119	< 0.0002	0.114	< 0.005	<0.0015			1.713
	07/19/17	<0.0025	0.0146	0.0633	<0.001	< 0.001	0.00963	<0.005	0.860	< 0.001	0.0127	< 0.0002	0.121	<0.005	< 0.0015			2.132
	06/22/18	<0.0025	0.0154	0.0692	<0.001	<0.001	< 0.005	< 0.005	0.88	<0.00095 J	0.0122	< 0.0002	0.134	< 0.005	<0.0015	<0.212	<1.192	<1.40
	09/18/18	NA	0.0140	0.0446	NA	NA	< 0.002	< 0.003	0.759	< 0.0003	0.0141	NA	0.125	NA	NA	0.151	<0.848	0.999
	06/03/19	<0.0008	0.0142	0.0420	< 0.0003	< 0.0003	< 0.002	< 0.003	0.953	< 0.0003	0.0139	<0.00008	0.109	<0.002	< 0.0005	< 0.203	0.814	1.017
	10/02/19	<0.0008	0.0139	0.0406	< 0.0003	< 0.0003	<0.002	< 0.003	0.891	< 0.0003	0.0127	<0.00008	0.106	< 0.002	<0.0005	-0.0288	0.901	0.901
	06/09/20	<0.0008	0.014	0.0444	< 0.0003	< 0.0003	<0.002	0.00334 J	0.818	< 0.0003	0.013	<0.00008	0.088	<0.002	<0.0005	0.0959	1.22	1.31
MW-11	05/10/17	<0.0025	0.0156	0.0899	<0.001	< 0.001	<0.005	<0.005	0.82	0.00239	0.0125	< 0.0002	0.0082	<0.005	<0.0015			0.4560
	05/16/17	<0.0025	0.018	0.0869	<0.001	< 0.001	0.00731	< 0.005	0.85	0.0113	0.0144	< 0.0002	0.00841	<0.005	< 0.0015			1.418
	05/18/17	<0.0025	0.0188	0.0779	<0.001	< 0.001	<0.005	<0.005	0.94	0.00204	0.0122	< 0.0002	0.00781	<0.005	< 0.0015			0.6390
	06/07/17	<0.0025	0.0175	0.0835	<0.001	< 0.001	<0.005	<0.005	0.93	0.00171	0.0137	< 0.0002	0.00744	< 0.005	< 0.0015			0.5020
	06/21/17	<0.0025	0.0203	0.0822	<0.001	< 0.001	<0.005	<0.005	1.04	0.00322	0.0136	< 0.0002	0.00659	<0.005	< 0.0015			1.084
	06/26/17	<0.0025	0.0237	0.0954	<0.001	< 0.001	0.0131	<0.005	1.00	0.00593	0.0176	< 0.0002	0.00796	<0.005	< 0.0015			3.067
	07/11/17	<0.0025	0.0212	0.0725	<0.001	<0.001	<0.005	<0.005	1.00	<0.001	0.012	<0.0002	0.00765	<0.005	<0.0015			0.7530
	07/19/17	<0.0025	0.0224	0.0709	<0.001	<0.001	0.00762	<0.005	1.01	0.0018	0.0137	< 0.0002	0.00783	<0.005	<0.0015			1.551
	06/21/18	<0.0025	0.0367	0.0805	<0.001	<0.001	<0.005	<0.005	0.96	0.00241	0.0135	< 0.0002	0.00465	<0.005	<0.0015	<0.234	<1.312	<1.55
	09/18/18	NA	0.0382	0.0645	NA	NA	<0.002	<0.003	0.754	< 0.0003	0.0139	NA	0.00445 J	NA	NA	<0.188	0.597	0.785
	06/03/19	<0.0008	0.0379	0.0834	< 0.0003	< 0.0003	<0.002	<0.003	0.0837	<0.0003	0.0154	<0.00008	0.00316 J	<0.002	<0.0005	<0.481	0.991	1.472
	10/02/19	<0.0008	0.0379	0.0744	< 0.0003	< 0.0003	<0.002	<0.003	0.768	0.000391 J	0.014	<0.00008	0.00259 J	<0.002	<0.0005	1.57	0.478	2.040
	06/09/20	<0.0008	0.0293	0.0948	< 0.0003	< 0.0003	<0.002	< 0.003	0.571	0.000675 J	0.0156	<0.00008	0.00215 J	< 0.002	< 0.0005	0.163	1.31	1.480

Notes:

All concentrations in mg/L. Ra 226/228 Combined in pCi/L.
 J - concentration is below sample quantitation limit; result is an estimate.
 Non-detect Ra isotope results were assigned a value equal to the minimum detectable concentration.
 NA = Not analyzed.

APPENDIX C5 – SITE HYDROGEOLOGY AND STRATIGRAPHIC CROSS-SECTIONS OF THE SITE

CONCEPTUAL SITE MODEL AND DESCRIPTION OF SITE HYDROGEOLOGY (PRIMARY ASH POND)

The Coleto Creek conceptual site model (CSM) and Description of Site Hydrogeology for the Primary Ash Pond (PAP), located near Fannin, Texas are described in the following sections.

REGIONAL SETTING

The Site is located on the Lissie Formation which is part of the Houston Group (BBA, 2017). The Lissie Formation is a deltaic plain that consists primarily of undifferentiated alluvium, fine-grained channel facies, and fine-grained overbank facies (Moore and Wermund, 1993). The Lissie Formation is middle Pleistocene in age and is described as primarily sands, silts, and clays containing iron and manganese nodules, calcareous concretions, and organic-rich lenses (Moore and Wermund, 1993). Below the Lissie Formation are the Goliad Formation, the Oakville Sandstone/Fleming Formation, and the Catahoula Formations which consist primarily of sand, clays, sands, and tuffs respectively (Nicot et. al, 2010).

Within the central coastal plain of Texas, the Lissie Formation's outcrop is a belt ranging from approximately 10 to 20 miles wide (Solis, 1981). Located within the western region of the Gulf Coast Basin, Lissie sediments extend into the subsurface, dipping southeast at 5 to 20 ft per mile (Doering, 1935). Maximum outcrop thickness is estimated to be about 600 ft in East Texas and 400 ft in South Texas (Plummer, 1932).

SITE GEOLOGY

The Site is located on the Lissie Formation described above (BBA, 2017). Surficial soils in the vicinity of the Site include the following (described in order from shallow to deep) based on Site soil borings (BBA, 2017):

- Upper Confining Unit (Unit 1) a laterally continuous low permeability unit approximately 11 to 25 feet thick that contains primarily sandy clay and clayey sand with intermittent layers of silty clay.
- Intermediate Sand Unit (Unit 2, Uppermost Aquifer) a laterally continuous sand and silty sand unit approximately 40 to 54 feet thick that contains discontinuous cohesive layers and variable mineralized zones.
- Lower Confining Unit (Unit 3) a laterally continuous basal clay unit greater than 25 feet hick consisting primarily of clay and silty clay.

The geologic units discussed above are shown on cross-sections attached to this demonstration.

SITE HYDROGEOLOGY

The Site is located in the Coleto Creek Watershed, adjacent to Sulphur Creek, part of the Coleto Creek Reservoir. The Coleto Creek Reservoir was constructed in the 1970s for use as a cooling pond. The Uppermost Aquifer is monitored by nine monitoring wells surrounding the PAP as part of the CCR groundwater monitoring system. All wells included in the CCR monitoring system are screened in the intermediate sand unit (i.e., uppermost aquifer) at the Site (BBA, 2017).

The CCR groundwater monitoring system consists of nine monitoring wells installed in the Uppermost Aquifer and adjacent to the PAP (BV-5, BV-21, MW-4, MW-5, MW-6, MW-8, MW-9, MW10, and MW-11) (see Monitoring Well Location Map, and Well Construction Diagrams and Drilling Logs attached to this demonstration). The unit utilizes three background monitoring wells (BV-5, BV-21, and MW-8) as part of the CCR groundwater monitoring system.

Hydraulic Conductivity

Hydraulic conductivity results from field testing (i.e., slug tests) at monitoring wells BV-5, BV-21, BV-22, MW-9, MW-10, and MW-11 in the intermediate sand unit (Uppermost Aquifer) ranged from approximately 5.14×10^{-4} to 1.37×10^{-2} centimeters per second (cm/s), with a geometric mean of approximately 3.35×10^{-5} cm/s (BBA, 2017). Generally, hydraulic conductivities upgradient of the PAP were higher than hydraulic conductivities downgradient of the PAP, which was attributed to the varying clay and silt contents of the sandy soils (BBA, 2017).

Groundwater Elevations, Flow Direction and Velocity

Groundwater elevations adjacent to the Site for the eight CCR background monitoring events from March to July 2017 ranged from approximately 101.1 feet North American Vertical Datum of 1988 (NAVD88) to 113.5 feet NAVD88, corresponding to groundwater depths from approximately 14.3 to 29.9 feet below ground surface (BBA, 2017). Groundwater typically flows east to southeast across the PAP towards Sulphur Creek, part of the Coleto Creek Reservoir. During the background monitoring events, the average horizontal hydraulic gradient was calculated as 0.0027 feet per foot (ft/ft) and 0.0029 ft/ft across the northern and southern boundaries of the PAP. The average groundwater flow velocity was between 0.13 and 9.46 feet per day (ft/day) (BBA, 2017). These groundwater elevations, flow direction, and flow velocities are consistent with the groundwater potentiometric map for October 2, 2019 provided as an attachment to this demonstration.

REFERENCES

Doering, JA. 1935. Post-Fleming surface formations of coastal southeast Texas and southern Louisiana: American Association of Petroleum Geologists Bulletin, v.19, no.5, p. 651-688.

Moore, David W. and Wermund, E.G., Jr. 1993. Quaternary Geologic Map of Austin 4° x 6° Quadrangle, United States. Quaternary Geologic Atlas of the United States. Map I-1420 (NH-14). Scale 1:1,000,000.

Nicot, Jean-Philippe, Bridget R Scanlon, Changbing Yang, and John B Gates. 2010. Geological and Geographical Attributes of the South Texas Uranium Province, Texas Commission on Environmental Quality and Bureau of Economic Geology. April 2010.

Plummer, FB. 1932. Cenozoic Systems in Texas, Part 3, in The Geology of Texas: University of Texas, Austin, Bulletin 3232, p.729-795.

Solis, Raul Fernando. 1981. Upper Tertiary and Quaternary Depositional Systems, Central Coastal Plain, Texas, University of Texas at Austin Bureau of Economic Geology Report of Investigations No. 108.

APPENDIX C6 – STRUCTURAL STABILITY AND SAFETY FACTOR ASSESSMENT

COAL COMBUSTION RESIDUALS SURFACE IMPOUNDMENT HISTORY OF CONSTRUCTION AND INITIAL HAZARD POTENTIAL ASSESSMENT, STRUCTURAL INTEGRITY ASSESSMENT, AND SAFETY FACTOR ASSESSMENT

COLETO CREEK POWER PLANT FANNIN, TEXAS

OCTOBER 13, 2016

Prepared for:

COLETO CREEK POWER, LP Coleto Creek Power Plant Fannin, Texas

Prepared by:

BULLOCK, BENNETT & ASSOCIATES, LLC

Engineering and Geoscience Registrations: Engineering F-8542, Geoscience 50127

> 165 N. Lampasas Street Bertram, Texas 78605 (512) 355-9198

BBA Project No. 15214-5

Certification Statement 40 CFR § 257.73 - Structural Integrity Criteria for Existing CCR Surface Impoundments

CCR Unit: Coleto Creek Power, LP; Coleto Creek Power Station; Primary and Secondary Ash Ponds

I, Daniel Bullock, being a Registered Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this assessment report has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the information contained in the History of Construction and Initial Hazard Potential Assessment, Structural Integrity Assessment, and Safety Factor Assessment, dated October 13, 2016, meets the requirements of 40 *CFR* § 257.73.

Aniel & Sullah

Daniel B. Bullock, P.E. (TX 82596)

TABLE OF CONTENTS

		ГАВLES	
		FIGURES	
LIS	Г OF A	APPENDICES	ii
1.0	INTI	RODUCTION	.1
2.0		FORY OF CONSTRUCTION	
	2.1	Owner and Operator of CCR Unit	
	2.2	CCR Unit Location	
	2.3	Ash Pond Statement of Purpose	
	2.4	Watershed Description	
	2.5	Ash Pond Foundation and Abutment Material Description	
	2.6	Ash Pond Construction Summary	
	2.7	Ash Pond Drawings	
	2.8	Ash Pond Instrumentation	.7
	2.9	Ash Pond Area-Capacity Curves	.7
	2.10	Ash Pond Spillway and Diversion Design Features	.7
	2.11	Ash Pond Surveillance, Maintenance, and Repair Provisions	.8
	2.12	Ash Pond Structural Stability History	.8
3.0	INIT	IAL POTENTIAL HAZARD CLASS ASSESSMENT	.9
	3.1	Dam Breach Analysis	10
	3.2	Loss of Life Evaluation	11
	3.3	Economic and/or Environmental Loss Evaluation	12
	3.4	Hazard Potential Classification	13
4.0	INIT	TAL STRUCTURAL STABILITY ASSESSMENT	14
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	INIT	TAL SAFETY FACTOR ASSESSMENTS	17
	5.1	Liquefaction Assessment	24
6.0	SUM	IMARY	27
7.0	REF	ERENCES	28

LIST OF TABLES

Table 5-1	Soil Strength Parameters used in Geotechnical Stability Analysis
Table 5-2	Required Factors of Safety

Table 5-3Slope Stability Analysis Summary

LIST OF FIGURES

Figure 1-1A	Site Location Map
Figure 1-1B	Site Location Map
Figure 2-1	U.S.G.S. Area Map
Figure 2-2	Coleto Creek Watershed
Figure 2-3	Thickness Map of In-Situ Cohesive Soils
Figure 2-4	Surface Impoundment Configuration
Figure 2-5A	Ash Pond Plan and Cross Sections
Figure 2-5B	Bathymetric Survey Plan View
Figure 2-5C	Bathymetric Survey Sections
Figure 2-6	Capacity for Primary Pond

LIST OF APPENDICES

Appendix A	Geotechnical Borelogs
Appendix B	Geotechnical Laboratory Data
Appendix C	Slide 7.0 Stability Analysis Models
Appendix D	Liquefaction Assessment Calculations
Appendix E	Guadalupe-Blanco River Authority Lake Area-Capacity Summaries

1.0 INTRODUCTION

Coleto Creek Power Station is located at 45 FM 2987 just outside the city of Fannin in Goliad County, Texas. The power station consists of one coal-fired boiler. Bottom ash and fly ash, or coal combustion residuals (CCR), generated in the boiler are either shipped off-site for beneficial re-use or managed in on-site CCR surface impoundments that are divided into primary and secondary collection areas (Primary and Secondary Ash Ponds). Figures 1-1A and 1-1B provide site location maps showing the Primary and Secondary Ash Pond configuration.

In April 2015, the Environmental Protection Agency (EPA) enacted rules 40 *CFR* Part 257 to address potential risks associated with operating CCR surface impoundments at coal-fired power plants. This report has been prepared to specifically address the requirements identified in \$257.73 *Structural Integrity Criteria for Existing CCR Surface Impoundments*. Section 2.0 of the report provides the History of Construction (\$257.73(c)(1)(i - xii)). Section 3.0 contains the Initial Potential Hazard Classification Assessment (\$257.73(a)(2)), Section 4.0 provides the Initial Structural Stability Assessment (\$257.73(d)(1)), and Section 5.0 includes the Initial Safety Factor Assessment (\$257.73(e)(1).

October 13, 2016

2.0 HISTORY OF CONSTRUCTION

The following History of Construction has been prepared in accordance with the requirements defined in 257.73 (c)(1)(i – xii).

2.1 Owner and Operator of CCR Unit

The Coleto Creek Power Station is owned and operated by Coleto Creek Power, LP. The address is as follows:

Coleto Creek Power Station 45 FM 2987 PO Box 8 Fannin, Texas 77960 Primary Ash Pond SWR No. 31911, Unit No. 001 Secondary Ash Pond SWR No. 31911, Unit No. 003

2.2 CCR Unit Location

The Coleto Creek Power Station and associated CCR surface impoundments (Primary and Secondary Ash Ponds, or collectively referred to as Ash Ponds) are located just outside the city of Fannin in Goliad County, Texas on approximately 8,000 total acres. The Primary Ash Pond is approximately 190 acres in surface area with a reported storage capacity of 2,700 acre-feet and the associated Secondary Ash Pond is approximately 10 acres in size with 300 acre-feet of storage capacity (S&L, December 1978). Figure 2-1 (U.S.G.S. Area Map) shows the CCR surface impoundments on the most recent US Geological Survey (USGS) 7¹/₂ minute quadrangle topographic map.

2.3 Ash Pond Statement of Purpose

The Primary and Secondary Ash Ponds were constructed between 1976 and 1977 during the power plant site development. The ponds were designed and constructed to accommodate wastes from two coal-fired boilers (S&L, December 1978). However, only one boiler has been constructed and operated at the facility.

Bottom ash is collected from the boiler, combined with water, and transferred in slurry form for disposal in the facility's surface impoundment. Fly ash is collected from the boiler exhaust using a baghouse. The fly ash is transported pneumatically to two storage silos. From there, the fly ash is loaded onto enclosed dry haul hoppers for off-site beneficial use. Fly ash not meeting required beneficial reuse specifications is combined with water and pumped to the facility's Primary Ash Pond for disposal. CCR solids settle out of the conveyance water in the Primary Ash Pond and the excess water then overflows a weir to the smaller Secondary Ash Pond for final settling of any remaining solids. Water from the Secondary Ash Pond can be recirculated to the ash sluice system or discharged in accordance with the facility's TPDES permit.

Other plant wastes may also reportedly be sluiced into the Ash Ponds including aqueous lab waste, boiler chemical cleaning rinseate, air preheater cleaning rinseate, air preheater cleaning residue, basin solids, de-ionizer regenerate wastewater, heat exchanger cleaning rinseate, waste de-ionizer resin beads, waste molybdate contaminated cooling water, waste filter media, boiler blowdown, demineralizer effluent, storm water, low volume waste, and effluent water/wastewater from plant processes (S&L, 1981).

2.4 Watershed Description

Coleto Creek Power Station is located in the lower half of the Coleto Creek Watershed (Figure 2-2) which is maintained by the Guadalupe-Blanco River Authority (GBRA). Coleto Creek is approximately 27 miles long, beginning in DeWitt County and travels through Goliad and Victoria Counties before its confluence with the Guadalupe River (GBRA, 2013). Approximately 558 square miles drain into the Coleto Creek Watershed. Typical land uses in the watershed include farming, ranching, oil and gas production and more recently, in-situ uranium mining. The only urbanized area in the watershed is the small city of Yorktown located upstream of the power plant in DeWitt County.

Coleto Creek Reservoir Dam was constructed in the late 1970s to create the approximate 3,100 surface acre Coleto Creek Reservoir which serves as a cooling pond for the Coleto Creek power plant. The power plant discharges approximately 360,000 gallons per minute of water to the reservoir (GBRA, 2013). Perdido Creek, Turkey Creek, and Sulphur Creek also feed into the

3

reservoir. Although the reservoir is managed by the GBRA, it is reportedly wholly owned by Coleto Creek Power, LP up to an elevation of 104 feet MSL.

2.5 Ash Pond Foundation and Abutment Material Description

The Ash Ponds were designed and constructed under the guidance of Sargent & Lundy Engineers (S&L). As part of the design process, S&L advanced 63 soil borings and installed eight monitoring wells in the immediate vicinity of the ponds. Based on the information collected, the ponds are constructed within a surface deposit of cohesive soils consisting of mostly clayey sand and silty clay with varying amounts of caliche. The soils are classified as CH, CL, and SC soils using the Unified Soil Classification System. These soils range in thickness from 4 to 20 feet, and average 13 feet (S&L, December 1978). Figure 2-3 provides the Thickness Contour Map for In-Situ Cohesive Soils beneath the Ash Ponds. The impoundment dikes are continuous and do not include a conventional spillway, thus there are no abutments with other structures.

2.6 Ash Pond Construction Summary

As noted in Section 2.3, the CCR surface impoundments were constructed between 1976 and 1977 during overall site development. Construction was performed by H. B. Zachary Construction with full-time on-site inspection by S&L. Field testing of site soils and construction materials was performed by Trinity Testing Laboratory, Inc. In general, the Primary and Secondary Ash Pond dikes have a total circumference of approximately 12,900 feet and a height ranging from approximately 4 feet up to 56 feet. The maximum reported storage volume is 2,700 acre-feet in the Primary Ash Pond and 300 acre-ft in the Secondary Ash Pond (S&L, December 1978).

As further described below, a limited topographic and bathymetric survey was conducted for the Ash Ponds in July 2016. Results of that survey were combined with assumptions regarding the original base elevation of the pond (limited as-built base elevation data is available) to generate area-capacity estimates for use in subsequent assessments presented in this report. The area-capacity estimates generated using 2016 data indicate that the top of dike capacity is approximately 3,700 acre-ft, or nearly 1,000 acre-ft more than originally reported by S&L. The originally reported 2,700 acre-ft corresponds to an approximate elevation of 135 feet in the 2016 assessment, which is also the operating level identified in the S&L report. For the purposes of this report, the larger capacity is used where appropriate.

In-situ cohesive soils were used as the pond lining and the geotechnical characteristics of those soils are documented in the S&L construction summary report dated December, 1978. Laboratory geotechnical testing was performed on representative samples collected post-construction from the borings advanced in the in-situ liner soils. The median laboratory permeability was reported as 3.8×10^{-8} cm/sec. The average plasticity index, liquid limit, and fines content were listed as 23%, 42%, and 40%, respectively. S&L concluded that the soil liner as constructed overall either met or exceeded requirements for a 3-foot thick compacted clay liner of 1×10^{-7} cm/sec permeability in accordance with Texas Department of Water Resources technical guidelines for the design and construction of waste water ponds that were in place at the time of construction (S&L, December 1978).

Ash pond dikes were constructed using controlled and compacted cohesive fill excavated from borrow areas around the Plant site (S&L, December 1978). As noted previously, site soils generally consist of clayey sand and silty clay, with various amounts of caliche. The dikes were constructed with side slopes ranging from 2.5 and/or 3.0 horizontal to 1.0 vertical. This side slope was specified in accordance with the Bureau of Reclamation Design of Small Dams, 1974, for small homogenous dams constructed with cohesive fill on a stable foundation. Side slopes were reportedly seeded.

Dike fill was specified to be placed and compacted to a minimum of 95% of the maximum dry density as determined by ASTM D698. Four hundred and twenty field density tests conducted specifically on Ash Pond dike materials during construction reported densities ranging from a minimum of 92 percent up to 110 percent, with an average of 98 percent.

The exterior dikes for the Ash Ponds were constructed approximately 4 to 56 feet above the existing grade. The crest of the dike is reportedly 15 feet wide and includes a gravel perimeter access road. Typical cross-sections depicting the Ash Pond construction configuration are provided on Figure 2-5.

The Ash Ponds are separated by a dike that has side slopes of approximately 3.0 horizontal to 1.0 vertical and a height of approximately 40 feet above natural grade. This dike also has a crest that is approximately 15 feet wide and contains a gravel road (see Figure 2-5). A concrete

weir intersects the divider dike to allow the overflow of water from the Primary Ash Pond to the Secondary Ash Pond. The weir inlet is located in the Primary Ash Pond and consists of a 7-feet wide by 9.5-feet long concrete structure configured with stoplogs supported by a 12-feet wide by 14.5 feet long foundation. The inlet structure is accessed by a walkway extending from the shared Primary and Secondary Ash pond dike into the Primary Ash Pond. The concrete inlet structure is intersected by a 30-inch diameter corrugated metal pipe (CMP) with 7-feet by 7-feet steel seepage collars at 28 feet on center. The CMP has an inlet elevation of El. 106 and an outlet elevation of El. 105 (CDM, March 2011).

Bottom ash and boiler slag are sluiced along the south embankment into the Primary Ash Pond via one 12-inch-diameter high density polyethylene (HDPE) pipe and one 12-inch-diameter carbon steel pipe (CSP). The ash slurry is sluiced onto a screen processor to separate fine and coarse material. Demineralizer effluent is sluiced into the Primary Ash Pond along the southeast embankment through an 8-inch-diameter HDPE pipe.

A boiler area sump in the plant collects other liquid waste and sluices it through a 20-inch diameter Class 200 polyvinyl chloride (PVC) pipe along the Primary Ash Pond west embankment adjacent to the groin with the evaporation pond. A valve in the pipeline also allows the boiler area sump water to be discharged directly into the evaporation pond. Flow to the Primary Ash Pond from the boiler area sump is regulated depending on water levels and weather conditions. The pipeline can also be used as a clean water decanting pipe.

A seep collection system was constructed in approximately 1982 along the southeastern boundary of the Secondary Ash Pond dike. This system included four drain lines consisting of 8inch diameter corrugated polyethylene pipes with 1/8-inch diameter holes located at approximately 6-inch intervals circumferentially and longitudinally. The pipes were wrapped with filter cloth to prevent infiltration of fine soils then installed with special equipment that cut a shallow trench and embedded the pipe in one continuous operation. Collected water flows to a sump and is pumped back into the Primary Ash Pond (URM, 1982).

In 2012, Coleto Creek Power, LLC contracted AECOM Technical Services, Inc. (AECOM) to prepare a hydraulic and geotechnical stability analysis of the Ash Pond (AECOM, March 2012). Under that study, AECOM conducted field and laboratory testing to evaluate the current geotechnical stability of the Ash Pond dike system. According to the report, AECOM found that

"the ash pond has adequate factor of safety under the steady-state, normal operating, maximum operating, rapid drawdown, and seismic conditions modeled."

2.7 Ash Pond Drawings

Figures 2-4 and 2-5A, -B, and -C provide dimensional drawings of the Ash Ponds as required in §257.73(c)(1)(vii).

2.8 Ash Pond Instrumentation

Ash Pond water levels are observed on a daily basis during site inspections using the pond staff gauge located on the inlet structure. The staff gauge has a maximum reading of +140 feet which approximately corresponds to the top of the dike embankment. Based on an on-site topographic survey conducted by Naismith Marine Services of Corpus Christi, Texas (Naismith) in July 2016, the elevation 140 reading on the staff gauge corresponds to approximate elevation 140.4 feet NAVD88. Furthermore, the plant datum (referred to as MSL) was surveyed and determined by Naismith to be equal to NAVD88. Water levels are normally maintained at an elevation of El. 136 feet (NAVD88) or lower. There is no other instrumentation used to monitor the Ash Ponds.

2.9 Ash Pond Area-Capacity Curves

Figure 2-6 provides the area-capacity curves for the Primary Ash Pond. Area capacity curves for the Secondary Ash Pond are not included because minimal solids accumulation is expected to occur relative to the Primary Ash Pond.

2.10 Ash Pond Spillway and Diversion Design Features

The Ash Ponds were not constructed with a conventional spillway. Original pond design documents indicate two, 20-inch-diameter CSPs on the east Secondary Ash Pond dike that would discharge water at an outfall into the "hot" side of Coleto Creek Reservoir. The discharge pipes have 6-feet by 6-feet steel seepage collars constructed at 25 feet on center. These pipes were subsequently replaced with two, 20-inch-diameter Class 200 PVC pipes. Prior to the power plant going online, however, the recirculating pump station was constructed and the two 20-inch pipes were connected to a 10-inch diameter discharge pipe and the recirculating pump station (CDM,

March 2011). Water from the Ash Ponds is primarily lost through evaporation. Excess water that needs to be removed to maintain proper freeboard distances can either be discharged through Outfall 003 in accordance with the plant's Texas Pollutant Discharge Elimination System Permit No. WQ0002159000 or recirculated back to the plant for re-use.

Pond water levels are maintained to accommodate safe plant operations and are primarily dependent on plant water and ash loading rates as no storm water runoff from the surrounding area (other than run-off from the dike crest) enters the ponds. Water levels are monitored daily and the amount discharged to the outfall or recirculated to the plant can be adjusted to accommodate for expected rain events or draught conditions. The ponds are currently operated with approximately four feet of freeboard to allow removal of bottom ash and fly ash for off-site beneficial reuse.

2.11 Ash Pond Surveillance, Maintenance, and Repair Provisions

Formal and informal inspections of the ponds are conducted by qualified facility personnel for the purpose of ensuring proper and safe operation in accordance with the provisions defined in §257.83(a). Weekly inspections include observation of the static pond water level, vegetation control, and structural integrity evaluations of dike embankments and any noted issues are addressed as necessary. In addition to the weekly observational inspections performed by site personnel, formal inspections of the pond conditions are conducted by outside engineers annually in accordance with §257.83(b).

2.12 Ash Pond Structural Stability History

There is no record or knowledge of structural instability of either the Primary or Secondary Ash Ponds. The pond dikes have been maintained to minimize the potential for structural failure.

3.0 INITIAL POTENTIAL HAZARD CLASS ASSESSMENT

According to 40 *CFR* §257.73(a)(2), the owner and operator of a CCR surface impoundment must assign a hazard potential classification to each operating unit. For the purposes of the rule, hazard potential classification means "the possible adverse incremental consequences that result from the release of water or stored contents due to failure of the diked CCR surface impoundment or mis-operation of the diked CCR surface impoundment or its appurtenances." The impoundment must be classified as high hazard, significant hazard, or low hazard. Each hazard potential classification is defined as follows (§257.53):

(1) *High hazard potential CCR surface impoundment* means a diked surface impoundment where failure or mis-operation will probably cause loss of human life.

(2) Low hazard potential CCR surface impoundment means a diked surface impoundment where failure or mis-operation results in no probable loss of human life and low economic and/or environmental losses. Losses are principally limited to the surface impoundment owner's property.

(3) *Significant hazard potential CCR surface impoundment* means a diked surface impoundment where failure or mis-operation results in no probable loss of human life, but can cause economic loss, environmental damage, disruption of lifeline facilities, or impact other concerns.

In 2010 the United States Environmental Protection Agency (USEPA) contracted CDM to perform site assessments of selected CCR surface impoundments which included the Primary and Secondary Ash Ponds at the Coleto Creek Power Plant. As part of the assessment, CDM assigned each of the ponds with a Low Hazard classification (CDM, 2011).

Subsequent to the CDM report findings, Coleto Creek Power contracted AECOM Technical Services, Inc. (AECOM) to perform geotechnical studies to further evaluate the structural stability of the CCR surface impoundments. AECOM implemented a subsurface investigation and performed a geotechnical stability evaluation, a liquefaction assessment, and hydraulic analysis. AECOM also performed an independent hazard assessment of the Ash Ponds. The results of that assessment supported the initial CDM classification of Low Hazard.

3.1 Dam Breach Analysis

Bullock, Bennett & Associates (BBA) performed a simplified dam breach analysis of the Ash Ponds to support the loss of life, and environmental and economic impact analyses. The Primary and Secondary Ash Ponds combined, as indicated by the most recent survey conducted in July 2016, have a maximum storage capacity of approximately 4,000 acre-ft and a maximum levee height for the Secondary Pond of approximately 39 feet above adjacent lake level of 101 feet MSL. Construction was complete in 1978 and the effective fluid storage capacity in the Primary Ash Pond has significantly diminished with the placement of CCR over time. According to topography and bathymetric survey data collected in July 2016, the fluid capacity in the Ash Ponds has been reduced to approximately 1,720 acre-ft at the maximum dike crest height.

The Ash Ponds are located next to the Coleto Creek Reservoir which was constructed to serve as a cooling pond for the power plant. The reservoir is divided into a "hot" side and a "cool" side. The ponds are located immediately adjacent to the hot side of the lake. The hot side of the lake is created from Sulphur Creek behind Dike No. 1 (Dike No. 1 Lake) which is connected to Turkey Creek behind Dike No. 2 (Dike No. 2 Lake) by a secondary flume. Water from these lakes then flows into Main Lake which is the cool side. Decant water from the Secondary Pond can be combined with other plant water then routed through TCEQ-approved Outfall 003 to the hot side of the lake. Cool water is pumped into the power plant from the Main Lake.

GBRA provided area-capacity tables for the Coleto Creek Reservoir and Dike Lake Nos. 1 and 2. These tables are presented as Attachments 3-1, 3-2, and 3-3 in Appendix E. Dike No. 1 Lake consists of approximately 164 acres at the normal operating elevation of 101 feet MSL. Dike No. 2 Lake is approximately 429 acres at the normal operating elevation of 101 feet MSL. The two Dike Lakes are separated from Coleto Creek Reservoir by splitter dikes with an approximate elevation of 102 feet MSL (GBRA, 2016). Coleto Creek Reservoir covers an area of approximately 2,652 acres at a normal operating elevation of 98 feet MSL (GBRA, 2016). Coleto Creek Power, LP reportedly controls the lake up to an elevation of 104 feet MSL. An area map showing the relative locations of the Ash Ponds, Dike Lakes, and Coleto Creek Reservoir is presented in the attachments as Figure 1-1.

10

For the purposes of this evaluation, a conservatively worst-case dam breach scenario was developed assuming that the breach was due to overtopping of the surface impoundment levees and that the breach occurs in the shared Primary and Secondary dike and subsequently in the Secondary Pond dike adjacent to Coleto Creek Reservoir, releasing the entire water contents of the Ash Ponds. This scenario allows for the greatest quantity of pond decant water to be released.

An evaluation of potential water and residual solids flow paths was performed to support the loss of life, environmental, and economic evaluations. Surface elevation cross-sections assembled from Google EarthTM profiles of the areas adjacent to the pond dikes were reviewed to estimate the potential flow path of the released water and solids. As shown in Figure 1-1A, the wet side of the ponds are bound by the evaporation pond followed by Dike No. 1 lake on the north-northwest, Dike No. 1 lake on the northeast corner, and the primary plant discharge flume on the east. The surface elevation of the terrain that bounds the east side of the discharge flume appears to extend to approximately elevation 132 feet. The flume channel, therefore, appears to be located within a larger basin bounded to the west by the Ash Pond dikes (approximate elevation 140 feet) and to the east by land mass (approximate elevation 132 feet). The distance between the dike on the west side of the basin and land mass high points on the east side appears to be approximately 300 feet. The flume channel and basin would route flow from an east-side breach of the dike to the hot side of the lake. Released water and solids, therefore, would initially flow to the hot side of the lake regardless of the location of the breach. From there, water levels would increase one foot (the amount of available freeboard behind Dike No. 1 and Dike No. 2 lakes) then flow into the Main lake. Eventually all water would be released into the Main lake.

Using the tables provided by GBRA, a one-foot increase in the Main lake elevation requires an additional approximately 2,720 acre-feet of water. The estimated maximum volume of discharge from the Ash Ponds is approximately 1,720 acre-feet of water, resulting in a water surface elevation change on the reservoir of approximately eight inches. An eight-inch change in water surface elevation is considered to be nominal and would not result in the loss of major infrastructure elements or disrupt lifeline facilities.

3.2 Loss of Life Evaluation

The Ash Ponds are located apart from the active industrial areas of the power plant. Two fly-ash silos are located adjacent to the western border of the surface impoundment and loading of trucks for off-site transport and beneficial reuse of the fly ash regularly occurs at this location. These silos and truck loading operations are adjacent to the southwest half of the Primary Ash pond which is filled with dry and compact CCRs, and any catastrophic failure of the impoundment in this area is highly unlikely. If a failure were to occur, it would probably be located on the "wet" side of the pond, including the northern or eastern dikes for both the Primary and Secondary Ash Ponds (see Figure 1-1). There are no regular or active plant operations that occur downstream of those areas where personnel would be expected to be present in the event of a catastrophic failure of the dike. There are no residences or other off-site manned operations immediately downstream of the ponds. As noted in Section 3.1 the Dike 1, Dike 2, and Main Lakes would absorb the released water and raise reservoir levels a nominal amount (less than a foot). Loss of life in the event of a catastrophic failure of the surface impoundment dike system, therefore, is considered to be improbable.

3.3 Economic and/or Environmental Loss Evaluation

Additional consideration was given to the impacts of the water quality from a large volume discharge from the Ash Ponds into the Coleto Creek Reservoir. Using the volume ratio of Ash Pond water (approximately 1,720 acre-feet) that could potentially be discharged into the Coleto Creek Reservoir to the existing volume of water in the reservoir (approx. 31,280 acre-feet at elevation 98 feet msl), the impacts to the water quality are minimal (31,280 acre-feet/1,720 acre-feet = ~18 dilution factor of analytes in the Ash Pond water). Ash Pond water is currently discharged to the Coleto Creek Reservoir under Permit No. WQ002159000 (TCEQ, 2010).

Currently, the coal combustion by-products are sluiced into the Primary Ash Pond. The assumed ratio of solids-to-water is approximated at a 20%-to-80%. The solids settle out of solution and the water decants to the surface. As the solids settle out of solution, they consolidate. Additionally, based on field observations the ash "sets up" similar to cement, becoming very hard and massive. The expected flow of any unconsolidated solids from the Ash Pond is believed to be minimal.

Additionally, approximately 90% of the approximate 90,000 cubic yards of ash produced annually is currently being sold and recycled rather than disposed in the Ash Pond (Coleto Creek Power, 2015). However, for the sake of conservatism, it is assumed that a volume of ash equivalent to six months of production (assuming no recycling) is disposed in the Primary Ash

12

Pond and may not be consolidated, and may flow should a breach occur. Under these assumptions, there is potential for approximately 45,000 cubic yards (approximately 28 acre-feet) of ash flow. The ash volume would be in solution with the decant water, displacing an equal volume of the decant water. This ash would be expected to be contained within the hot side of the lake. Impacts would therefore be primarily limited to the owner's property.

3.4 Hazard Potential Classification

Based on a review of previous studies, analytical data, ash production/recycling volumes, available impoundment capacities, available lake capacities, observed current conditions at the site, assumptions, and other factors, the Coleto Creek Ash Pond is classified as a Low Hazard Potential impoundment.

4.0 INITIAL STRUCTURAL STABILITY ASSESSMENT

According to §257.73(d), the owner or operator of the CCR surface impoundment "must conduct initial and periodic structural stability assessments and document whether the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices for the maximum volume of CCR and CCR wastewater which can be impounded therein."

This initial structural stability assessment addresses each of the seven structural elements that are specifically identified in the rule as follows:

Stable foundations and abutments. As noted in Section 2.5, the Ash Ponds were constructed on a foundation of in-place cohesive soils whose geotechnical characteristics either met or exceeded Texas Department of Water Resources technical guidelines for the design and construction of waste water ponds that were in force at the time of construction (S&L, December 1978). The dikes are continuous, with no constructed abutments. A review of the geotechnical data collected at the time of construction confirms that the foundation for the ponds should continue to be stable over their operational life.

Adequate slope protection to protect against surface erosion, wave action, and adverse effects of sudden drawdown. The dikes were constructed with 2.5 to 3 horizontal to 1 vertical side slope. Outer slopes were seeded for slope protection but interior dike surfaces were not. Vegetation does naturally occur on these surfaces thus assisting in the control of erosion. The interior dike sections in areas impounding water are armored with rock riprap. The dikes are regularly inspected in accordance with §257.83(a) and (b) and repaired as necessary to maintain their integrity. An engineering site inspection was performed in September 2015 in accordance with the requirements defined in §257.83(b) which included an evaluation of the surface impoundment dikes. No additional slope protection was deemed to be necessary at that time. (BBA, 2015).

Dikes mechanically compacted to a density sufficient to withstand the range of loading conditions in the CCR unit. The dike system was engineered by S&L and constructed in approximately 1978. As discussed in Section 2.6 – Ash Pond Construction Summary, dike fill material was placed in controlled, mechanically compacted lifts, averaging approximately 98%

maximum dry density as determined by ASTM D698. Full time field inspection was performed during construction, with approximately 420 field density tests performed on the dikes.

Vegetated slopes of dikes and surrounding areas not to exceed a height of six inches above the slope of the dike, except for slopes which have an alternate form or forms of slope protection. The slopes of the dikes and surrounding areas are vegetated as required. The slopes are reportedly mowed as necessary to comply with height of grass requirements.

A single spillway or a combination of spillways configured as specified in paragraph (d)(1)(v)(A) of the section of the rule. As is common with surface impoundments of this type, the ponds were not constructed with a spillway. The results of the hydraulic analysis completed in support of the Inflow Design Flood Control System evaluation (BBA, September 2016) showed that the Primary and Secondary Ash Ponds, as configured without a spillway and when operated at a maximum storage operating elevation of 136.1 feet NAVD88, have sufficient capacity to manage the design flood. The design flood is designated by rule for a Low Hazard Potential surface impoundment (see Section 3.0) to equal the 100-year rainfall event. It is therefore not necessary for the surface impoundment to have a spillway.

Hydraulic structures underlying the base of the CCR unit or passing through the dike of the CCR unit that maintain structural integrity and are free of significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, and debris which may negatively affect the operation of the hydraulic structure. The weir system and pipe penetrations were visually inspected by a professional engineer in September of 2015 (BBA, 2015). There were no observations of conditions that would negatively impact operation of the structures. The inspection was limited to visual observations during a site visit, and did not include, for instance, use of a remote video camera in the weir outlet pipe for inspection of internal conditions.

For CCR units with downstream slopes which can be inundated by the pool of an adjacent water body, such as a river, stream or lake, downstream slopes that maintain structural stability during low pool of the adjacent water body or sudden drawdown of the adjacent water body. The Coleto Creek Reservoir is adjacent to the Secondary Pond, and a small portion of the pond exterior slope can be inundated by the reservoir. Therefore, the Secondary Pond exterior slope was evaluated for stability in the event of inundation followed by a rapid drawdown of the reservoir, as further discussed in Section 5.0 Initial Safety Factor Assessments.

No structural stability deficiencies associated with the Primary and Secondary Ponds were identified in this initial Structural Stability Assessment that would require corrective measures. A certification from a qualified professional engineer stating that this initial assessment was conducted in accordance with the requirements of the rule is included in Appendix C.

5.0 INITIAL SAFETY FACTOR ASSESSMENTS

§257.63(e) requires that owners of existing and newly constructed CCR surface impoundments conduct initial and periodic safety factor assessments. The purpose of the safety factor assessment is to document that the as-constructed CCR surface impoundment configuration either meets or exceeds regulatory safety factor criteria under static end-of-construction loading conditions, long-term, maximum storage pool loading conditions, and maximum surcharge pool loading conditions. In addition, the liquefaction and seismic factor of safety must be estimated.

The rule requires that the safety factor evaluation be performed across the critical cross section of the impoundment dikes. For the purposes of this initial assessment, previous data collected as part of historical site assessments as noted in Section 4.0 were evaluated to determine whether it represented the critical cross section of the pond dikes that would be most susceptible to failure. The three critical cross sections for the primary pond dike, the secondary pond dike, and the divider dike between the two pond sections as shown in Figure 2-3 are in the areas of the pond that still contain water, are generally representative of the tallest sections of dikes and contain representative side slopes, and are where the highest potential impacts would be expected were a dike breach to occur.

Geotechnical sampling and analysis of as-constructed dike materials has been conducted during three different events. The first was performed by S&L during and after construction of the pond in 1978. Subsequent studies were performed in 1981 by Underground Resource Management, Inc. (URM) (URM, July 29, 1981) and in 2012 by AECOM Technical Services, Inc. (AECOM, March 2012).

BBA reviewed the previous site geotechnical investigation data gathered by S&L, URM and AECOM used in previously conducted stability analyses of the dikes and the data appears sufficient to provide a reliable estimation of current conditions, therefore no further geotechnical testing was required for the current analysis. Coleto Creek Power provided all previous investigation data to BBA for use in evaluation and preparation of an updated structural stability analysis. The most recent stability analysis, conducted by AECOM in 2012, summarizes previous evaluations by others. A brief summary of previous geotechnical investigations is provided below.

17

S&L completed approximately 80 soil borings to document the subsurface soils in and around the Ash Ponds. All of the borings were reportedly completed prior to construction of the Ash Ponds, in support of Ash Ponds design. Following commissioning of Unit 1 and filling of the Ash Ponds to normal operating levels, seepage was observed west and adjacent to the Recirculating Pump House. URM was contracted to investigate the seeps and their potential impact to dike stability. URM completed a geotechnical investigation of the pond dikes near the seep location, and assessment of both the dike embankment stability and groundwater quality indicated no detrimental effects due to the seep at that time and that, based on site geotechnical investigation, laboratory data analysis, and slope stability modeling of the dike, short and long-term stability of the embankments in the study area were considered satisfactory (URM, July 29, 1981).

AECOM, upon reviewing previous geotechnical investigations from S&L and URM, completed a supplemental geotechnical investigation program to evaluate stability of the dike system in 2012. While their review of previous data found the data to be acceptable for use in evaluation of dike stability of the ponds, they also identified critical areas of interest within the dike system for further evaluation, and implemented a geotechnical investigation of these critical areas (cross sections A, B and C, as shown in Figure 2-5A of the attachments). BBA agrees that these locations are the critical areas to evaluate for stability, given, cross section A is near a location of observed seepage at the outside toe of the Primary Pond dike, cross section B is located along the splitter dike that separates the Primary Pond and Secondary Pond, and cross section C is located along the small portion of the Secondary Pond that can be inundated by the Coleto Creek Reservoir. It should be noted that a seepage collection system is currently in design to address the seepage condition near the cross section A location. However, evaluation of stability at section A was completed based on current conditions.

AECOM field data gathering included construction of 8 geotechnical borings extending from depths ranging from 29.5 to 121.5 feet below ground surface (bgs). Five borings were completed from the top of the dikes and three borings were located along the exterior toe of dike. Laboratory testing included water content, dry unit weight, calibrated penetrometer, grain-size distribution, triaxial shear testing and direct shear testing. AECOM contracted with Subsurface Exploration Services, LLC of Green Bay, Wisconsin to complete the field work, and AECOM field staff observed the exploration work, assisted with collection of soil samples, and completed field boring logs. Laboratory testing was conducted by AECOM geotechnical laboratory technicians. AECOM geotechnical laboratories are reportedly certified by multiple state and federal agencies to complete geotechnical testing in accordance with American Society for Testing and Materials (ASTM), United States Army Corp of Engineers, (USACE), and State Department of Transportation approved methods and standards (AECOM, 2012).

BBA reviewed the data available from the S&L, URM, and the supplemental data gathered by AECOM including geotechnical data, cross sections, and methodology used by AECOM for modeling slope stability. The data and methods are suitable for evaluation of slope stability of the critical cross section locations. The geotechnical investigation data from the AECOM study, including soil bore logs and geotechnical laboratory data is included in Appendices A and B, respectively, of this report.

BBA contracted Naismith to complete an existing conditions topographic survey of these critical cross section areas, as well as topography of the entire perimeter dike system and bathymetry of the pond interiors. Using the 2016 existing conditions survey data, and geotechnical data obtained from the previous studies (including similar lithology as indicated in the AECOM study for the critical cross sections), BBA graphically reconstructed the cross section locations A, B, and C for completion of further analysis. Upon review of all data and methodologies used by AECOM in analysis of the critical cross section locations of the dike systems, BBA completed a similar analysis. BBA compared the 2016 as-built topographic survey cross sections at cross section locations A, B and C, to the design sections. Based on this review it appeared the as-built sections generally were slightly overbuilt when compared to the design sections, and contained slightly gentler slopes. Based on comparison of design versus as-built sections in regards to analysis for slope stability, therefore only the design sections were evaluated.

Based on review of the AECOM bore logs and geotechnical laboratory test data, BBA generally agrees with the lithology and soil engineering strength properties used in the AECOM stability analysis. However, BBA's evaluation of field data and laboratory indices testing completed did result in minor changes in assumed soil properties – the reduction of the effective shear strength of caliche from 36 degrees to 34 degrees for cross sections B and C, the increase in unit weight from 120 pounds per cubic foot (pcf) to 130 pcf, and the increase of shear strength

19

from 32 degrees to 36 degrees for the medium dense to dense sands and silts in cross section C. BBA evaluated stability with both sets of data and observed that these changes do not alter the overall safety factor for these sections, however, the revised data set appear more appropriate based on review of field and indices test data and are therefore reported. Review of the data indicates that generally the AECOM engineering strength properties used in their analysis was conservative and representative of the field and laboratory data gathered.

Similar to the AECOM stability evaluation, BBA evaluated the dikes using two sets of time-dependent strength parameters, effective stress and total stress. Effective stress analysis was used to model drained, long-term, steady-state loading conditions where excess pore pressures have had time to dissipate. This would be the normal steady state operating conditions (maximum storage pool) of the pond. Total stress analysis was used to model undrained, short-term loading conditions such as maximum surcharge pool, rapid drawdown, and seismic events, where excess pore water pressure could develop in fine grained silts clays and not have had time to dissipate. The rapid drawdown case is representative of the conditions that would occur immediately after a significant flood event.

The seismic conditions analyze the effect an earthquake would have on the stability of the dike. BBA selected a maximum probable earthquake for Coleto Creek based on the 2014 United States Geological Survey National Seismic Hazard Maps found at (<u>http://earthquake.usgs.gov/hazards/products/conterminous/2014/2014pga2pct.pdf</u>). The maximum probable earthquake has a peak ground acceleration of 0.03 g with a 2 percent Probability of Exceedance in 50 years.

Table 5-1 summarizes the effective and total stress soil strength parameters used for each soil layer in the analysis:

TABLE 5-1 Soil Strength Parameters used in Geotechnical Stability Analysis (color shading as shown in cross sections)

Cross Section A-A'

Soil Description	Unit Weight	Effective Stress Strength Parameters		Total Stress Strength Parameters	
	(pcf)	c' (psf)	Ø'	c (psf)	Ø
Clayey Sand Fill Material (SC)	130	150	29	3,000	0
Natural Silty Clay or Clayey Sand (CL, SC, CL-Caliche)	130	150	27	4,000	0
Natural Sands (SM, SP, SC)	130	0	36	0	36

Cross Section B-B'

Soil Description	Unit Weight (pcf)	Effective Stress Strength Parameters		Total Stress Strength Parameters	
	(per)	c' (psf)	Ø'	c (psf)	Ø
Clayey Sand Fill Material (SC)	130	150	29	3,000	0
Caliche (SC)	135	250	34	250	0
Medium Dense to Dense Sands (SP)	132	0	36	0	36
Dense to Extremely Dense Sands (SP, SC, SM, SP-SM)	133	0	38	0	38
Very Stiff to Hard Silty Clay (CL, CL-ML, CH)	128	0	29	3,250	0

Cross Section C-C'

Soil Description	Unit Weight	Effective Stress Strength Parameters		Total Stress Strength Parameters	
	(pcf)	c' (psf)	Ø'	c (psf)	Ø
Clayey Sand Fill Material (SC)	130	150	29	3,000	0
Caliche (SC)	135	250	34	250	0
Medium Dense to Dense Sands and Silts (SP, ML, CL)	130	0	36	0	36
Dense to Extremely Dense Sands (SM, SC, SP-SM, SP)	130	0	34	0	34
Very Stiff to Hard Silty Clay (CL, CL-ML, CH)	128	0	29	3250	0

Based on field observations, the ash located within the ponds tends to set up, much like cement, into a hard, blocky mass of material. However, as was assumed in the AECOM evaluation, for conservative modeling purposes the interior material was considered to be water, with no structural strength that would add a stabilizing force.

Four model conditions were evaluated at each cross section location, as deemed applicable, including: maximum storage pool (the highest normal operating level) and maximum surcharge pool (level reached during inundation from design storm) conditions, rapid drawdown, and the seismic condition. The normal operating water level, based on the Hydrologic and Hydraulic Capacity Requirements evaluation completed by BBA (BBA, 2016) is 136.1 (NAVD88). The water level projected in event of a design storm (the 100 year, 24-hour storm) is 138.0 (NAVD88). The lowest top of dike elevation observed in the 2016 survey was 139.7 (NAVD88).

Cross section A, located in the observed seep location near the southeast corner of the Primary Pond, was assumed to have a water table elevation at the ground surface along the exterior toe of slope, as observed in the field and as documented in the AECOM stability analysis as well as the BBA inspection report of 2015. Cross section B, located along the separator dike between the Primary and Secondary ponds, was modeled with the maximum storage and maximum surcharge pool elevations. And cross section C, located along the east side of the Secondary Pond where the reservoir inundates the exterior toe, was modeled with the maximum storage and maximum surcharge WSELs in the pond, and included elevation 101.0 (NAVD88) for the reservoir (normal operating level). Cross sections B & C were also evaluated for the rapid draw down (RDD) condition. It is conservatively assumed the phreatic surface at cross section A exits the exterior dike surface at approximately 1/3 the height of the dike (although the only field observations of wet soil occurred at the toe of slope, where the seep locations are located). The phreatic surface for cross section C is assumed to traverse from the interior pond WSEL to the exterior toe reservoir elevation.

Dikes should be designed with appropriate safety factors. Required safety factors per $\frac{257.73(e)(1)(i)}{1000}$ through $\frac{(e)(1)(iv)}{1000}$ for critical embankment sections are as follows:

Condition	Required Factor of Safety
End-of-Construction Loading Static Factor of Safety	1.3
Long-Term, Maximum Storage Pool Loading Static Factor of Safety	1.5
Maximum Surcharge Pool Loading Static Factor of Safety	1.4
Seismic Factor of Safety	1.0
Liquefaction Factor of Safety	1.2

Table 5-2Required Factors of Safety

BBA used the 2D limit equilibrium computer program SLIDE 7.0 by Rocscience to complete the slope stability analysis for the critical cross sections. A combination of the Simplified Bishop and the Morgenstern-Price method of slices, for both circular and block-type failures, was used to analyze the stability of the slopes. Thirty stability cases were evaluated for the critical cross sections as summarized in Table 5-3, and the lowest factor of safety generated for each case is reported:

Cross	Conditions	Effective Stress Analysis Safety Factor		Total Stress Analysis Safety Factor	
Section		Block	Circular	Block	Circular
A-A'	Max Storage Pool/Static	1.8 (1)	1.9 (2)	4.9 (3)	5.5 (4)
A-A'	Max Surcharge Pool/Static	1.7 (5)	1.8 (6)	4.9 (7)	5.5 (8)
A-A'	Max Storage Pool /Seismic	NA	NA	4.3 (9)	4.8 (10)
B-B'	Max Storage Pool /Static	2.8 (11)	2.8 (12)	3.7 (13)	5.1 (14)
B-B'	Max Surcharge Pool, Rapid Drawdown	NA	NA	2.0 (15)	2.1 (16)
B-B'	Max Storage Pool/Seismic	NA	NA	3.0 (17)	4.1 (18)
C-C'	Max Storage Pool/Static	1.5 (19)	1.6 (20)	2.1 (21)	2.1 (22)
C-C'	Max Surcharge Pool/Static	1.5 (23)	1.5 (24)	2.0 (25)	2.1 (26)
C-C'	Max Surcharge Pool, Rapid Drawdown	NA	NA	1.9 (27)	1.8 (28)
C-C'	Max Storage Pool/Seismic	NA	NA	1.9 (29)	1.9 (30)

 Table 5-3

 Slope Stability Analysis Summary

Note: (#) = Case Number (referenced on model output data in Appendix C).

Cross sections, bore logs, laboratory data, and SLIDE 7.0 stability model output data are included in Figure 2-5A and Appendices A, B, & C, respectively of this report.

As shown in Table 5-3, thirty stability cases were modeled and all cases meet or exceed required factors of safety.

5.1 Liquefaction Assessment

BBA utilized the liquefaction assessment process outlined in the U.S. EPA guidance document titled RCRA Subtitle D (258) Seismic Design Guidance for Municipal Solid Waste Landfill Facilities, EPA/600/R-95/051, April 1995, published by the Office of Research and Development and other relevant source documents to perform this liquefaction factor of safety evaluation. As identified in those documents, the liquefaction assessment process begins by screening the subject site for its liquefaction potential using the following criteria.

- Geologic age and origin. If a soil layer is a fluvial, lacustrine or aeolian deposit of Holocene age, a greater potential for liquefaction exists than for till, residual deposits, or older deposits.
- Fines content and plasticity index. Liquefaction potential in a soil layer increases with decreasing fines content and plasticity of the soil. Cohesionless soils having less than 15 percent (by weight) of particles smaller than 0.005 mm, a liquid limit less than 35 percent, and an in situ water content greater than 0.9 times the liquid limit may be susceptible to liquefaction.
- Saturation. Although low water content soils have been reported to liquefy, at least 80 to 85 percent saturation is generally deemed to be a necessary condition for soil liquefaction.
- Depth below ground surface. If a soil layer is within 50 feet of the ground surface, it is more likely to liquefy than deeper layers.
- Soil Penetration Resistance. Soil layers with a normalized SPT blowcount $[(N_1)_{60}]$ less than 22 have been known to liquefy. Other sources suggest an SPT value of $[(N_1)_{60}]$ less than 30 as the threshold to use for suspecting liquefaction potential.

If three or more of the above criteria indicate that liquefaction is not likely, the potential for liquefaction is considered to be negligible. Otherwise, further evaluation of the liquefaction potential at a facility is required. The soils at the Coleto Creek Power facility generally meet at least three of the specified screening criteria and their liquefaction potential is unlikely. However, there are exceptions such as certain layers that are described in the soil borings logs as SP, or sandy soils, which would by definition have a low fines content. In addition, some liquid limits are below 35 percent. Therefore, further evaluation of the soil data has been completed, and factors of safety against liquefaction calculated for each critical layer, as further described below.

A review of existing data regarding site conditions, soil stratigraphy, soil properties, and potential critical layers as well as the methods used to develop that data indicate that the findings presented in the AECOM report (AECOM, 2012) are sufficient for use in this assessment. As noted in previous sections of this report, AECOM drilled eight borings through critical areas of the site to depths ranging from approximately 30 to 120 feet bgs. Standard penetrometer (SPT) blows per foot, plastic limit, water content, and liquid limit data were collected at two to five foot intervals. In addition, samples were collected and sent to an off-site laboratory for analyses of

general geotechnical properties. Copies of the boring logs and laboratory data used in this assessment are provided in Appendices A and B.

When available, site specific information such as SPT blow count and percent fines content (soils passing the #200 sieve) was used in the evaluation of liquefaction potential. For strata with no site specific data, conservative estimates were used based on industry accepted references and engineering judgement. For example, earthquake potential maps and tables presented in the USEPA guidance document were used to estimate the worst-case earthquake magnitude and associated maximum ground acceleration. USGS references for low to mid-ranges of fines content for the reported soil types were used when no laboratory data existed.

A complete discussion of the methodology used and the calculation spreadsheets for each strata identified in the eight boring logs are presented in Appendix D. The findings of the liquefaction assessment indicate that the factor of safety is well above the 1.2 required. This finding is expected given the generally high fines content of most soil strata, the low water content, and low ground acceleration that would be observed in the unlikely event that an earthquake was to occur in this area.

6.0 SUMMARY

In accordance with §257.73, Structural Integrity Criteria for Existing CCR Surface Impoundments, the critical cross sections of the Primary and Secondary Ponds at the Coleto Creek facility have been evaluated for slope stability under appropriate loading conditions, including steady-state seepage, maximum surcharge pool, rapid drawdown, and seismic. In addition, a liquefaction assessment has been completed. Based on review of historic studies, geotechnical data that has been previously gathered, and on stability analysis evaluation, the Primary and Secondary Ponds have an adequate factor of safety for all evaluated loading conditions.

7.0 **REFERENCES**

- AECOM. (March 2012). Geotechnical Stability and Hydraulic Analysis of the Coleto Creek Energy Facility Primary and Secondary Ash Ponds. Green Bay, Wisconsin: AECOM Technical Services, Inc.
- BBA. (2015, November 24). Letter to Mr. Robert Stevens from Mr. Dan Bullock. Coleto-Creek Power - September 2015 Primary and Secondary Ash Ponds Dike Inspection. Bullock, Bennett & Associates, LLC.
- BBA. (September 2016). *Initial Inflow Design Flood Control System Report*. Bullock, Bennett & Associates.
- CDM. (March 2011). Assessment of Dam Safety of Coal Combustion Surface Impoundments Coleto LP, LLC Coleto Creek Power, LP.
- GBRA. (2013). Coleto Creek Watershed River Secments, Descriptions and Concerns. (G.-B. R. Authority, Ed.) Retrieved from Guadalupe-Blanco River Authority Web site: http://www.gbra.org/documents/publications/basinsummary/2013j.pdf
- S&L. (1981). Waste Disposal Plan. Central Southwest Services, Inc. Central Power & Light Company. Coleto Creek Power Station - Units 1 and 2. Sargent & Lundy Engineers.
- S&L. (December 1978). Design and Construction Summary for Coal Pile and Wastewater Pond Facilities, Coleto Creek Power Station Unit 1, Report SL-3689. Sargent & Lundy Engineers.
- TCEQ. (January 2007). *Hydrologic and Hydraulic Guidelines for Dams in Texas*. Dam Safety Program, Texas Commission on Environmental Quality.
- URM. (1982). Evaluation and Recommendations Regarding Subsurface Drainage System at Coleto Creek Power Station for Central Power & Light Company. Underground Resource Management, Inc.
- URM. (July 29, 1981). Investigation of Seepage from Primary and Secondary Settling Ponds at the Coleto Creek Power Station. Underground Resource Managment, Inc.

FIGURES

, ,

lot Date: 10/04/16 - 10:54am, Plotted by: Admin

it Date: 10/04/16 - 10:55am, Plotted by: Admin www.path. K.ACAD\clients\BBA\Coleb CK\ Drawing Name: W-LISGS Plot Date: 10/04/16 - 10:55am, Plotted by: Admin Drawing Path: K:\ACAD\clients\BBA\Coleto Ck\, Drawing Name: C-ST-PL106.dwg

it Date: 10/04/16 - 10:55am, Plotted by: Admin awing Path: K:ACAD/clients/BBA/Coleto CKi, Drawing Name: C-ST-PL1

W 15+00 W 10+00 W 5+00 0+00 E 5+00 E 10+00 E 15+00 E 20+00 E 25+00 E 30+00 E 35+00 SOURCE: MAP PROVIDED BY SARGENT AND LUNDY ENGINEERS, CHICAGO, IL. E 40+00 **Coleto Creek Power, LP** Figure 2-3 E 45+00 THICKNESS MAP OF IN-SITU COHESIVE SOILS PROJECT: 15214-3 BY: RR DATE: OCT. 2016 CHECKED: DBB Bullock, Bennett & Associates, LLC Engineering and Geoscience Texas Registrations: Engineering F-8542, Geoscience 50127

DATE: OCT 2016 CHECKED: DBB

Texas Registrations: Engineering F-8542, Geoscience 50127

Plot Date: 10/13/16 - 8:01am, Plotted by: Admin Drawing Date: K\ACAD\cliente\BBA\Calebo CM, Drawing Name: C

NOTES:

PRIMARY POND DECANT WATER VOLUME CAPACITY. APPROXIMATELY 1,520 AC-FT TO TOP OF DIKE.

SECONDARY POND DECANT WATER VOLUME CAPACITY. APPROXIMATELY 200 AC-FT TO TOP OF DIKE.

SOURCES:

ON-GROUND TOPOGRAPHIC AND BATHYMETRIC SURVEY PROVIDED BY NAISMITH MARINE SERVICES ON JULY 2016. HORIZONTAL DATUM: NAD83, TEXAS CENTRAL SOUTH ZONE, US FEET. VERTICAL DATUM: NAVD88.

AERIAL PHOTO PROVIDED BY IMAGEPATCH.COM EARTHSTAR GEOGRAPHICS, DATE: MAY-OCT 2011.

Coleto Creek Power, LP

Figure 2-5B

BATHYMETRIC SURVEY PLAN VIEW

PROJECT: 15214-8 BY: RR DATE: OCT 2016 CHECKED: DBB Bullock, Bennett & Associates, LLC

Engineering and Geoscience Texas Registrations: Engineering F-8542, Geoscience 50127

Plot Date: 10/13/16 - 7:58am, Plotted by: Admin Drawing Path: K:\ACAD\clients\BBA\Coleto CK\, Drawing Name: C-LG-DT102.DWG APPENDIX A: GEOTECHNICAL BORELOGS

AΞ	C	DA	Λ		PR-GDF	SUEZ North America	ARCHITECT/E		-R		
						eek Energy Facility Ash Pond	ARCHITECT/E				
				-					-O-UNCONFI TONS/FT.	NED COMPRESSI	VE STRENGTH
Golla		ou ا	nτ	y , I	Fannin, T	exas		-	1	2 3 4	5
(FT)			ЦСЕ						PLASTIC LIMIT %	WATER CONTENT %	LIQUID LIMIT %
4 (F1)	ö	ΥΡΕ	ISTA	≻		DESCRIPTION OF MATERIAL		T	×	•	— — — <u>A</u>
UEPTH (FT) ELEVATION (FT)	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	OVER				UNIT DRY WT. LBS. / Ft. ³	•	20 30 40 + + + TANDARD	0 50
\langle	SAM	SAM	SAM	REC		ELEVATION: +139.6	(Continued)	UNIT LBS.	🛛 🛛 РІ	ENETRATION BLO 20 30 40	0 50
52.0	26	SS			50.4	Grayish brown fine to coarse sand (SP), trace coarse gravel - wet - very dense	e fine to		,		\$ 50
54.0											
56.0	27	SS						113.5			
	21	33									\$ 50
58.0	1										
60.0	28	SS	\mathbf{H}								
62.0	<u> </u>			Ħ							
64.0	1				65.1						
66.0	29	SS				White and gray clayey fine to coarse sand (S wet - extremely dense	C-caliche) -		•		×**50/0
68.0											
70.0											
72.0	30	SS						117.3			
74.0	-										
76.0	31	SS	$\left \right $								s, ∕
			1		78.0						¥*50/0.
78.0	-				////10.0	Light brown fine to coarse sand (SP) with occ layers of white and gray silty fine to coarse sa					
80.0	32	SS		Т		(SM-Caliche) - moist to wet - extremely dense Drillers noted hard drilling and gravel while dr	9				[⊗] **50/0.
82.0					83.0	80.0 to 85.0 feet	-		, N		00/0
84.0						Gray and white silty fine to medium sand (SM caliche - wet - extremely dense	l) with				
86.0	33	SS	1								[⊗] **50/0.
88.0	1				88.0	Light gray silty clay (CL), some sand, trace ca	aliche -			Ý	
90.0	34	ss				moist to wet - hard		126.5			Å ⊖* & **50/0.
92.0											**50/0.
94.0											
96.0	35	SS						107.6			* * **50/0
98.0			+		97.0	Light gray clayey fine to coarse sand (SC) - n	noist -				^*50/0.
100.0]					extremely dense			/		
			1	ŀĺ	· / · / · /		1		+	 alibrated Pene	trometer
The str	ratifica	tion lir	nes	repre	esent the approx	kimate boundary lines between soil types: in situ, the transition	may be gradual.	AECO	OM JOB NO. 602255	SHEET NO	OF 3

				CLIENT IPR-GDF SUEZ North A	merica	LOG OF BO	RING NU	MBER B-1-1
AΞ	C	JV		PROJECT NAME		ARCHITECT	/ENGINE	ER
SITE LOO	<u></u>	יאר		Coleto Creek Energy Fa	cility Ash Pond			
			nty,	Fannin, Texas				$\begin{array}{c} - 0 \\$
DEPTH (FT) ELEVATION (FT)	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE RECOVERY	DESCRI	PTION OF MATERIAL		UNIT DRY WT. LBS. / Ft. ³	PLASTIC WATER LIQUID LIMIT % CONTENT % LIMIT % \times
	SAMP	SAMP	SAMP	SURFACE ELEVATION: +13	9.6	(Continued	JNIT I	STANDARD Ø PENETRATION BLOWS/FT. 10 20 30 40 50
102.0	-36	ŝŝ		Light gray clayey extremely dense	fine to coarse sand (SC) - r			↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
104.0				Brown silty clay (CH) with irrgular gray silty c	lay lenses -		
106.0	37	SS		moist - hard			92.5	$\left \begin{array}{c} \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \end{array} \right \left \left \begin{array}{c} \\ \\ \\ \\ \end{array} \right \left \left \begin{array}{c} \\ \\ \\ \\ \end{array} \right \left \left \begin{array}{c} \\ \\ \\ \\ \end{array} \right \left \left \begin{array}{c} \\ \\ \\ \\ \end{array} \right \left \left \begin{array}{c} \\ \\ \\ \\ \end{array} \right \left \left \left \begin{array}{c} \\ \\ \\ \\ \end{array} \right \left \left \left \left \begin{array}{c} \\ \\ \\ \end{array} \right \left \left \left \left \left \left \left \left \left \left \left \left \left $
108.0 110.0							102.6	
112.0	38	SS					102.0	Ŷ U*⊗ 1 51
114.0								
116.0	39	SS					94.8	♦ ⊗ + + + + + + + + + + + + + + + + + +
118.0								
120.0	40	ST		121.0			98.0	
				rock bit and drillir Boring advanced rock bit and drillir Boring abandone tremie method	from 6.0 feet to 50.0 feet w ng fluid from 50.0 feet to 100.0 feet	t with 3-inch using		
NL	The	stra	ifica		imate boundary lines betwe		: in situ,	, the transition may be gradual.
Dry VL				installation	11/5/11			Green Bay, Wisconsin 54311
10. NL	.0 to	12.0	feet \	VS	11/6/11 RIG/FOREMAN		NTERED B CA PP'D BY	
•				'	D-25/BZ	^	тм	AECOM JOB NO. 60225561

AE(~	74			SUEZ North America	LOG OF BOR		
			4	PROJECT NA	AME reek Energy Facility Ash Pond	ARCHITECT/I	ENGINEE	ER
SITE LOC								
Golia	nd C	Cou	nty	, Fannin, ⁻	Texas			$\begin{array}{c} \text{TONS/FT.}^2\\ 1\\ 2\\ 3\\ 4\\ 5\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$
BEPTH (FT) ELEVATION (FT)	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	SURFACE	DESCRIPTION OF MATERIAI	L	L UNIT DRY WT. LBS. / Ft. ³	PLASTIC WATER LIQUID LIMIT % CONTENT % LIMIT % X
					Fill: Gray and brown mottled clayey sa	nd (SC), trace fine	121.6	
2.0 4.0 6.0	1 2 3	SS SS SS			gravel, trace caliche nodules and layer saturated silty sand lenses - moist to w hard	s, occasional thin,	116.1	$ \begin{array}{c} $
8.0	4	SS						
10.0	5	SS		L XX			121.3	
12.0	6	ST					118.6	
14.0	7	SS SS					117.4	
16.0	8	55						21
18.0	9	3" ST					114.0	
20.0	10	ST					110.9	×-)•-+++++++++++++++++++++++++++++++++++
22.0	11	SS					114.5	1 4
24.0	12	SS		LXXX				
26.0	13	SS		L K			113.0	
28.0	14	3" ST						
30.0	15			L K K K K K K K K K K K K K K K K K K K				
32.0	16	SS		32.0	White and light may also used (22)	aliaba)t		
34.0	17	ST	╬		White and light gray clayey sand (SC- loose to medium dense	Saliche) - Wet -	118.4	₩A 0'0*
36.0	18	SS						
38.0	19	SS			Note: Saturated loose zone from 36.0	feet to 36.9 feet		
40.0	20	SS		Ľ///				
	21 21A	SS SS	\mathbf{H}	40.9	Grayish brown fine to coarse sand (SP) - wet - medium		
12.0	21A 22	SS	╈		dense to dense			
44.0	23	SS	╬		Note: Clayey sand (SC-Caliche) layers from 42.9 feet to 43.3 feet and 44.0 feet	et to 45.0 feet	136.7	27 ♦ ⊗25
46.0 48.0	24	SS	╢	I.				
48.0 50.0	25	SS	╢	L 50.0				
50.0			-*+			ontinued		* Calibrated Penetrometer
The stra	atifica	tion lin	es re	present the appre	oximate boundary lines between soil types: in situ, the	transition may be gradual.	AECO	DM JOB NO. 60225561 SHEET NO. 0F

	-	24		IF	R-GDF SUEZ North America			
AΞ	C	JN	1	PF	DJECT NAME	ARCHITECT/E	ENGINEE	ER
	CATIO			U	leto Creek Energy Facility Ash Pond		1	
			nty	, F	nnin, Texas			TONS/FT. ² 1 2 3 4 5
DEPTH (FT) ELEVATION (FT)	e no.	SAMPLE TYPE	SAMPLE DISTANCE	EKY	DESCRIPTION OF MATERIAL		L UNIT DRY WT. LBS. / Ft. ³	PLASTIC WATER LIQUID LIMIT % CONTENT % LIMIT % \times
	SAMPLE NO.	AMPL	AMPL			(O	UNIT DRY LBS. / Ft. ³	STANDARD Ø PENETRATION BLOWS/FT.
\sim	ගි 26	ഗ് SS	ο I	⊻ I I	URFACE ELEVATION: +139.2 Grayish brown silty fine sand (SM) - wet - d	(Continued) ense	5 H	10 20 30 40 50
52.0	- 20				53.0			ĭ,33
54.0					Light gray clayey fine sand (SC) - wet - den	se		
56.0	27	SS	Τ				99.2	× & 39
58.0								
60.0	28	SS	+	T				
62.0					63.0			43
64.0					Light gray fine sand (SP-SM), trace silt - we	et - dense		
66.0	29	SS	I					♦ 840
68.0	-		+		Light gray fine to coarse sand (SP) - wet - c	lense		
70.0	30	SS			(2) [2] 71.1			×
72.0	-30A	SS			Light gray and white clayey sand (SC-calich 73.0 medium dense			×39 7*16
74.0 76.0	31	SS	_	Г	Light gray silty fine to medium sand (SM), t clay, trace fine gravel - moist to wet - extrem	race to little nely dense		
78.0					78.0			¢ /
80.0	-				Tan clayey silt (CL-ML-Weathered Sandsto wet - hard	ne) - moist to		
82.0	-32-	SS			83.0			
84.0					Light gray and brown mottled silty clay (CH moist - hard), trace sand -		
86.0	33	SS	Į				91.6	$ + \otimes_{34}^{-+} + \otimes_{\triangle}^{-+} $
88.0								
90.0	34	SS					117.3	
92.0 94.0	-							
96.0	35	ST	┉		95.1 Light gray clayey fine sand (SC) - moist - e	ktremely		
98.0	-	-			dense	·	110.9	
100.0					Ø			
					continu	led		* Calibrated Penetrometer
								OM JOB NO. 60225561 SHEET NO. 2 OF 3

	-			CLIENT IPR-GDF SUEZ North America	LOG OF B	SORING NUI	NDER	B-2-1		
AΞ	C	JV	1	PROJECT NAME		CT/ENGINE	ER			
	NT12			Coleto Creek Energy Facility Ash I	Pond					NGTH
SITE LOO Golia			nty	Fannin, Texas				S/FT. ² 23		S S S S S S S S S S S S S S S S S S S
DEPTH (FT) ELEVATION (FT)	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	DESCRIPTION OF M/	ATERIAL	(pai UNIT DRY WT. LBS. / Ft. ³	PLAST LIMIT (X- 10			т % Ъ
	SAMF	SAMF	SAME	SURFACE ELEVATION: +139.2	(Continu	Ied) Int (ledi	⊗ 10	PENETRATIO 20 30	40 5	0
402.0	36	SS	T	Light gray clayey fine sand (SC 102.0 dense	C) - moist - extremely				<u> </u>	×*50/0.4
102.0 104.0				Brown silty clay (CH) with gray trace thin sand lenses - moist	silty clay and silt lenses, - hard					<u> </u>
106.0	37	SS	Τ			99.9			+++++++++++++++++++++++++++++++++++++++	
108.0 110.0										
112.0	38	SS	Ţ			96.4			+0*	
114.0									+	
116.0	39	SS	4			96.7		•	φ*	Ø
118.0	40	SS	+	119.5					+*	
				rock bit and drilling fluid Boring advanced from 50.0 fee rock bit and drilling fluid Boring abandoned with benton tremie method Split-spoons were driven with o	ite quick grout using	n				
VL				tion lines represent the approximate bounda g installation BORING STARTED BORING COMPLE	^D 11/3/11	es: in situ AECOM OFF	FICE 103 Gree	sition may be 5 Kepler Drive en Bay, Wisco SHEET NO.)	

AΞ	<u> </u>	74				SUEZ North America				B-2-2		
AE			1		ROJECT NA	me reek Energy Facility Ash Pond	ARCHITECT/	ENGINEE	R			
							1			NCONFINE		SIVE STRENGT
Golia		Jou	nty	, F	annin, 1	exas		-	1	2	3	4 5
DEPTH (FT) ELEVATION (FT)			ANCE						PLAS LIMI			LIQUID LIMIT %
depth (FT Elevation	E NO.	SAMPLE TYPE	SAMPLE DISTANCE	EKY		DESCRIPTION OF MATERIAL		L UNIT DRY WT. LBS. / Ft. ³	10		30	40 50
	SAMPLE NO.	SAMPL	SAMPL	KECOVERY	SURFACE	ELEVATION: +105.1		L UNIT DRY LBS. / Ft. ³	(S 10	PENI	NDARD ETRATION BI 30	LOWS/FT. 40 50
2.0	1	SS		Ŀ		Black and dark brown organic sandy clay (gravel, trace wood - moist - very stiff to ha			⊗_5		0*_0'	*
4.0	2 2A	SS SS	╟╟		- — <u>2.8</u>	Light gray and white clayey fine to coarse	sand	90.9		**18	$\frac{O^2}{2}$	<u> </u>
6.0	3	SS				(SC-Caliche), trace fine to coarse gravel - dense to medium dense	moist to wet -			⊗ ∶15	•	
8.0	4	SS				Note: Light brown fine to coarse sand (SF encountered from 6.5 feet to 7.0 feet and 8) layers 3.3 feet to 8.9			× 116	•	
10.0	5	SS SS			10.6	feet		113.3		۵ 15		
12.0	6A	SS		Ц	12.0	Light gray fine to coarse sand (SP) - wet -				Ø 15	18	
14.0	-	0.5				Light gray and brown mottled silt (ML), trac sand - moist - medium dense	ce clay, trace					
16.0	7 7A	SS SS	╞╂╞		17.0	Light gray silty clay (CL), trace sand - mois	st - hard			•	×*26 **3	2 0*
18.0	-		$\left \right $	Ť	17.0	Light gray silt (ML), trace to little sand, trac medium dense	ce clay - moist -					
20.0	8	SS		Γ							21	
22.0					22.0	Light brown fine sand (SP) - wet - dense					<u>`````````````````````````````````````</u>	
24.0 26.0	9	SS		Ę							\	5
28.0												
30.0	10	SS		Ę						 		× 41
32.0					33.5							
34.0	11	SS		Ę		Light gray and light brown mottled clayey f sand (SC), trace fine to coarse gravel - mo				/ •		845
36.0 38.0				<u></u>		extremely dense Drillers noted hard drilling from 34.0 to 39. gravel while drilling	0 feet and					45 ۱
40.0	12	ss	╞┰╞							•		×*5
42.0				<u>.</u>	42.0	Light brown fine to coarse sand (SP) - wet	- dense					
44.0	10	60				LIGHT DIOWH HITE TO COALSE SAILD (OP) - WEL	- 061136					
46.0	13	SS	╎┦╞	LL: 	47.0							/ [®] 42
48.0						Light gray and brown mottled silty clay (CL moist - hard	.), trace sand -			Ì,		+
<u>50.0</u>	 			Ľ	/ <i>///</i> //			100.6		Cali	ibrated Per	hetrometer
										0225561		

					LIENT PR-GDF SUEZ North A	America	LOG OF B	ORING N	UMBER	B-2	-2				
AΞ	C	DΛ	1	P	ROJECT NAME		ARCHITEC	CT/ENGIN	EER						
	0 A T 1			C	oleto Creek Energy F	acility Ash Pond			~	UNCONF		MDDEeo			
GITE LOO Golia			nty	y , I	annin, Texas				-0-	TONS/FT	2 2 	3 		5 	
DEPTH (FT) ELEVATION (FT)		ш	TANCE		DESCR	IPTION OF MATERIAL				ASTIC MIT %		ATER TENT %		NID IT %	
DEPTH (FT) ELEVATION	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	RECOVERY				UNIT DRY WT.			20 TANDAF		40 5 1	50	
$\overline{\triangleleft}$		SAMI	SAMI	RECO	SURFACE ELEVATION: +1	05.1	(Continue	ed)		🛛 Р	ENETRA	TION BLO		50	
52.0	14	SS		T	Light gray and b 52.0 moist - hard	prown mottled silty clay (CL),	trace sand	-							
54.0					방송한	to coarse sand (SP) - wet -	very dense			j					
56.0	15 15A	SS SS				light gray mottled silty sand -graded sand seams (SP) - r		115.	.0				+ • •	⊗ _{.:} ,	56 [.] .⊗ **1
58.0													+		
60.0	16	SS	I	Ŧ				117.	.8			+	A:0*		×*8
62.0 64.0					62.0 Light brown and - extremely den	brown mottled silty fine sand	d (SM) - we	t							1
66.0	17	SS		Į							•			* .**50/0	.6'
68.0					Light gray silty of gravel - moist -	clay (CH), trace sand, trace fi hard	ne to coars	e							
70.0	18	SS SS		T	70.5 End of Boring					Calibrate			*O*	\ ⊗ 5(6 ^
70.5					HW casing drive Boring advance rock bit and drill HW casing drive Boring advance rock bit and drill Boring abandon tremie method	d from 6.0 feet to 16.0 feet w ing fluid en from 8.0 feet to 10.0 feet d from 16.0 feet to 69.0 feet	with 3-inch with 3-inch t using								3.0
	The	stra	tific	ati	on lines represent the appro	oximate boundary lines betwe	en soil type	es: in sit	u, the t	ransitio	∣ n may	be grad	dual.		
	i feet	ws				BORING STARTED 11/1/11		AECOM O		1035 Ke Green I	Say, Wi	sconsi		1	
	i feet	befo	re	cas	ing installation	BORING COMPLETED 11/1/11			AH		EET NO.	2 OF	2		
VL						RIG/FOREMAN D-25/BZ		APP'D BY	мт	AE	COM JOI	B NO. 60225	561		

-	_		_		SUEZ North	Amorica	LOG	OF BOR	ING NUM	IBER B-	3-1			
AΞ	C	DN	1	PROJECT NA	ME			HITECT/E	ENGINEE	R				
				Coleto Ci	reek Energy F	Facility Ash Pon	nd							
SITE LOO Goli a			nty,	Fannin, 1	Texas						FINED COI T. ² 2	MPRESSI 3 4	IVE STRE	
DEPTH (FT) ELEVATION (FT)	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE RECOVERY		DESCF	RIPTION OF MATE	RIAL		UNIT DRY WT. LBS. / Ft. ³	PLASTIC LIMIT % X — 10	CONT	↓ TER TENT % ● — — -	LIQ LIMI — — — — 2 0 5	т % Ъ
$\overline{\langle}$	SAMP	SAMP	SAMP RECO	SURFACE	ELEVATION: +	139.3			UNIT DRY LBS. / Ft. ³		STANDARI PENETRA 20			0
2.0	- 1	SS	Ш		gravel, occasio	brown mottled claye nal irregular thin sill aliche nodules and l	ty sand seams a	nd	114.5	•	Ø 19		+ + +	
4.0	2	SS	ĮЦ		stiff to hard			wet	114.0		17		[Φ*	
6.0	3	SS							115.3		Ì≷ ₂	6	**	
8.0	- 4	SS							110.4				-0*	
10.0	- 5	SS							112.2	× •	*			
12.0	6 SS Note: Satur feet to 10.9 to 15.5 feet					ed silty sand seams t, 12.5 feet to 12.7 f			124.6	ti de la companya de	15	\square	* **	
14.0	- 7 8	SS SS	↓]±		10 15.5 feet				106.1	× 12		*		
16.0	8 8A	SS		15.6	Gray clayev fin	e to medium sand (SC), trace calich	ne	121.5		× ×		+ ↓ ♥*	
18.0	9	ST	₽	17.4	nodules, trace to stiff to hard	thin silty sand seam	ns - moist to wet	- very	113.7	` ` >	+2		- <u>-</u> 20*	
20.0	10	SS			Dark brown cla moist to wet - h	yey sand (SC), trac hard	e caliche nodule		109.1	×.			* 0 *	
22.0	- 11	SS	┨╢┨	22.0	Light grav silty	sandy clay (CL), oc	casional irregula	r siltv			× 18		· O *	
24.0	12 13	SS SS	╟╫		clayey caliche (wet - hard	(CL-caliche) layers	and lenses - moi	ist to	113.6 117.9	•	21		* * *	
26.0	14	SS		26.0		ey sand (SC), occas yers and lenses, tra		noist		`				
28.0 30.0	15 15A	SS SS	Ħ	28.9	to wet - mediu		-		111.3	®	19 *\$16			
30.0	16	SS	ľ			fine to coarse and (el, trace caliche nod				• •	20 17~			
34.0					medium dense									
36.0	17	SS	Ш	36.5						•				
36.5					HW casing driv Boring advance rock bit and dril Boring advance rock bit and dril Boring abandon tremie method	ed from 6.0 feet to 3 Iling fluid ed from 30.0 feet to	30.0 feet with 4-ir 35.0 feet with 3- quick grout using	inch		*Calibra	ted Pene	tromete	r	
	The stratification lines represent the appro					oximate boundary li	ines between soi	il types:	in situ,	the transition	on may l	be grad	lual.	
VL Dr	y bef	ore ca	asing	installatior	1		/8/11	AEG		Green	Kepler Dr Bay, Wis		n 54311	
^{VVL} 8.0) to 1	0.0 fe	et W	S		BORING COMPLETED	/8/11		TERED BY CAI	1	HEET NO.	0F 1	1	
WL						RIG/FOREMAN	25/BZ	API	D BY	Г ^{Ав}	ECOM JOB	3 NO. 602255	61	

								A		LOG OF B	ORING NU	JMBER	В-3	3-2			
AΞ	C	D٨	1	P	ROJE	CT NA				ARCHITEC	T/ENGINI	ER					
<u></u>	<u></u>			0	Colet	o C	reek Energy I	Facility Ash	Pond				NICON				NOT
TE LO			ntv	v. I	Fann	nin. T	Texas					-0-1	UNCONF TONS/F1 1	INED COI	3 4	VE STRE 5	
						,							÷			+	
ELEVATION (FT)			NCE									LIN	ASTIC MIT %		TER ENT %	LIQI LIMI	Т%
ATIOI	ġ	ΥPE	DISTA	≿			DESCI	RIPTION OF M	ATERIAL		Υ.		×−· 10		● — — - 30 41	∕- 0 5∣	
ELEVATION	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	RECOVERY							UNIT DRY WT.						0
1	SAM	SAM	SAM	REC	SUR	FACE	ELEVATION: +	122.8			UNIT			PENETRA			0
	1	SS				}	Fill: Dark brow trace roots - m), trace clay	/,	•	⊗				
2.0	2	SS		╫		3.2		oist - mealain c	101130			.	12 ⊗			+	
4.0	2A	SS			XXX		Fill: Brown and	d gray mottled s	silty sandy clay	(CL), trace			**	11		_ φ *	
6.0	3	SS				6.0	fine gravel, trac				117.	0	• 0	5 18		Φ*	
	4	SS		T]	Light gray and to little fine gra			che), trace	122.	1	• •			*0*	
8.0	5	SS	\parallel	+			to inte gra				113.	3		18 \$		**	
0.0	5	33	\parallel	\parallel		10.0	White silty fine	sand (SM-colic	trace to lit	tle clav -		-		19 -			
12.0	6	SS				12.0	moist - dense					•				≫4	7
							Light brown fin wet - dense to			ne gravel -							
14.0	7	SS	Τ	Т									\		f		
6.0	<u> '</u>	- 55			<u></u>	16.0	Brown sitly fine	to coarse san	d (SM) trace to	little fine				⊗ 23			
8.0	1						gravel - wet - d										
20.0		00					Drillers noted g			eet to 19.0							
	8	SS					feet and 23.0 fe						┦			[⊗] 42	
22.0	-													Ì			
24.0	1					24.0								<u>\</u>		\	
26.0	9	SS		Щ			Light brown find	e to coarse san	nd (SP) - wet - e	extremely						Ø) **50/
	1													/			1
28.0	10	SS				•											
29.5	10	55				29.5	End of Boring					*		ed Pene	tromete	r	×*5
							Boring advance HW casing driv Boring advance rock bit and dri Boring abando tremie method Split-spoons w	ven to 10.0 feet ed from 10.0 fe Illing fluid ned with bentor	et to 20.0 feet v nite quick grout	vith 3-inch using							
L					on lin instal		present the appr	oximate bound			AECOM OF	FICE	1035 K	on may l epler Dr Bay, Wis	ive		
L 14.	.0 fee	t WS	;					BORING COMPLE	TED 11/2/11			BY AH	S⊦	IEET NO.	0F	1	
								RIG/FOREMAN	D-25/BZ		APP'D BY		AE	COM JOB	NO.		

	_				ent ' R-GDI	F SUEZ North America	LOG OF BOR	ING NUM	MBER B.	-4-1		
AΞ		JN	1	PR	OJECT N	IAME	ARCHITECT/	ENGINE	ER			
SITE LOC				Co	oleto C	Creek Energy Facility Ash Pond						
			nty	, Fa	annin,	Texas				T. ² 2 3	4 5	
			Í	, 	,			-		-+ +		·
DEPTH (FT) ELEVATION (FT)			NCE						PLASTIC LIMIT %	WATER CONTENT 9		Т %
UEPTH (FI	V	ГҮРЕ	JIST	≿		DESCRIPTION OF MATERIAL		, WT.	× –	20 30	 40 5	
	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE					l UNIT DRY WT. LBS. / Ft. ³		STANDARD		-
\langle	SAM	SAM	SAN	S S	URFAC	E ELEVATION: +139.2		UNI ⁻	⊗ 10	PENETRATION I 20 30	BLOWS/FT. 40 5	0
2.0	1	SS				Fill: Gray and brown mottled clayey sand gravel, trace thin irregular silty sand seam		117.3	•	⊗ ₁₇	* © *	
	2	SS	T	TX		trace silty clay caliche nodules and layers stiff to hard					*/*	
4.0			+	TX				111.4				
6.0	3	SS		Ļ₿					⊗• /12	$2 \frac{0^{\star}}{2}$		
8.0	4	ST	╂┼	±₿	\otimes			124.4	•	Ø		
	5	ST		ТX								
10.0	6	SS	+	ТЙ				114.9			*	
12.0			╶┨╞	ŦX						14	Ϋ́	
14.0		3" ST		<u> </u>				122.0			+_*	
16.0	8	SS		┶▓	\otimes			118.2		* 21	0*	
	9	SS		TŔ	\otimes			110.1				
18.0	-		╂	TŔ				115.2		20		
20.0	10 11	SS SS		₩	20.6	6		102.3	•	29		
22.0	11A	SS				Light brown silty sandy clay (CL) with cali wet - very stiff to hard	che - moist to	110.2			τΦ*	
24.0	12 12A	SS SS		L/	23.0	Light brown, dark brown, and gray mottled	clavev sand	107.9 110.8			₩ 0 * **	
		3" ST		T		(SC), trace organics, trace fine gravel, tra	ce thin irregular			**22		
26.0			╂╞	₩		silty sand seams and lenses - moist - har	u					
28.0	14	SS		H/	28.0		Ø' = 27 deg		 ↑	[⊗] 25	0*ð*	
30.0	15	SS			30.0	Light brown clavey sand (SC) - moist to w	et - medium	115.7	•	& 		
	16	SS				Light brown silty fine to coarse sand (SM)	, trace clay -		e,	Ø ₂₆		
32.0					33.0	moist to wet - medium dense				1		
34.0			H	-1/		Light brown silty sandy clay (CL) with cali gravel - moist to wet - hard	che, trace fine			×*22	+	
36.0	17 17A	SS SS		I	35.6		t - medium				⁺ O*	
38.0					38.0	dense	. modum			28		
						Grayish brown fine to coarse sand (SP) -	wet - dense			N N		
40.0	18	SS		Т		Drillers noted sporadic, thin gravel layers	while drilling					
42.0				4		from 35.0 to 50.0 feet					35	
44.0												
46.0	10											
	19	SS	╨┾	4						/	35	
48.0										/	1	
50.0					50.0	0			/			` .
						conti	nued		*	Calibrated Pe	enetromete	er
		lier "	<u> </u>			proximate boundary lines between soil types: in situ, the tran	allian march	AFC	DM JOB NO. 6022	SHEET	NO. C	DF

							Amorica	LOG OF BOR	ING NUN	MBER	B-4-1			
Δ	E	CC	D٨			PR-GDF SUEZ North ROJECT NAME	America	ARCHITECT/E		-D				
						Coleto Creek Energy I	Facility Ash Pond	ARCHITECT/L		_1X				
SITE	LOC)N				racinty Asiri onu				CONFINED	COMPRESSI	VE STRENO	GTH
				nty	, F	Fannin, Texas					NS/FT. ² 2	3 4	1 5	
DEPTH (FT)	ELEVATION (FT)	ON	түре	SAMPLE DISTANCE	RY	DESC	RIPTION OF MATERIAL		Υ WT.	PLAST LIMIT X	% C0	WATER ONTENT % — •	LIQUIE LIMIT % 	
DEP	ELEY	SAMPLE NO	SAMPLE TYPE	MPLE	COVE				UNIT DRY WT. LBS. / Ft. ³	8	STAND		· /	
imes		SA	SA	SA	R	SURFACE ELEVATION: +		(Continued)	L B U	10	20	30 4		
F 4	-	20	SS			gravel, occasic	fine to coarse sand (SP), trace onal thin layers of gray silty cla	e to little fine ly and	ļ		-			6(
51	.5					caliche - moist End of Boring Boring advanc HW casing driv Boring advanc rock bit and dri Boring advanc rock bit and dri Boring abando tremie method	t to wet - very dense ed to 6.0 feet with solid-stem a ven to 5.5 feet ed from 6.0 feet to 30.0 feet w rilling fluid ed from 30.0 feet to 50.0 feet rilling fluid oned with bentonite quick grout	auger ith 4-inch with 3-inch t using		*Cali	brated Pe	enetromete	r	
		The	otro	lific		on lines represent the same	rovimato houndary lines hatur	on soil turnes	in city	the train	sition			=
WL							BORING STARTED		IN SITU,	ICE 103	35 Kepler	Drive		=
WL	Dry	bef	ore c	asir	ng	installation	11/7/11 BORING COMPLETED		TERED B	Gre		Wisconsin	54311	
WL	10.0	0 to	12.0	feet			RIG/FOREMAN		P'D BY	Н	AECOM	NO. OF 2 JOB NO. 602255	2	

			_			SUEZ North	Amorica	LOG OF	BORIN	g NUN	1BER	B-4	-2			
٩ Ξ	C	D٨	1		ROJECT NA			ARCHITE	ECT/EN	GINEE	R					
				C	Coleto C	reek Energy	Facility Ash Pond									
	CATI		ntı	, 6	Fannin, ⁻	Τονοε						INCONFI ONS/FT.	2			NGTH
				', •	amm,	16743						1		3 4	4 5 I I	
I (FT)			ЧČШ									ASTIC IIT %		TER ENT %	LIQU LIMIT	
ELEVATION	o	ΥPE	SAMPLE DISTANCE	≻		DESC	RIPTION OF MATERIA	L		WT.		×		• — — ·		
ELEVATION	SAMPLE NO.	SAMPLE TYPE	LE D	RECOVERY						UNIT DRY WT. LBS. / Ft. ³		-	20 (H TANDAR	+	0 50	
1	SAMF	SAMF	SAMF	REC	SURFACE	ELEVATION: +	119.6			UNIT DRY LBS. / Ft. ³		РІ	ENETRA	TION BLC	0WS/FT. 0 50	
	- 1	ss		T			n and brown silty fine t gravel, trace roots, tra			115.3	•		823			
2.0		00		╉		medium dense		ice clay - moist -		122.1	ĺ		23			
4.0	2	SS		ļ	4.0	Puriod Topooil	Dark brown and black							⊗33	+	
6.0	3	SS		Ц	6.0	(OL), trace to I	ittle sand - desiccated -	hard		125.8		•	, Ø	28	φ*	
	- 4	SS		Π		Light brown an	d light gray mottled silt el, trace irregular calich	y clayey sand (SC	C), /	126.0		•	8 ² 22		+0*	
8.0	5	ST		Ħ		hard	-		· ·	129.3	q	Þ	22		*O*	
10.0				┓	///10.0	Note: Dark gra	ay silty sandy clay (CL)	layer from 8.0 fee	7		<u> </u>					
12.0	- 6	SS				modium donoc	ty fine sand (SM), trace	clay - moist -	[·	124.6	, d	¥ 12				
14.0					13.0	Note: Plastic l	iner was used within sp	lit-spoon for	Ļ							
	7	SS		T.		\Sample 6 Light brown fin	e to coarse sand (SP) -	· wet - medium	_/							
16.0	+ '		Щ	-		dense	()									
18.0	1															
20.0																
	8	SS											6			
22.0	-					Drillers noted h	nard drilling at 22.0 feet						N.,			
24.0												Ι Ì,				
26.0	9	SS					Ity clay (CL-caliche) lay	ver from 24.7 feet	t to	106.9		•	Q Q	29		
					27.0											
28.0	-					Light gray silty dense	fine sand (SM), trace o	lay - wet - mediu	m				<u> </u> \			
30.0	10A	SS SS	T	Ŧ	<u>29.6</u> 30.5		e to coarse sand (SP) -	· wet - dense				⊗ ** ⊉			· ⊗ 40	
30.5						End of Boring					*C	alibrate	d Pene	tromete	r 43	
00.0						HW casing driv		•								
						Boring advanc rock bit and dr	ed from 10.0 feet to 29. Illing fluid	0 feet with 3-inch	ו							
						Boring abando	ned with bentonite quic	k grout using								
						tremie method Split-spoons w	ere driven with cathead	l and rope								
	The	stra	tific	atio	on lines re	present the app	roximate boundary lines	s between soil typ	bes: ir	n situ,	the tra	ansitio	n may	be grac	ual.	
L Dr					installatio		BORING STARTED		-	M OFF	ICE 1	035 Ke	pler Dr	ive	n 54311	
Ľ				чy	mətanlatıOl	•	BORING COMPLETED		ENTE		(ET NO.	OF		
14 ′L	.0 fee	et WS	•				11/2/1 RIG/FOREMAN	1	APP'D	CAI DBY	٦	AFC		1 3 NO.	1	
-							D-25/E	Z		тм	Г		5	^{3 NO.} 602255	561	

					LIENT	SUEZ North America	LOG OF BOR	ING NUN	/BER B- ;	5-1			
AΞ	C	O/	Ν	P	ROJECT NA	AME	ARCHITECT/E	T/ENGINEER				1	
ITE LO	<u></u>			0		reek Energy Facility Ash Pond					PRESSIVE	STRENGTH	-
			nt	y , I	Fannin, ⁻	Texas						5	
(FT)			Щ						PLASTIC	WAT		LIQUID	
	.	H ا	TAN			DESCRIPTION OF MATERIAL		L.			NI %) — — — –	LIMIT % 	
UEFIN (FI) ELEVATION (FT)	E NO	E T	E DIS	ΈRΥ				RY W	10	20 30) 40	50	
	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	RECOVERY	SURFACE	ELEVATION: +139.6		l UNIT DRY WT. LBS. / Ft. ³	⊗ F		ON BLOWS		
	- 1	SS				Fill: Light gray and brown mottled clayey s	and (SC),	128.2	10	20 30		50)*	1
2.0		-	╈	\square		trace fine gravel, occasional thin irregular s seams, trace silty clay caliche nodules and	layers - moist	124.7			.⊗ ₃₄ (
4.0	2	SS				to wet - very stiff to hard		124.7		, 26			
6.0	3	SS						127.5		×23	\$ *	5*	
8.0	- 4	SS						111.9		5	Øð*		
	- 5	ss							× 1 ⊗ ●	ŏ *∢)*		
10.0	6	SS	╢					118.7		$ \rangle$	*0*		
12.0	0	SS SS		Щ						17			
14.0	7A							108.9	***	8	~~	5*	
16.0	8	SS		Ц					\$10		0*		
	- 9	SS		Π				111.3	×		-0*		
18.0	10	ss		Π								D*	
20.0	11		╢	╞	20.8						32		
22.0	11A					Gray and brown silty clay (CL), trace organ sand, trace thin saturated silty sand seams	ics, trace	116.1 118.2	Í	**************************************	-0*	-6	1
24.0	12	ST			24.0	moist to wet - very stiff to hard						3*	
	13	SS		Ц		White and gray silty clay (CL-caliche), little to wet - stiff to hard	sand - moist	107.5			0	C*	1
26.0	14	ST						99.1	Q	4-4	∖ ∲ *(5*	
28.0		-						102.5					
30.0	- 15	SS								$\nabla \mathbb{P}^{1}$			
32.0	- 16	SS			32.0			103.6		\$ *0*	⊗ 35		
34.0	_ 17	SS	\prod	Ш		Gray silty fine to coarse sand (SM), trace fi trace clay - wet - dense	ne gravel,		Ý		Ø		
					35.0	2							1
36.0	18	SS		Щ		Gray fine to coarse sand (SP), trace fine greater extremely dense to very dense							8
38.0						Note: Hard white silty clay (CL-caliche) in 1 18	up of Sample						
40.0													
42.0	19	SS		Щ					🔶				∕ [∞] 7
	_				43.0	Gray silty fine sand (SM) - wet - dense to e	vtremely			<u>`</u>			-l'
44.0						dense	Additiony			$\left[\right]$			
46.0	20	SS	\parallel	Ш		Drillers noted hard drilling and gravel and c	obbles from			•	×2	12	
48.0						43.0 to 45.0 feet						N.	
50.0												``	
						continu	led		*	Calibrate	d Penetror	meter	
The st	ratific	ation li	nes	repre	esent the appr	oximate boundary lines between soil types: in situ, the transit	ion may be gradual.	AECO	ом јов <u>NO.</u> 60225	561 SH	IEET NO.	OF 2	

					PR-GDF SUEZ North	Amorico	LOG OF BO	ORIN	RING NUMBER B-5-1						
AΞ	C	D٨	Λ	P	ROJECT NAME		ARCHITEC	T/EN	T/ENGINEER						
0.751.0	<u></u>				Coleto Creek Energy F	-acility Ash Pond				- 1100					NOTU
SITE LO Goli			nty	/, I	Fannin, Texas						IS/FT. ²		MPRESS	1 (
(FT)			СE							PLAST LIMIT			TER ENT %	LIQ	
UEPTH (FT) ELEVATION (FT)	NO	ТҮРЕ	SAMPLE DISTANCE	RY	DESCR	RIPTION OF MATERIAL			Y WT.	× 10			•		
	SAMPLE NO.	SAMPLE TYPE	AMPLE	RECOVERY	SURFACE ELEVATION: +	120.0	Cantinua		UNIT DRY WT. LBS. / Ft. ³		PE		TION BLC		
\sim	0 21	் SS	S I	ц	The source elevation. +		(Continue	=u)		10				0 5	Ò
50.4					End of Boring Boring advance HW casing driv Boring advance rock bit and dri Boring advance rock bit and dri Boring abandou tremie method	ed to 6.0 feet with solid-sten ren to 5.0 feet ed from 6.0 feet to 32.0 feet lling fluid ed from 32.0 feet to 50.0 fee	with 4-inch et with 3-inch out using			*Cali	brate	d Pene	tromete	r	50/0
vi	The	stra	tific	ati	on lines represent the appr	OXIMATE BOUNDARY lines betw			n situ, M OFF			n may pler Di		lual.	
Dr NL	-				installation	BORING STARTED 11/7/11 BORING COMPLETED 11/7/11			RED B	Gre	en B		sconsir OF		
VL 8.0) to 1	0.0 f	eet	ws	5	RIG/FOREMAN		APP'[CA	4	AEC	OM JOE	2 NO. 602255	2	
						D-25/BZ			TM	ſ			bU2255	61	

(1) GENERAL INFO	DMATION				INFORMATION		
Unique Well No.	Well ID No.	County	Facility Nam				
	Well ID 110.	Goliad	Coleto C	reek Energ	······································		
Common Well Name		Gov't Lot (if applicable)	Facility ID		License/Permit/Monit	oring No.	
1/4 of 1 Grid Location	/4 of Sec	; T N; R E	Street Addre 45 FM 29	987			
	_	43146.7 ft. 🛛 E. 🗌 W.		ounty, Fan	nin, Texas 77960		
	Long		Present Well Coleto Cre	^{Owner} eek Energy	Facility Same	ner	
State Plane		$ft. E. \square \square Zone$	Street Addre 45 FM 29	ss or Route of C 987	Owner		
Reason For Abandonment Geotech Bo		Unique Well No. eplacement Well	City, State, Z Fannin, T	Cip Code Cexas 7796	0		
(3) WELL/DRILLHO					EEN, CASING, & SEA	LING MATERIAL	
Original Construction Monitoring Well Water Well Drillhole / Boreh Construction Type: Drilled	ble	A Well Construction Report available, please attach. Sandpoint) Dug	Liner(s) Screen I Casing Was Ca Did Sea Did Ma	c Piping Removed Removed? Removed? Left in Place? sing Cut Off Be Jing Material Rit terial Settle Afte Was Hole Patt	Yes Yes Yes Yes Iow Surface? se to Surface? xr 24 Hours?	No X Not Applicable No X Not Applicable No Not Applicable No Yes No Yes No Yes No Yes No Yes No	
Uther (Specify)				, Was Hole Rete			
Formation Type: Unconsolidated F Total Well Depth (ft)	121.0	Bedrock		d Method of Pla nductor Pipe - C reened & Pourec Bentonite Chips)	I Other (E	tor Pipe - Pumped Explain)	
(From ground surface) Lower Drillhole Diam Was Well Annular Spa If Yes, To Wh	eter (in.)3.0	Casing Depth (ft.) 5.0 Yes No Unknown N/A Feet	Sealing Materials For monitoring wells and monitoring well boreholes only Sand-Cement (Concrete) Grout Bentonite Chips Clay-Sand Slurry Granular Bentonite Bentonite-Sand Slurry Bentonite-Cement Grout				
Depth to Water (Feet)	. 14.0			ntonite-Sand Slu ipped Bentonite	· · · · ·	Bentonite-Cement Grout Bentonite - Sand Slurry	
(5)	Sealing Materia	I Used	From (Ft.)	To (Ft.)	No. Yards, Sacks, Sealant, or Volume	Mix Ratio or Mud Weight	
	Quik-Gro	out	Surface	121.0	50 gallons		
(6) Comments							
(7) Name of Person or Fire			nent				
AECOM Technica							
Signature of Person Doing		Date Signed 11/6/11					
Street or Route 1035 Kepler Drive		Telephone Number 920-468-1978					
City, State, Zip Code Green Bay, Wisco	nsin 54311						

(1) GENERAL INFO					INFORMATION		
Unique Well No.	Well ID No.	County Goliad	Facility Nam Coleto C	e reek Energ	y Facility		
Common Well Name		Gov't Lot (if applicable)	Facility ID		License/Permit/Monit	oring No.	
1/4 of 1 Grid Location	/4 of Sec	; T N; R E	Street Addre 45 FM 29	987			
	_	43576.6 ft. ⊠ E. □ W.	City, Village Goliad C		nin, Texas 77960		
Local Grid Origin	(estimated: LLong) or Well Location	Present Well Coleto Cre	^{Owner} eek Energy	Original Ow Facility Same	ner	
State Plane		SCN	Street Addre 45 FM 29	ss or Route of C 987	Jwner		
Reason For Abandonment Geotech Bo	l l	Jnique Well No. eplacement Well	City, State, 2 Fannin, 7	Cip Code Cexas 7796	.0		
(3) WELL/DRILLHO	0				EEN, CASING, & SEA	LING MATERIAL	
Original Construction Original Construction Monitoring Well Water Well Drillhole / Boreh	Date 11/3/		Pump & Liner(s) Screen I Casing	2 Piping Removed Removed? Removed? Left in Place? sing Cut Off Be	ed? Yes Yes Yes Yes Yes Yes	No Not Applicable No Not Applicable No Not Applicable No Yes No	
Construction Type: Drilled Other (Specify)	Driven (S	Sandpoint) Dug	Did Sea Did Ma If Yes	ling Material Ri terial Settle Afte , Was Hole Rete	se to Surface?	Yes No Yes No Yes No	
Formation Type: Unconsolidated F Total Well Depth (ft)	110 5	Bedrock		d Method of Pla nductor Pipe - C reened & Poured Bentonite Chips)	I Other (E	tor Pipe - Pumped Explain)	
(From ground surface) 30	Casing Depth (ft.)5.0	Sealing Materials For monitoring wells and Neat Cement Grout monitoring well boreholes only Sand-Cement (Concrete) Grout				
Was Well Annular Sp If Yes, To Wi Depth to Water (Feet)	nat Depth?	Yes No Unknown N/A Feet	Concrete Bentonite Chips Clay-Sand Slurry Granular Bentonite Bentonite-Sand Slurry Bentonite-Cement O Chipped Bentonite Bentonite - Sand Sl				
(5)	Sealing Materia	l Used	From (Ft.)	To (Ft.)	No. Yards, Sacks, Sealant, or Volume	Mix Ratio or Mud Weight	
	Quik-Gro	put	Surface	19.5	50 gallons		
(6) Comments							
(7) Name of Person or Fir AECOM Technica			nent				
Signature of Person Doing		Date Signed 11/4/11					
Street or Route 1035 Kepler Drive		Telephone Number 920-468-1978					
City, State, Zip Code Green Bay, Wisco	nsin 54311						

(1) CENEDAL INFO	DMATION		(2) FACIL	TV /OWNED	INFORMATION	
(1) GENERAL INFOI Unique Well No.	Well ID No.	County	Facility Nam		INFORMATION	
Onique wen No.	well ID No.	Goliad		reek Energ	y Facility	
Common Well Name		Gov't Lot (if applicable)	Facility ID		License/Permit/Monit	oring No.
1/4 of 1/4 Grid Location	/4 of Sec	; T N; R E	Street Addre 45 FM 29	987		
		$\frac{43676.7}{100} \text{ ft. } \boxtimes \text{ E. } \square \text{ W.}$		ounty, Fani	nin, Texas 77960	
•	Long		Present Well Coleto Cre	^{Owner} ek Energy F	acility Same	ner
State Plane		SCN	Street Addres 45 FM 29	ss or Route of O 987	Dwner	
Reason For Abandonment Geotech Bo		Jnique Well No. eplacement Well	City, State, Z Fannin, T	ip Code exas 7796	.0	
(3) WELL/DRILLHO					EEN, CASING, & SEA	I INC MATERIAL
Original Construction Monitoring Well Water Well Drillhole / Boreho Construction Type:	Date 11/1/ If a is a	Well Construction Report vailable, please attach.	Pump & Liner(s) Screen I Casing I Was Ca	2 Piping Removed? Removed? Removed? Left in Place? sing Cut Off Be ling Material Ri	ed? Yes Yes Yes Yes Yes Yes Now Surface?	No X Not Applicable No X Not Applicable No Not Applicable No Yes No Yes No
Drilled Other (Specify)	Driven (S	Sandpoint) Dug		terial Settle Afte , Was Hole Reto		Yes 🛛 No Yes 🕅 No
Formation Type:	70 5	Bedrock		d Method of Pla nductor Pipe - G eened & Poured Bentonite Chips)	I Other (E	or Pipe - Pumped Explain)
Total Well Depth (ft) 70.5 Casing Diameter (in.) 4.0 (From ground surface) Casing Depth (ft.) 10.0 Lower Drillhole Diameter (in.) 3.0 Was Well Annular Space Grouted? Yes No Unknown If Yes, To What Depth? N/A Feet Depth to Water (Feet) 3.5			Sealing Materials For monitoring wells and monitoring well boreholes o Neat Cement Grout monitoring well boreholes o Sand-Cement (Concrete) Grout Bentonite Chips Clay-Sand Slurry Granular Bentonite Bentonite-Sand Slurry Bentonite-Cement Grout Chipped Bentonite Bentonite - Sand Slurry			
(5)	Sealing Materia	l Used	From (Ft.)	To (Ft.)	No. Yards, Sacks, Sealant, or Volume	Mix Ratio or Mud Weight
	Quik-Gro	out	Surface	70.5	30 gallons	
(6) Comments						
(7) Name of Person or Firr AECOM Technica Signature of Person Doing Street or Route	I Services, Inc Work		nent			
1035 Kepler Drive City, State, Zip Code		920-468-1978				
Green Bay, Wisco	nsin 54311					

(1) GENERAL INFO	RMATION		(2) FACILI	TY /OWNER	INFORMATION				
Unique Well No.	Well ID No.	County	Facility Nam	ie					
		Goliad		reek Energ					
Common Well Name		Gov't Lot (if applicable)	Facility ID		License/Permit/Monit	oring No.			
1/4 of 1 Grid Location	/4 of Sec ;	TN; R E	Street Addre 45 FM 29	987					
1 <u>3451245.3</u> ft. X	_	$\frac{43663.1}{\text{ or Well Location }} \text{ ft. } \textbf{K} \text{ E. } \textbf{W}.$		ounty, Fan	nin, Texas 77960				
Local Grid Origin	(estimated:	-	Present Well Coleto Cre	^{Owner} eek Energy I	Facility Same	ner			
State Plane		S C N	Street Addre 45 FM 29	ss or Route of C 987	Owner				
Reason For Abandonment		Inique Well No.	City, State, Z						
Geotech Bo	0 0110	eplacement Well	Fannin, Texas 77960 (4) PUMP, LINER, SCREEN, CASING, & SEALING MATERIAL						
(3) WELL/DRILLHO						57			
Original Construction Monitoring Well Water Well Drillhole / Borehd	If a is a	Well Construction Report vailable, please attach.	Liner(s) Screen I	2 Piping Remove Removed? Removed? Left in Place?	☐ Yes ☐ ☐ Yes ☐	No X Not Applicable No X Not Applicable No X Not Applicable No			
Construction Type: Drilled Other (Specify)		Sandpoint) Dug	Did Sea Did Ma	sing Cut Off Be ling Material Ri terial Settle Afte , Was Hole Reto	ise to Surface?	Yes X No Yes No Yes X No Yes No			
Formation Type: Unconsolidated Formation Total Well Depth (ft)		Bedrock	Co	d Method of Pla nductor Pipe - O eened & Poured Bentonite Chips)	i Other (E	tor Pipe - Pumped Explain)			
(From ground surface)	30	Casing Depth (ft.)5.0	Sealing Materials For monitoring wells and monitoring well boreholes only Sand-Cement (Concrete) Grout						
Was Well Annular Spa If Yes, To Wh Depth to Water (Feet)	at Depth?	Yes No Unknown N/A Feet	Concrete Bentonite Chips Clay-Sand Slurry Granular Bentonite Bentonite-Sand Slurry Bentonite-Cement Chipped Bentonite Bentonite - Sand Sl						
(5)	Sealing Material	Used	From (Ft.)	To (Ft.)	No. Yards, Sacks, Sealant, or Volume	Mix Ratio or Mud Weight			
	Quik-Gro	ut	Surface	36.5	20 gallons				
(6) Comments									
(7) Name of Person or Firn AECOM Technica Signature of Person Doing	I Services, Inc		nent						
Street or Route 1035 Kepler Drive		Telephone Number 920-468-1978							
City, State, Zip Code Green Bay, Wisco	nsin 54311								

(1) GENERAL INFO					INFORMATION		
Unique Well No.	Well ID No.	County Goliad		reek Energ			
Common Well Name		Gov't Lot (if applicable)	Facility ID		License/Permit/Monit	oring No.	
1/4 of 1 Grid Location	/4 of Sec	; T N; R E	Street Addre 45 FM 29	987			
	_	$\frac{43721.2}{\text{or Well Location }} \text{ E. } \text{ W.}$		ounty, Fan	nin, Texas 77960		
-	Long	-	Present Well Coleto Cree	^{Owner} ek Energy F	acility Original Ow	ner	
State Plane		S C N	Street Addre 45 FM 29	ss or Route of C 987	Wher		
Reason For Abandonment		Jnique Well No.	City, State, 2				
Geotech Bo		eplacement Well		exas 7796			
(3) WELL/DRILLHO			(4) PUMP , 1	LINER, SCRI	EEN, CASING, & SEA		
Original Construction Monitoring Well Water Well Drillhole / Borehd	If a is a	Vell Construction Report	Liner(s) Screen	2 Piping Remove Removed? Removed? Left in Place?	☐ Yes ☐ ☐ Yes ☐	No X Not Applicable No X Not Applicable No X Not Applicable No	
Construction Type: Drilled Other (Specify)		Sandpoint) Dug	Did Sea Did Ma	sing Cut Off Be ling Material Ri terial Settle Afte , Was Hole Rete	se to Surface?	Yes X No Yes No Yes X No Yes No	
Formation Type: Unconsolidated Formation Total Well Depth (ft)	20.5	Bedrock		d Method of Pla nductor Pipe - O reened & Poureo Bentonite Chips)	I Other (E	tor Pipe - Pumped Explain)	
(From ground surface)) 3 0	Casing Depth (ft.) 5.0	Sealing Materials For monitoring wells and Neat Cement Grout monitoring well boreholes only Sand-Cement (Concrete) Grout				
Was Well Annular Spa If Yes, To Wh Depth to Water (Feet)	at Depth?	Yes No Unknown N/A Feet	Concrete Bentonite Chips Clay-Sand Slurry Granular Bentonite Bentonite-Sand Slurry Bentonite-Cement Chipped Bentonite Bentonite - Sand Slurry				
(5)	Sealing Materia	l Used	From (Ft.)	To (Ft.)	No. Yards, Sacks, Sealant, or Volume	Mix Ratio or Mud Weight	
	Quik-Gro	out	Surface	29.5	20 gallons		
(6) Comments							
(7) Name of Person or Firn AECOM Technica Signature of Person Doing	I Services, Inc		nent				
Street or Route 1035 Kepler Drive		Telephone Number 920-468-1978					
City, State, Zip Code Green Bay, Wisco	nsin 54311						

(1) GENERAL INFO					INFORMATION		
Unique Well No.	Well ID No.	County Goliad		reek Energ	y Facility		
Common Well Name		Gov't Lot (if applicable)	Facility ID		License/Permit/Monit	oring No.	
1/4 of 1 Grid Location	/4 of Sec	; T N; R E	Street Addre 45 FM 29	987			
		$\frac{43740.9}{\text{ ft. }} \text{ ft. } \textbf{E} = \begin{array}{c} \Box \text{ w.} \\ \hline \end{array}$		ounty, Fani	nin, Texas 77960		
U U	Long		Present Well Coleto Cree	^{Owner} ek Energy Fa	acility Original Ow	ner	
State Plane		SCN	Street Addre 45 FM 29	ss or Route of O 987	wner		
Reason For Abandonment	, t	Jnique Well No.	City, State, Z				
Geotech Bo		eplacement Well		exas 7796			
(3) WELL/DRILLHO			(4) PUMP , 1	LINER, <mark>SCR</mark> I	EEN, CASING, & SEA		
Original Construction Monitoring Well Water Well Drillhole / Borehu	If a is a	Well Construction Report available, please attach.	Liner(s) Screen I	2 Piping Remove Removed? Removed? Left in Place?	Yes Yes Yes	No X Not Applicable No X Not Applicable No X Not Applicable No X Not Applicable	
Drillhole / Boreho Construction Type: Drilled Other (Specify)		Sandpoint) Dug	Did Sea Did Ma	sing Cut Off Be ling Material Ri terial Settle Afte , Was Hole Reto	se to Surface?	Yes X No Yes No Yes X No Yes No	
Formation Type: Unconsolidated Formation Total Well Depth (ft)	51 5	Bedrock		d Method of Pla nductor Pipe - G reened & Poured Bentonite Chips)	Other (E	or Pipe - Pumped Explain)	
(From ground surface)) 3 0	Casing Depth (ft.)4.0	Sealing Materials For monitoring wells and Neat Cement Grout monitoring well boreholes only Sand-Cement (Concrete) Grout Sand-Cement (Concrete) Grout				
Was Well Annular Spa If Yes, To Wh Depth to Water (Feet)	at Depth?	Yes No Unknown N/A Feet	Concrete Bentonite Chips Clay-Sand Slurry Granular Bentonite Bentonite-Sand Slurry Bentonite-Cement Chipped Bentonite Bentonite - Sand S				
(5)	Sealing Materia	I Used	From (Ft.)	To (Ft.)	No. Yards, Sacks, Sealant, or Volume	Mix Ratio or Mud Weight	
	Quik-Gro	out	Surface	51.5	25 gallons		
(6) Comments							
(7) Name of Person or Firn AECOM Technica Signature of Person Doing	I Services, Inc		nent				
Street or Route 1035 Kepler Drive		Telephone Number 920-468-1978					
City, State, Zip Code Green Bay, Wisco	nsin 54311						

(1) GENERAL INFORM	ATION		(2) FACILI	TY /OWNER	INFORMATION		
Unique Well No.	Well ID No.	County	Facility Nam	e			
		Goliad		reek Energ			
Common well Name		Gov't Lot (if applicable)	Facility ID		License/Permit/Monit	oring No.	
1/4 of 1/4 of 1/4 of	f Sec ;	TN; R E	Street Addre 45 FM 29	87			
1 <u>3450619.3</u> ft. 🕅 N.			City, Village Goliad C	, or Town ounty, Fan	nin, Texas 77960		
Local Grid Origin () or Well Location	Present Well		Original Ow	ner	
Lat	Long	or or or	Street Addre	ek Energy F ss or Route of C			
State Plane f			45 FM 29				
Reason For Abandonment Geotech Boring		Inique Well No.	City, State, Z	ip Code exas 7796	0		
(3) WELL/DRILLHOLE		INFORMATION			EEN, CASING, & SEA	LING MATERIAL	
Original Construction Date Monitoring Well Water Well Drillhole / Borehole			Pump & Liner(s) Screen I Casing I	2 Piping Removed Removed? Removed? Left in Place? sing Cut Off Be	ed? Yes Yes Yes Yes Yes Now Surface?	No X Not Applicable No Not Applicable No Not Applicable No Yes X No	
Construction Type: Drilled Other (Specify)	Driven (S	andpoint) Dug	Did Ma	ling Material Ri terial Settle Afte , Was Hole Reto	er 24 Hours?	Yes No Yes No Yes No	
Formation Type:			Require	d Method of Pla	cing Sealing Material		
Total Well Depth (ft)	31.0	Bedrock	Scr	nductor Pipe - C eened & Poured Sentonite Chips)	I Other (E	tor Pipe - Pumped Explain)	
(From ground surface)	(3.0	Casing Depth (ft.)5.0	Sealing Materials For monitoring wells and monitoring well boreholes only				
Was Well Annular Space (If Yes, To What D Depth to Water (Feet)	Grouted?	Yes No Unknown N/A Feet	Sand-Cement (Concrete) Grout Concrete Bentonite Chips Clay-Sand Slurry Granular Bentonite Bentonite-Sand Slurry Bentonite-Cement Grout Chipped Bentonite Bentonite - Sand Slurry				
(5)	Sealing Material	Used	From (Ft.)	To (Ft.)	No. Yards, Sacks, Sealant, or Volume	Mix Ratio or Mud Weight	
	Quik-Gro	ut	Surface	31.0	20 gallons		
(6) Comments							
(7) Name of Person or Firm De AECOM Technical S			nent				
Signature of Person Doing Wo		Date Signed 11/2/11					
Street or Route 1035 Kepler Drive		Telephone Number 920-468-1978					
City, State, Zip Code Green Bay, Wisconsi	n 54311						

(1) GENERAL INFOR	RMATION		(2) FACILI	TY /OWNER	INFORMATION		
Unique Well No.	Well ID No.	County	Facility Nam	e			
		Goliad		reek Energ			
Common Well Name	B-5-1	Gov't Lot (if applicable)	Facility ID		License/Permit/Monit	oring No.	
1/4 of 1/ Grid Location	4 of Sec ;	; T N; R E	Street Addre 45 FM 29	987			
13451003.7 ft. 🗵	_		City, Village Goliad C	, or _{Town} ounty, Fan	nin, Texas 77960		
Local Grid Origin) or Well Location	Present Well		Original Ow	ner	
Lat	" Long	o ' " or		ek Energy F			
State Plane			45 FM 29				
Reason For Abandonment		Inique Well No.	City, State, Z	cip Code exas 7796	0		
Geotech Bo		eplacement Well				TINC MATERIAL	
(3) WELL/DRILLHU	<u>11/7/</u>				EEN, CASING, & SEA	57	
Original Construction	Date	· · · ·		Piping Remove		No X Not Applicable No X Not Applicable	
Monitoring Well			• • • •	Removed? Removed?		No X Not Applicable No X Not Applicable	
Water Well		Well Construction Report wailable, please attach.		Left in Place?		No No	
Drillhole / Boreho	le			sing Cut Off Be		Yes X No	
Construction Type:				ling Material Ri		Yes No	
X Drilled	Driven (S	Sandpoint) 🗌 Dug	Did Ma	terial Settle Afte	er 24 Hours?	Yes 🛛 No	
Other (Specify)			If Yes	, Was Hole Rete	opped?	Yes 🛛 No	
Formation Type:					cing Sealing Material		
Unconsolidated Fo	ormation	Bedrock		nductor Pipe - C	·	tor Pipe - Pumped	
	50.9	4.0		eened & Poured Bentonite Chips)		explain)	
Total Well Depth (ft) . (From ground surface)	(Lasing Diameter (in.)		Materials		onitoring wells and	
		Casing Depth (ft.) 5.0		at Cement Grou		oring well boreholes only	
Lower Drillhole Diame	eter (in.)3.0		Sand-Cement (Concrete) Grout				
Was Well Annular Spa	ice Grouted?	Yes 🗋 No 🗍 Unknown		ncrete		Bentonite Chips	
If Yes, To Wh	at Depth?	N/A Feet	57	y-Sand Slurry		Granular Bentonite	
Depth to Water (Feet)	NI/A			ntonite-Sand Slu apped Bentonite	· · · · · · · · · · · · · · · · · · ·	Bentonite-Cement Grout Bentonite - Sand Slurry	
				ipped Demonite	No. Yards, Sacks,	Mix Ratio	
(5)	Sealing Material	l Used	From (Ft.)	To (Ft.)	Sealant, or Volume	or Mud Weight	
	Quik-Gro	out	Surface	50.9	25 gallons		
(6) Comments							
(7) Name of Person or Firm AECOM Technica			nent	_			
Signature of Person Doing		Date Signed					
Street or Deute		11/7/11 Telephone Number					
Street or Route 1035 Kepler Drive		920-468-1978					
City, State, Zip Code Green Bay, Wisco	nsin 54311						

AECOM General Notes

Drilling and Sampling Symbols:

SS : Split Spoon - 1-3/8" I.D. 2" O.D. (Unless otherwise noted)	HS : Hollow Stem Auger
ST : Shelby Tube-2" O.D. (Unless otherwise noted)	WS : Wash Sample
PA : Power Auger	FT:Fish Tail
DB : Diamond Bit-NX, BX, AX	RB : Rock Bit
AS : Auger Sample	BS : Bulk Sample
JS : Jar Sample	PM : Pressuremeter Test
VS : Vane Shear	GS : Giddings Sampler
OS : Osterberg Sampler	

Standard "N" Penetration: Blows per foot of a 140 pound hammer falling 30 inches on a 2 inch O.D. split spoon sampler, except where otherwise noted.

Water Level Measurement Symbols:

WL : Water Level	WCI : Wet Cave In
WS : While Sampling	DCI : Dry Cave In
WD : While Drilling	BCR : Before Casing Removal
AB : After Boring	ACR : After Casing Removal

Water levels indicated on the boring logs are the levels measured in the boring at the time indicated. In pervious soils, the indicated elevations are considered reliable groundwater levels. In impervious soils, the accurate determination of groundwater elevations may not be possible, even after several days of observations; additional evidence of groundwater elevations must be sought.

Gradation Description and Terminology:

Coarse grained or granular soils have more than 50% of their dry weight retained on a #200 sieve; they are described as boulders, cobbles, gravel or sand. Fine grained soils have less than 50% of their dry weight retained on a #200 sieve; they are described as clay or clayey silt if they are cohesive and silt if they are non-cohesive. In addition to gradation, granular soils are defined on the basis of their relative in-place density and fine grained soils on the basis of their strength or consistency and their plasticity.

Major Component of Sample	Size Range	Description of Other Components Present in Sample	Percent Dry Weight
Boulders	Over 8 in. (200 mm)	Trace	1-9
Cobbles	8 inches to 3 inches (200 mm to 75 mm)	Little	10-19
Gravel	3 inches to #4 sieve (75 mm to 4.76 mm)	Some	20-34
Sand	#4 to #200 sieve (4.76 mm to 0.074 mm)	And	35-50
Silt	Passing #200 sieve (0.074 mm to 0.005 mm)		
Clay	Smaller than 0.005 mm		

Consistency of Cohesive Soils:

Relative Density of Granular Soils:

Unconfined Compressive Strength, Qu, tsf	Consistency	N-Blows per foot	Relative Density
<0.25	Very Soft	0 - 3	Very Loose
0.25 - 0.49	Soft	4 - 9	Loose
0.50 - 0.99	Medium (firm)	10 - 29	Medium Dense
1.00 - 1.99	Stiff	30 - 49	Dense
2.00 - 3.99	Very Stiff	50 - 80	Very Dense
4.00 - 8.00	Hard	>80	Extremely Dense
>8.00	Very Hard		

AECOM Field and Laboratory Procedures

Field Sampling Procedures

Auger Sampling (AS)

In this procedure, soil samples are collected from cuttings off of the auger flights as they are removed from the ground. Such samples provide a general indication of subsurface conditions; however, they do not provide undisturbed samples, nor do they provide samples from discrete depths.

Split-Barrel Sampling (SS) - (ASTM Standard D-1586-99)

In the split-barrel sampling procedure, a 2-inch O.D. split barrel sampler is driven into the soil a distance of 18 inches by means of a 140-pound hammer falling 30 inches. The value of the Standard Penetration Resistance is obtained by counting the number of blows of the hammer over the final 12 inches of driving. This value provides a qualitative indication of the in-place relative density of cohesionless soils. The indication is qualitative only, however, since many factors can significantly affect the Standard Penetration Resistance Value, and direct correlation of results obtained by drill crews using different rigs, drilling procedures, and hammer-rod-spoon assemblies should not be made. A portion of the recovered sample is placed in a sample jar and returned to the laboratory for further analysis and testing.

Shelby Tube Sampling Procedure (ST) - ASTM Standard D-1587-94

In the Shelby tube sampling procedure, a thin-walled steel seamless tube with a sharp cutting edge is pushed hydraulically into the soil and a relatively undisturbed sample is obtained. This procedure is generally employed in cohesive soils. The tubes are identified, sealed and carefully handled in the field to avoid excessive disturbance and are returned to the laboratory for extrusion and further analysis and testing.

Giddings Sampler (GS)

This type of sampling device consists of 5-foot sections of thin-wall tubing which are capable of retrieving continuous columns of soil in 5-foot maximum increments. Because of a continuous slot in the sampling tubes, the sampler allows field determination of stratification boundaries and containerization of soil samples from any sampling depth within the 5-foot interval.

AECOM Field and Laboratory Procedures

Subsurface Exploration Procedures

Hand-Auger Drilling (HA)

In this procedure, a sampling device is driven into the soil by repeated blows of a sledge hammer or a drop hammer. When the sampler is driven to the desired sample depth, the soil sample is retrieved. The hole is then advanced by manually turning the hand auger until the next sampling depth increment is reached. The hand auger drilling between sampling intervals also helps to clean and enlarge the borehole in preparation for obtaining the next sample.

Power Auger Drilling (PA)

In this type of drilling procedure, continuous flight augers are used to advance the boreholes. They are turned and hydraulically advanced by a truck, trailer or track-mounted unit as site accessibility dictates. In auger drilling, casing and drilling mud are not required to maintain open boreholes.

Hollow Stem Auger Drilling (HS)

In this drilling procedure, continuous flight augers having open stems are used to advance the boreholes. The open stem allows the sampling tool to be used without removing the augers from the borehole. Hollow stem augers thus provide support to the sides of the borehole during the sampling operations.

Rotary Drilling (RB)

In employing rotary drilling methods, various cutting bits are used to advance the boreholes. In this process, surface casing and/or drilling fluids are used to maintain open boreholes.

Diamond Core Drilling (DB)

Diamond core drilling is used to sample cemented formations. In this procedure, a double tube (or triple tube) core barrel with a diamond bit cuts an annular space around a cylindrical prism of the material sampled. The sample is retrieved by a catcher just above the bit. Samples recovered by this procedure are placed in sturdy containers in sequential order.

Water Content (Wc)

The water content of a soil is the ratio of the weight of water in a given soil mass to the weight of the dry soil. Water content is generally expressed as a percentage.

Hand Penetrometer (Qp)

In the hand penetrometer test, the unconfined compressive strength of a soil is determined, to a maximum value of 4.5 tons per square foot (tsf) or 7.0 tsf depending on the testing device utilized, by measuring the resistance of the soil sample to penetration by a small, spring-calibrated cylinder. The hand penetrometer test has been carefully correlated with unconfined compressive strength tests, and thereby provides a useful and a relatively simple testing procedure in which soil strength can be quickly and easily estimated.

Unconfined Compression Tests (Qu)

In the unconfined compression strength test, an undisturbed prism of soil is loaded axially until failure or until 20% strain has been reached, whichever occurs first.

Dry Density (γd)

The dry density is a measure of the amount of solids in a unit volume of soil. Use of this value is often made when measuring the degree of compaction of a soil.

Classification of Samples

In conjunction with the sample testing program, all soil samples are examined in our laboratory and visually classified on the basis of their texture and plasticity in accordance with the AECOM Soil Classification System which is described on a separate sheet. The soil descriptions on the boring logs are derived from this system as well as the component gradation terminology, consistency of cohesive soils and relative density of granular soils as described on a separate sheet entitled "AECOM General Notes". The estimated group symbols included in parentheses following the soil descriptions on the boring logs are in general conformance with the Unified Soil Classification System (USCS) which serves as the basis of the AECOM Soil Classification System.

AECOM Standard Boring Log Procedures

In the process of obtaining and testing samples and preparing this report, standard procedures are followed regarding field logs, laboratory data sheets and samples.

Field logs are prepared during performance of the drilling and sampling operations and are intended to essentially portray field occurrences, sampling locations and procedures.

Samples obtained in the field are frequently subjected to additional testing and reclassification in the laboratory by experienced geotechnical engineers, and as such, differences between the field logs and the final logs may exist. The engineer preparing the report reviews the field logs, laboratory test data and classifications, and using judgment and experience in interpreting this data, may make further changes. It is common practice in the geotechnical engineering profession not to include field logs and laboratory data sheets in engineering reports, because they do not represent the engineer's final opinions as to appropriate descriptions for conditions encountered in the exploration and testing work. Results of laboratory tests are generally shown on the boring logs or are described in the text of the report, as appropriate.

Samples taken in the field, some of which are later subjected to laboratory tests, are retained in our laboratory for sixty days and are then discarded unless special disposition is requested by our client. Samples retained over a long period of time, even in sealed jars, are subject to moisture loss which changes the apparent strength of cohesive soil, generally increasing the strength from what was originally encountered in the field. Since they are then no longer representative of the moisture conditions initially encountered, observers of these samples should recognize this factor.

AECOM Soil Classification System (1)

		ijor sions	Group Symbols	Typical Names		Laboratory Classification	n Criteria		
	action size)	gravel no fines)	GW	Well-graded, gravel, gravel-sand mixtures, little or no fines	(c) sis	$C_u = \frac{D_{so}}{D_{10}}$ greater than 4; C_c	= <u>(Dso)²</u> Dio x Deo		
eve size)	rel f coarse fraction a. 4 sieva size)	Clean clean (Little or 1	GP	Poorly graded gravel, gravel—sand mixtures, little or no fines	200 sleve 200 sleve udi symbo	Not meeting all gradati	on requirements for GW		
No. 200 ai	Gravel (More than half of is larger than No.	th fines e amount nes)	GM	Silty gravel, gravel—sand— silt mixtures	grain-size curve. er than No. 200 sieve ws: requisiting dual symbols ⁽³⁾	Atterberg limits below "A" line or Pl less than 4	Above "A" line with PI between 4 and 7 are bordertine		
(More than half of material is targer than No. 200 sieve size)	(More U is larg	Grovel with fines (Appreciable amount of fines)	GC	Clayey gravel, gravel—sand— clay mixtures	Determine percentages of sond and gravel from grain-size curve. Depending on percentage of fines (fraction smaller than No. 200 sieve size), coarse-grained soils are classified as follows: Less than 5 percent GW, GP, SW, SP More than 12 percent Borderline cases requiring dual symbo 5 to 12 percent	Atterberg limits above "A" line or PI greater than 7	coses requiring use of dual symbols		
aterial is La	iroction a size)	sand no fines)	SW	Well—graded sand, gravelly sand, little or no fines	and and gravel from analle f fines (fraction smalle are classified as fallon are CW, GP, SW, SP GW, GC, SM, SC Bordarline cases :	C _u = <u>Deo</u> greater than 6; C _e	= (Dao) ² Dio x Dad between 1 & 3		
half of me	nd if coorse vo. 4 sieve	Clean (Little or 1	SP	Poorly graded sand, gravely sand, little or no fines	ages of se centage of ned soils rcent ercent	Not meeting all gradati	on requirements for SW		
Nore than	Sand (More than half of coarse fraction is smaller than No. 4 sieve size)	h fines e amount nes)	SM	Silty sand, sand—silt mixtures	Determine percentages of t Gepending on percentage a gize), coarse-grained sais Less than 5 percent More than 12 percent 5 to 12 percent	Atterberg limits below "A" line or Pi less than 4	Limits plotting in hatched zone with Pl between 4 and 7		
•	(More 1 is amo	Sand with fines (Appreciable amount of finee)	SC	Clayey sand, sand-clay mixtures	Determi Dependi size), o Less More 5 to	Atterberg limits above "A" lins or PI greater than 7	are bo rderivne cases requiring use of dual symbols		
size)	10		ML	Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or clayey silt with slight plasticity	60 For clo	Plasticity (assification of fine-grained	Chart ⁽²⁾		
200 sieve al	and clav	(Liquid limit less than 50)	CL	Inorganic clay of low to medium plasticity, gravely clay, sondy clay, silty clay, lean clay	50 Atterbe in hate	nd fine fraction of -grained soils. ang Limits platting thed areas are	- CH or OH		
than No.	蒙	(Liquid IIn	OL.	Organic silt and organic silty clay of low plasticity	requirir	on of A-line:			
material is	6	r than 50)	мн	Inorganic silt, micaceous or diatomaceous fine sandy or silty soils, elastic silt	(a) xappul 30 xappul 30 xappul 30 xappul 20	3 (LL-20)	MH or OH		
	o puo	limit greater	СН	inorganie clay of high plasticity, fat clay	20	CL or OL			
(More than half of		(Liquid lin	ОН	Organic clay of medium to high plasticity, organic slit	10 7 4	L-ML ML or OL			
(More t	Highly	organic solis	PT	Peat and other highly organic soil	0 10	20 30 40 50 Liquid Lin	60 70 80 90 1		

1. See AECOM General Notes for component gradation terminology, consistency of cohesive soils and relative density of granular soils.

2. Reference: Unified Soil Classification Systems

3. Borderline classifications, used for soils possessing characteristics of two groups, are designated by combinations of group symbols. For example: GW-GC, well-graded gravel-sand mixture with clay binder.

APPENDIX B: GEOTECHNICAL LABORATORY DATA

Tested By: BCM

Checked By: WPQ

Tested By: BCM

Checked By: WPQ

Tested By: BCM

Checked By: WPQ

	SOIL DATA												
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS					
•	B-1-1	B-1-1 S-5	8'-10'		14	22	8	CL					

AECOM	Client: IPR-GDF SUEZ Project: COLETO CREEK	
	Project No.: 60225561	Figure

	SOIL DATA												
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS					
•	B-1-1	B-1-1 S-11	20'-22'		14	38	24	SC					

AECOM	Client: IPR-GDF SUEZ Project: COLETO CREEK	
	Project No.: 60225561	Figure

	SOIL DATA											
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS				
۲	B-1-1	B-1-1 S-34	90'-90.4'		17	42	25	CL				

	Client: 1PR-GDF SUEZ	
AECOM	Project: COLETO CREEK	
	Project No.: 60225561	Figure

SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
0	B-1-1	B-1-1 S-40	120'-121'		28	79	51	СН

Client:	IPR-GDF SUEZ
Project	COLETO CREEK

Project No.: 60225561

AECOM

Figure

	SOIL DATA												
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS					
۲	B-2-1	B-2-1 S-6	10'-12'		14	38	24	SC					

Client:	IPR-GDF SUEZ
Project:	COLETO CREEK

Project No.: 60225561

AECOM

Figure

	SOIL DATA												
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS					
•	B-2-1	B-2-1 S-10	18'-20'		13	41	28	SC					

AECOM	Client: IPR-GDF SUEZ Project: COLETO CREEK	
	Project No.: 60225561	Figure

	SOIL DATA							
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
	B-2-1	B-2-1 S-17	32'-34'		14	29	15	SC

Client: IPR-GDF SUEZ Project: COLETO CREEK

Project No.: 60225561

AECOM

Figure

	SOIL DATA							
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
Đ	B-2-1	B-2-1 S-27	55.0'-56.6'		17	28	11	SC

	Client: IPR-GDF SUEZ	
AECOM	Project: COLETO CREEK	
	Project No.: 60225561	Figure

SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
•	B-2-1	B-2-1 S-33	85.0'-86.5'		25	59	34	СН

AECOM	Client: IPR-GDF SUEZ Project: COLETO CREEK
	Project No.: 60225561

Figure

	SOIL DATA							
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
	B-2-2	B-2-2 S-16	59.0'-60.5'		18	41	23	CL

AECOM	Client: IPR-GDF SUEZ Project: COLETO CREEK	
	Project No.: 60225561	Figure

	SOIL DATA							
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
¢	B-2-2	B-2-2 S-18	69.0'-70.5'		26	63	37	СН

	Client: IPR-GDF SUEZ	
AECOM	Project: COLETO CREEK	
	Project No · 60225561	Figure

	SOIL DATA							
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
۲	B-3-1	B-3-1 S-9	16.0'-17.8'		15	44	29	SC

AECOM	Client: 1PR-GDF SUEZ Project: COLETO CREEK	
	Project No.: 60225561	Figure

	SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS	
۲	B-3-1	B-3-1 S-10	18'-20'		13	35	22	SC	

Autors attended attende	Client: IPR-GDF SUEZ Project: COLETO CREEK	
	Project No.: 60225561	Figure

SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
۲	B-5-1	B-5-1 S-14	26'-27'		18	30	12	CL

and proprieties willing and and	Client: IPR-GDF SUEZ Project: COLETO CREEK	
	Project No.: 60225561	Figure

SPECIFIC GRAVITY OF SOIL SOLIDS ASTM D-854

atory Services Group	750 Corporate Woods Parkway	Vernon Hills, IL 60061	Phone: (847) 279-2500 Fax: (847) 279-25.
AECOM Proje	ct No.: 60225561		Test Date: 12/6/2011
Project Name:	Coleto Creek Facility IPR-GDP Suez		
Boring/Source:	1-1	Boring/Source:	4-1
Sample No.:	16,17,18	Sample No.:	7
Depth (ft.):	30.0-36.7	Depth (ft.):	12.0-14.0
Description:	Caliche - White	Description:	F-M Sand Little Clay Traee Silt
			- Brownish Gray SC

	Test 1
Flask No.	SG-3
Wt. Flask + Soil + Water (W2)	742.20
Wt. Flask + Water (W3)	677.46
Temperature (C)	21.5
Density of Water @ test Tem.	0.99789
Tare No.	ED-4
Wt. Tare	578.17
Wt. Tare + Soil	681.20
Wt. Soil (W2-W3)	103.03
(k) Temp. Correction	0.99968
Specific Gravity (Gs)	2.690

	Test 2
Flask No.	SG-10
Wt. Flask + Soil + Water (W2)	742.38
Wt. Flask + Water (W3)	668.44
Temperature (C)	21.5
Density of Water @ test Tem.	0.99789
Tare No.	ED-4
Wt. Tare	576.51
Wt. Tare + Soil	695.11
Wt. Soil (W2-W3)	118.60
(k) Temp. Correction	0.99968
Specific Gravity (Gs)	2.655

Boring/Source:	4-1
Sample No.:	13
Depth (ft.):	24.0-26.0
Description:	Clayey F-M Sand Little Silt
	- Brownish Gray SC

	Boring/Source: Sample No.:
	Depth (ft.):
-	Description:

2-1 14 26.0-28..0 Clayey F-M Sand Little Silt - Brownish Gray SC

	Test 3
Flask No.	SG-1
Wt. Flask + Soil + Water (W2)	726.62
Wt. Flask + Water (W3)	675.32
Temperature (C)	21.5
Density of Water @ test Tem.	0.99789
Tare No.	ED-6
Wt. Tare	602.23
Wt. Tare + Soil	684.30
Wt. Soil (W2-W3)	82.07
(k) Temp. Correction	0.99680
Specific Gravity (Gs)	2.659

	Test 4
Flask No.	SG-2
Wt. Flask + Soil + Water (W2)	738.44
Wt. Flask + Water (W3)	668.48
Temperature (C)	21.5
Density of Water @ test Tem.	0.99789
Tare No.	ED-10
Wt. Tare	619.18
Wt. Tare + Soil	730.96
Wt. Soil (W2-W3)	111.78
(k) Temp. Correction	0.99968
Specific Gravity (Gs)	2.672

Technician	BCM	Calculated	BCM	Checked	WPQ
Date	12/2/11	Date	12/2/11	Date	12/6/11

ORGANIC CONTENT TEST ASTM D-2974 Method C

Laboratory Services Group

750 Corporate Woods Parkway, Vernon Hills, Illinois 60061

Phone: (847) 279-2500 Fax:(847) 279-2550

AECOM Project No.: Project Name: Date Tested: 60225561 Coleto Creek Facility - IPR-GDP Suez 12/6/2011

Sample Information

Boring / Source:	B-4-1
Sample No.:	13
Depth (ft.):	24.0-26.0

Organic Content Test Data

Tare No.:	Ν
Tare Wt. (gm): T	17.71
Wet Wt. + Tare (gm): A+T	48.27
Dry Wt. + Tare (gm): B+T	44.70
Moisture Content (%):	13.23
Wt. of Ash + Tare (gm): D+T	44.65
Percent Ash: $(D-T/B-T)x100 = E$	99.81
Organic Content (%):	0.19

** Note: Test performed by heating the sample to 440 degrees centigrade for a period of three hours.

Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

TRIAXIAL COMPRESSION TEST REPORT

Project: COLETO CREEK FACILITY	Location: IPR-GDF SUEZ	Project No.: 60225561				
Boring No.: B-2-1 S-14	Tested By: BCM	Checked By: WPQ				
Sample No.: S-14	Test Date: 12/5/11	Depth: 26.0'-28.0'				
Test No.: B-2-1 S-14	Sample Type: 3" ST	Elevation:				
Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC						
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767						

Project: COLETO CREEK FACILITY	
Boring No.: B-2-1 S-14	
Samplē No.: S-14	
Test No.: 10.4 PSI	

Project No.: 60225561 Checked By: WPQ Depth: 26.0'-28.0' Elevation: ----

Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Specimen Height: 5.91 in Specimen Area: 6.32 in^2 Specimen Volume: 37.36 in^3

Liquid Limit: 42

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Plastic Limit: 24

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform

4	Time	Verti cal Strai n	Corrected Area	Deviator Load	Deviator Stress	Pore Pressure	Hori zontal Stress	Verti cal Stress
1 2 3 4 5 6 7 8 9 10 11 12	Ti me mi n 0 5. 0001 15 20 25 30. 001 35. 001 40. 001 55. 001	Strain % 0.045204 0.094782 0.14144 0.18956 0.23768 0.28726 0.33538 0.3835 0.43308 0.4812 0.53078	Area i n^2 6. 3179 6. 3207 6. 3239 6. 3268 6. 3299 6. 3329 6. 3361 6. 3391 6. 3452 6. 3453 6. 3484 6. 3516	Load I b 0 31. 887 40. 44 44. 344 44. 344 46. 761 48. 992 51. 038 52. 618 54. 012 55. 5 57. 08 58. 289	Stress tsf 0 0.36323 0.46042 0.50464 0.53189 0.557 0.57997 0.59764 0.61318 0.62975 0.64737 0.66075	Pressure tsf 5.0449 5.1097 5.1704 5.2061 5.2487 5.2633 5.275 5.2849 5.2931 5.3001 5.3006	Stress tsf 5. 7888 5. 7888 5. 7888 5. 7888 5. 7888 5. 7888 5. 7888 5. 7888 5. 7888 5. 7888 5. 7888 5. 7888 5. 7888 5. 7888 5. 7888 5. 7888	Stress tsf 5.7888 6.152 6.2492 6.2934 6.3207 6.3458 6.3688 6.3688 6.3864 6.402 6.4186 6.4362 6.4495
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	$\begin{array}{c} 60.\ 001\\ 70.\ 001\\ 80.\ 001\\ 90.\ 002\\ 100\\ 110\\ 120\\ 130\\ 140\\ 150\\ 160\\ 170\\ 180\\ 190\\ 200\\ 210\\ 220\\ 230 \end{array}$	$\begin{array}{c} 0.5789\\ 0.6766\\ 0.77576\\ 0.87346\\ 0.97115\\ 1.0703\\ 1.1695\\ 1.2701\\ 1.3707\\ 1.4699\\ 1.5676\\ 1.6682\\ 1.7688\\ 1.8694\\ 1.9715\\ 2.0706\\ 2.1712\\ 2.2719\end{array}$		59. 311 61. 636 63. 588 65. 633 67. 213 68. 794 70. 281 71. 676 72. 605 74. 093 75. 023 76. 231 77. 254 78. 462 79. 95 81. 065 81. 809 82. 553	0. 67202 0. 69766 0. 71904 0. 74144 0. 75854 0. 77158 0. 80646 0. 81609 0. 83197 0. 84157 0. 85426 0. 85426 0. 86483 0. 87746 0. 89316 0. 90471 0. 91207 0. 91942	5.3112 5.3194 5.3258 5.3311 5.3346 5.3369 5.3404 5.3428 5.3369 5.3369 5.3369 5.3369	5.7888 5.7888	
31 32 33 35 36 37 38 39 40 41 42 43 44 45 46 47	240 270 300 330 420 450 480 510 540 570 600 630 660 690 720	$\begin{array}{c} 2.\ 3725\\ 2.\ 6699\\ 2.\ 9674\\ 3.\ 2678\\ 3.\ 5609\\ 3.\ 8584\\ 4.\ 1602\\ 4.\ 4621\\ 4.\ 761\\ 5.\ 0585\\ 5.\ 3574\\ 5.\ 6505\\ 5.\ 9465\\ 6.\ 244\\ 6.\ 5458\\ 6.\ 8477\\ 7.\ 1466\end{array}$	$\begin{array}{c} 6.\ 4714\\ 6.\ 4912\\ 6.\ 5111\\ 6.\ 5313\\ 6.\ 5511\\ 6.\ 5714\\ 6.\ 5921\\ 6.\ 6129\\ 6.\ 6337\\ 6.\ 6545\\ 6.\ 6755\\ 6.\ 6962\\ 6.\ 7173\\ 6.\ 7386\\ 6.\ 7604\\ 6.\ 7823\\ 6.\ 8041\\ \end{array}$	83. 575 86. 457 88. 688 91. 198 93. 244 95. 103 97. 892 99. 658 101. 8 104. 03 106. 03 106. 07 108. 95 111. 93 114. 07 115. 28 117. 32 119. 46	$\begin{array}{c} 0. \ 92985\\ 0. \ 95898\\ 0. \ 98072\\ 1. \ 0054\\ 1. \ 0248\\ 1. \ 042\\ 1. \ 0692\\ 1. \ 0851\\ 1. \ 1049\\ 1. \ 1256\\ 1. \ 1441\\ 1. \ 1715\\ 1. \ 1997\\ 1. \ 2188\\ 1. \ 2277\\ 1. \ 2455\\ 1. \ 2641\\ \end{array}$	5.3317 5.3235 5.3142 5.3036 5.2943 5.2849 5.2756 5.2668 5.2668 5.2569 5.2476 5.2376 5.2289 5.2184 5.2098 5.2008 5.1915 5.1821	5.7888 5.7888	6.7186 6.7478 6.7695 6.7942 6.8136 6.8308 6.858 6.8739 6.8937 6.9144 6.9329 6.9603 6.9885 7.0076 7.0165 7.0343 7.0529
48 49 51 52 53 55 56 57 58 60 61 62 63 64 65	750 780 810 840 900 930 960 990 1020 1050 1080 1110 1140 1170 1200 1230 1260	$\begin{array}{c} 7.\ 4441\\ 7.\ 7386\\ 8.\ 0332\\ 8.\ 3306\\ 8.\ 6296\\ 8.\ 9329\\ 9.\ 2333\\ 9.\ 5336\\ 9.\ 8282\\ 10.\ 121\\ 10.\ 412\\ 10.\ 418\\ 11.\ 017\\ 11.\ 317\\ 11.\ 613\\ 11.\ 91\\ 12.\ 205\\ 12.\ 5$	6.826 6.8478 6.8697 6.892 6.9146 6.9376 6.9605 7.0293 7.065 7.0293 7.0763 7.1 7.1241 7.1241 7.1241 7.1241 7.1220 7.2204	$\begin{array}{c} 122.\ 62\\ 124.\ 67\\ 127.\ 73\\ 128.\ 57\\ 131.\ 08\\ 133.\ 59\\ 136.\ 57\\ 138.\ 42\\ 139.\ 35\\ 141.\ 59\\ 143.\ 59\\ 143.\ 59\\ 145.\ 68\\ 147.\ 72\\ 150.\ 23\\ 151.\ 6\\ 155.\ 16\\ 156.\ 37\\ 159.\ 71\end{array}$	$\begin{array}{c} 1.\ 2934\\ 1.\ 3108\\ 1.\ 3387\\ 1.\ 3432\\ 1.\ 3649\\ 1.\ 3864\\ 1.\ 4126\\ 1.\ 4271\\ 1.\ 4302\\ 1.\ 4502\\ 1.\ 4502\\ 1.\ 4673\\ 1.\ 4502\\ 1.\ 4673\\ 1.\ 4822\\ 1.\ 498\\ 1.\ 5183\\ 1.\ 5301\\ 1.\ 5576\\ 1.\ 5645\\ 1.\ 5976\\ $	5.1734 5.164 5.1547 5.1453 5.1453 5.1284 5.1109 5.1033 5.0951 5.0869 5.0787 5.0706 5.063 5.0548 5.0402 5.0314 5.0320	5.7888 5.78	$\begin{array}{c} 7.\ 0822\\ 7.\ 0996\\ 7.\ 1275\\ 7.\ 132\\ 7.\ 1537\\ 7.\ 1752\\ 7.\ 2014\\ 7.\ 2014\\ 7.\ 2159\\ 7.\ 2014\\ 7.\ 239\\ 7.\ 2561\\ 7.\ 271\\ 7.\ 2868\\ 7.\ 3071\\ 7.\ 3189\\ 7.\ 3464\\ 7.\ 3533\\ 7.\ 3814\\ 7.\ 7.\ 7.\ 7.\ 7.\ 7.\ 7.\ 7.\ 7.\ 7.\$
66 67 69 70 71 72 73 74 75 76 77	1290 1320 1350 1410 1440 1470 1500 1530 1560 1590 1612. 1	12. 794 13. 092 13. 395 13. 697 13. 996 14. 293 14. 589 14. 881 15. 174 15. 473 15. 773 15. 995	7.2448 7.2696 7.295 7.3205 7.346 7.3715 7.397 7.4224 7.448 7.4744 7.501 7.5208	160. 74 163. 06 164. 18 166. 87 168. 08 169. 66 172. 36 173. 75 176. 63 178. 03 181 182. 21	1.5974 1.615 1.6204 1.6412 1.6474 1.6571 1.6777 1.6855 1.7075 1.7149 1.7374 1.7444	5.0238 5.0168 5.0098 5.0022 4.9958 4.9894 4.9829 4.9759 4.9689 4.9625 4.9549 4.9502	5.7888 5.7888	7. 3862 7. 4038 7. 4092 7. 43 7. 4362 7. 4459 7. 4465 7. 4743 7. 4963 7. 5037 7. 5262 7. 5332

TRI AXI AL TEST	
-----------------	--

Project: COLETO CREEK FACILITY	L
Boring No.: B-2-1 S-14	٦
Sample No.: S-14	٦
Test No.: 10.4 PSI	S

Project No.: 60225561 Checked By: WPQ Depth: 26.0'-28.0' Elevation: ----

Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Specimen Height: 5.91 in Specimen Area: 6.32 in^2 Specimen Volume: 37.36 in^3

Liquid Limit: 42

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Plastic Limit: 24

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform

		Tatal	Tatal	Гуроро		Effortivo	[ffootivo	·	5	
	Verti cal Strai n %	Total Verti cal Stress tsf	Total Horizontal Stress tsf	Excess Pore Pressure tsf	A Parameter	Effecti ve Verti cal Stress tsf	Effective Horizontal Stress tsf	Stress Ratio	Effecti ve p tsf	q tsf
123456789011234567890122345678901233456789012344567890123456789012345667890123456789012345678901234567890123456777777777777777777777777777777777777	$ \begin{array}{c} 0. \ 00\\ 0. \ 05\\ 0. \ 09\\ 0. \ 14\\ 0. \ 27\\ 0. \ 27\\ 2.\ 27\\ 2.\ 27\\ 2.\ 27\\ 2.\ 27\\ 2.\ 27\\ 2.\ 27\\ 2$	5.7888 6.152 6.2492 6.2492 6.2934 6.3207 6.3458 6.3688 6.3688 6.3684 6.402 6.4186 6.4362 6.4495 6.4608 6.5302 6.5473 6.5644 6.5804 6.5953 6.6049 6.6208 6.6304 6.6304 6.6336 6.6633 6.6623 6.7478 7.7152 7.0322 7.0996 7.1257 7.132 7.1537 7.1527 7.2014 7.2208 7.2208 7.2207 7.2208 7.2208 7.2208 7.22159 7.2208 7.2208 7.22159 7.2208 7.2208 7.2208 7.22159 7.2208 7.2208 7.22159 7.2208 7.433 7.4362 7.432 7.432 7.432 7.5232 7.5332	5.7888 5.78	0 0. 064842 0. 1256 0. 1256 0. 20387 0. 21848 0. 23016 0. 24009 0. 24827 0. 25528 0. 26171 0. 26638 0. 27456 0. 28098 0. 28624 0. 28975 0. 29208 0. 29384 0. 29559 0. 29559 0. 29559 0. 29559 0. 29617 0. 29792 0. 29772 0. 29772 0. 29772 0. 29772 0. 29772 0. 29732 0. 29325 0. 29208 0. 29325 0. 29208 0. 29325 0. 29208 0. 29734 0. 29772 0. 29772 0. 29772 0. 29772 0. 29773 0. 29208 0. 29208 0. 29359 0. 29208 0. 292703 0. 29208 0. 28879 0. 24944 0. 24009 0. 23075 0. 221908 0. 221908 0. 221908 0. 225879 0. 24944 0. 24009 0. 23075 0. 22198 0. 225879 0. 24944 0. 24009 0. 23075 0. 22198 0. 225879 0. 24944 0. 24009 0. 23075 0. 22198 0. 26570 0. 202711 0. 1735 0. 16473 0. 16473 0. 16473 0. 16473 0. 1728 0. 10948 0. 092298 0. 03505 0. 04206 0. 033822 0. 025703 0. 013436 -0. 02103 -0. 046733 -0. 013436 -0. 02103 -0. 04907 -0. 055492 -0. 042644 -0. 04907 -0. 055492 -0. 042644 -0. 04907 -0. 055492 -0. 042644 -0. 04907 -0. 055492 -0. 042644 -0. 04907 -0. 055492 -0. 042644 -0. 04907 -0. 055492 -0. 042644 -0. 04907 -0. 055492 -0. 042644 -0. 04907 -0. 055492 -0. 042644 -0. 04907 -0. 055492 -0. 042644 -0. 04907 -0. 055492 -0. 042644 -0. 04907 -0. 055492 -0. 042644 -0. 04907 -0. 055492 -0. 042644 -0. 04907 -0. 055492 -0. 042644 -0. 04907 -0. 055492 -0. 042644 -0. 04907 -0. 055492 -0. 042644 -0. 04907 -0. 055492 -0. 042644 -0. 04907 -0. 055492 -0. 042644 -0. 04907 -0. 055492 -0. 042647 -0. 04073 -0. 042647 -0.	0.000 0.179 0.273 0.319 0.349 0.366 0.377 0.385 0.392 0.394 0.394 0.396 0.396 0.396 0.396 0.396 0.397 0.377 0.371 0.363 0.363 0.358 0.358 0.358 0.354 0.344 0.338 0.320 0.324 0.320 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.260 0.205 0.205 0.205 0.192 0.180 0.168 0.167 0.145 0.135 0.127 0.145 0.167 0.145 0.075 0.068 0.060 0.075 0.068 0.060 0.075 0.029 0.077 0.012 0.002 0.003 -0.021 -0.022 -0.026 -0.033 -0.021 -0.022 -0.026 -0.031 -0.022 -0.026 -0.031 -0.022 -0.026 -0.031 -0.022 -0.026 -0.031 -0.022 -0.026 -0.031 -0.022 -0.026 -0.031 -0.022 -0.026 -0.031 -0.022 -0.026 -0.031 -0.022 -0.026 -0.031 -0.022 -0.026 -0.031 -0.022 -0.026 -0.032 -0.026 -0.031 -0.022 -0.026 -0.032 -0.026 -0.032 -0.026 -0.032 -0.026 -0.032 -0.052 -0.054	0.74395 1.0423 1.0783 1.0784 1.0901 1.0971 1.1054 1.117 1.1254 1.131 1.1254 1.143 1.1496 1.1671 1.2275 1.2417 1.2275 1.2417 1.2254 1.278 1.278 1.2639 1.278 1.2639 1.278 1.2639 1.278 1.3247 1.3554 1.3639 1.3742 1.3639 1.3742 1.3639 1.5454 1.607 1.6368 1.6668 1.6652 1.771 1.8425 1.607 1.6368 1.6668 1.6952 1.771 1.8455 1.8708 1.9729 1.9866 2.0166 2.0468 2.0166 2.0468 2.0166 2.0468 2.0166 2.0468 2.0166 2.0468 2.0166 2.0468 2.0166 2.0468 2.0166 2.0468 2.0166 2.0468 2.0166 2.0468 2.0166 2.0468 2.0166 2.0468 2.0166 2.0468 2.0166 2.0468 2.0871 2.1691 2.1691 2.275 2.3624 2.3994 2.352 2.3624 2.3994 2.4278 2.4404 2.4565 2.4983 2.5274 2.5412 2.5713 2.583	0.74395 0.6791 0.61835 0.58272 0.55818 0.54007 0.52547 0.51379 0.50385 0.49568 0.48867 0.48224 0.47757 0.46939 0.46296 0.45771 0.4572 0.45771 0.45422 0.44511 0.44402 0.44402 0.44402 0.44602 0.44602 0.44602 0.44602 0.44602 0.44602 0.44602 0.44602 0.44602 0.44602 0.44602 0.44602 0.44602 0.44602 0.44602 0.44602 0.54120 0.53186 0.53189 0.52196 0.53189 0.52196 0.53189 0.52196 0.53189 0.557921 0.559931 0.57045 0.57921 0.57921 0.58797 0.57721 0.6667 0.61543 0.62478 0.63412 0.64347 0.63712 0.66041 0.67744 0.63712 0.66774 0.67794 0.67794 0.67794 0.67738 0.77199 0.77865 0.7738 0.77990 0.77990 0.77902 0.79302 0.79302 0.779302 0.779302 0.779302 0.779302 0.779302 0.779302 0.779302 0.779302 0.779302 0.779302 0.779302 0.779302 0.779302 0.779302 0.779302 0.83858 0.81288 0.81288 0.83858	$\begin{array}{c} 1.\ 000\\ 1.\ 535\\ 1.\ 745\\ 1.\ 866\\ 1.\ 953\\ 2.\ 031\\ 2.\ 104\\ 2.\ 163\\ 2.\ 217\\ 2.\ 270\\ 2.\ 325\\ 2.\ 370\\ 2.\ 407\\ 2.\ 486\\ 2.\ 553\\ 2.\ 620\\ 2.\ 716\\ 2.\ 759\\ 2.\ 799\\ 2.\ 823\\ 2.\ 865\\ 2.\ 887\\ 2.\ 976\\ 2.\ 759\\ 2.\ 799\\ 2.\ 823\\ 2.\ 865\\ 2.\ 887\\ 2.\ 916\\ 2.\ 989\\ 3.\ 007\\ 3.\ 085\\ 3.\ 022\\ 3.\ 034\\ 3.\ 061\\ 3.\ 072\\ 3.\ 072\\ 3.\ 068\\ 3.\ 072\\ 3.\ 068\\ 3.\ 072\\ 3.\ 068\\ 3.\ 072\\ 3.\ 072\\ 3.\ 068\\ 3.\ 072\\ 3.\ 072\\ 3.\ 080\\ 3.\ 072\\ 3.\ 072\\ 3.\ 080\\ 3.\ 072\\ 3.\ 080\\ 3.\ 072\\ 3.\ 080\\ 3.\ 072\\ 3.\ 080\\ 3.\ 072\\ 3.\ 080\\ 3.\ 072\\ 3.\ 080\\ 3.\ 077\\ 3.\ 080\\ 3.\ 077\\ 3.\ 080\\ 3.\ 099\\ 3.\ 101\\ 3.\ 086\\ 3.\ 092\\ 3.\ 085\\ 3.\ 086\\ 3.\ 092\\ 3.\ 086\\ 3.\ 077\\ 3.\ 073\\ 3.\ 082\\ 3.\ 077\\ 3.\ 073\\ 3.\ 083\\ 3.\ 075\\ 3.\ 080\\ 3.\ 0$	0.74395 0.86072 0.84856 0.83504 0.82413 0.81857 0.81857 0.81857 0.8126 0.8126 0.8126 0.81262 0.81262 0.81262 0.81262 0.81262 0.81262 0.81262 0.81262 0.82248 0.82442 0.83347 0.83966 0.84592 0.85582 0.86201 0.86813 0.87315 0.87315 0.87302 0.90305 0.9079 0.91449 0.92205 0.94479 0.96501 0.98784 1.0069 1.0249 1.0249 1.0478 1.0645 1.0843 1.104 1.1232 1.1457 1.1703 1.1886 1.2201 1.2387 1.2621 1.2387 1.2621 1.2387 1.2621 1.2387 1.2621 1.2387 1.2621 1.2387 1.2621 1.2387 1.2621 1.2387 1.2621 1.2387 1.2621 1.2387 1.2621 1.2387 1.2621 1.2387 1.5375 1.3341 1.3536 1.3755 1.3341 1.3536 1.3755 1.3675 1.5637 1.5637 1.5637 1.5637 1.5637 1.6672 1.6167 1.6236 1.6736 1.6736 1.6736 1.6736 1.7028 1.	0 0.18161 0.23021 0.25232 0.26595 0.2785 0.28982 0.30659 0.31488 0.32369 0.33037 0.33601 0.34883 0.35952 0.37072 0.37927 0.3878 0.39579 0.40323 0.40804 0.41599 0.42079 0.42079 0.42713 0.42713 0.44658 0.45264 0.45264 0.45204 0.45245 0.5221 0.5346 0.5223 0.5223 0.5243 0.55243 0.55243 0.56278 0.57204 0.5345 0.56278 0.57204 0.5345 0.56278 0.57204 0.5345 0.56278 0.57204 0.53453 0.56278 0.57204 0.57204 0.53453 0.56278 0.57204 0.53453 0.56278 0.57204 0.53576 0.6467 0.64274 0.63205 0.64758 0.62744 0.63205 0.64758 0.67158 0.6274 0.773510 0.773510 0.778510 0.796310 0.796310 0.796310 0.82770 0.82770 0.828770 0.82770 0.828770 0.87770 0.87770 0.87770 0.87770 0.87770 0.87770 0.87770 0.877700 0.877700 0.877700 0.877700 0.877700 0.87

Project: COLETO CREEK FACILITY
Boring No.: B-2-1 S-14
Samplē No.: S-14
Test No.: 17.4 PSI

Project No.: 60225561 Checked By: WPQ Depth: 26.0'-28.0' Elevation: ----

AECOM

Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Specimen Height: 6.08 in Specimen Area: 6.35 in^2 Specimen Volume: 38.65 in^3

Liquid Limit: 42

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Plastic Limit: 24

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform

quiù Lii	m t. 42				21		weasar ea	00001110 01
	Time min	Verti cal Strai n %	Corrected Area i n^2	Deviator Load Ib	Deviator Stress tsf	Pore Pressure tsf	Hori zontal Stress tsf	Verti cal Stress tsf
1 2 3 4 5 6 7 8 9 0 1 1 2 1 3 4 5 6 7 8 9 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 3 4 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3	$\begin{array}{c} 0\\ 5.\ 0038\\ 10.\ 004\\ 15.\ 004\\ 20.\ 004\\ 25\\ 30\\ 35\\ 40\\ 45\\ 50\\ 55.\ 001\\ 60.\ 001\\ 70.\ 001\\ 80.\ 001\\ 90.\ 001\\ 100\\ 110\\ 120\\ 130\\ 140\\ 150\\ 160\\ 170\\ 180\\ 200\\ 210\\ 220\\ 230\\ 240\\ 270\\ 300\\ 330\\ 330\\ 330\\ 340\\ 450\\ 450\\ 450\\ 600\\ 630\\ 660\\ 690\\ 720\\ 750\\ 780\\ 810\\ 840\\ 870\\ 990\\ 930\\ 990\\ 1020\\ 1050\\ 1080\\ 1110\\ 1140\\ 150\\ 1080\\ 1110\\ 1140\\ 1200\\ 1230\\ 1260\\ 1290\\ 1320\\ 1350\\ 1380\\ 1410\\ 140\\ 1470\\ 1530\\ 1380\\ 1410\\ 1470\\ 1530\\ 1560\\ 1590\\ 1613.\ 1\end{array}$	0 0.0388 0.085062 0.13132 0.17908 0.22683 0.27459 0.32234 0.37159 0.42083 0.46859 0.5641 0.75512 0.85361 0.95061 1.0491 1.1446 1.2401 1.3356 1.4326 1.6251 1.7206 1.6251 1.7206 1.8162 1.9102 2.0057 2.1012 2.0057 2.1012 2.0057 2.5817 2.8757 3.1682 3.4592 3.7502 4.0397 4.3292 4.6202 4.9127 5.2082 5.507 5.7902 6.0782 6.3692 6.3692 6.9497 7.2407 7.5362 7.8302 8.1197 8.4107 8.6987 8.9883 9.2793 9.5718 9.8643 10.157 10.436 11.024 11.31 11.69 12.477 12.771 13.0643 12.477 12.771 13.643 13.932 14.219 14.814 15.107 15.398 15.62	6.353 6.355 6.355 6.355 6.3613 6.3613 6.3614 6.3705 6.3705 6.3705 6.3705 6.3705 6.3705 6.3705 6.3705 6.3705 6.3705 6.3705 6.3705 6.3705 6.3705 6.3705 6.389 6.389 6.4013 6.4013 6.4265 6.4328 6.4426 6.4453 6.4453 6.4452 6.4452 6.4452 6.4452 6.4452 6.4452 6.4452 6.4452 6.4452 6.4452 6.4452 6.4452 6.4452 6.4452 6.4452 6.4452 6.4452 6.5213 6.5608 6.6005 6.6405 6.6405 6.6405 6.6405 6.6405 6.6405 6.7228 6.7424 6.7228 6.7434 6.7851 6.8067 6.8489 6.8708 6.9804 7.0254 7.0254 7.0254 7.0254 7.0287 7.3202 7.3204 7.4578 7.4578 7.529 7.529	$\begin{array}{c} 0\\ 29. 35\\ 39. 31\\ 45. 38\\ 50. 036\\ 53. 985\\ 57. 344\\ 60. 35\\ 62. 884\\ 65. 477\\ 67. 658\\ 70. 074\\ 72. 196\\ 76. 204\\ 80. 27\\ 84. 573\\ 86. 98\\ 92. 706\\ 96. 124\\ 99. 719\\ 104. 26\\ 108. 32\\ 111. 57\\ 115. 28\\ 118. 28\\ 121. 41\\ 124. 71\\ 127. 83\\ 131. 01\\ 134. 2\\ 137. 2\\ 146. 28\\ 152. 23\\ 164. 61\\ 169. 79\\ 175. 22\\ 180. 28\\ 123. 164. 61\\ 169. 79\\ 175. 22\\ 180. 28\\ 124. 31\\ 209. 28\\ 213. 41\\ 217. 65\\ 228. 3\\ 189. 48\\ 194. 43\\ 199. 32\\ 209. 28\\ 213. 41\\ 217. 65\\ 238. 39\\ 209. 28\\ 213. 41\\ 217. 65\\ 238. 39\\ 209. 28\\ 213. 41\\ 217. 65\\ 238. 39\\ 209. 28\\ 213. 41\\ 217. 65\\ 238. 39\\ 209. 28\\ 213. 41\\ 217. 65\\ 238. 39\\ 209. 28\\ 213. 41\\ 217. 65\\ 238. 39\\ 209. 28\\ 213. 41\\ 217. 65\\ 226. 9\\ 231. 56\\ 234. 5\\ 238. 39\\ 243. 17\\ 247. 82\\ 250. 54\\ 253. 72\\ 265. 5\\ 268. 63\\ 277\\ 280. 18\\ 287. 49\\ 291. 85\\ 297. 62\\ 299. 45\\ 302. 28\\ 307. 76\\ 309. 29\\ 312. 12\\ 316. 72\\ \end{array}$	0 0.3325 0.44513 0.51363 0.56606 0.61044 0.68176 0.71004 0.73895 0.76319 0.79007 0.8136 0.90285 0.9503 0.99568 1.0769 1.1611 1.2451 1.2451 1.2452 1.3175 1.3175 1.3863 1.4197 1.4536 1.4875 1.5193 1.6157 1.7372 1.801 1.9055 1.9547 2.0023 2.0419 2.0827 2.3825 2.4265 2.3024 2.5241 2.5241 2.5643 2.5241 2.5643 2.6761 2.7587 2.7842 2.8192 2.8366 2.8788 2.9226 2.9308 2.9226 2.9308 2.9815 2.986 3.003 3.0288	5.0454 5.1985 5.2806 5.3339 5.3744 5.4054 5.4054 5.4298 5.4676 5.4676 5.482 5.5042 5.5042 5.5474 5.5474 5.5477 5.5477 5.5477 5.5477 5.5477 5.5477 5.5478 5.5477 5.5478 5.5477 5.5478 5.5478 5.5477 5.5478 5.5477 5.5425 5.5478 5.5478 5.5478 5.5478 5.5258 5.5314 5.5258 5.5314 5.5258 5.5325 5.4977 5.5425 5.4977 5.5425 5.24892 5.44892 5.44892 5.44892 5.4487 5.44892 5.4487 5.4482 5.3805 5.3225 5.2285 5.2451 5.2285 5.2451 5.2285 5.2451 5.2285 5.1702 5.1702 5.1702 5.1702 5.1702 5.0798 4.9805 4.9805 4.9805 4.8806 4.8607 4.8806 4.8607 4.7714 4.7692 4.7792 4.7792 4.7792 4.7792 4.7792 4.7792 4.7792 4.7792 4.7792 4.6743 4.66837 4.6743 4.66837 5.6682 5.6837 5.6825 5.0382 5.0382 5.0382 5.0382 5.0382 5.0382 5.0798	6. 2928 6. 2928	6.2928 6.253 6.7379 6.8589 6.9032 6.9409 6.9746 7.0028 7.0317 7.0829 7.0829 7.1957 7.2431 7.3324 7.3697 7.4089 7.5029 7.578 7.6438 7.6791 7.7125 7.7803 7.8121 7.9078 8.0388 8.1449 8.24751 8.3347 8.3347 8.3815 8.55732 8.63531 8.7424 8.9929 9.0779 9.0779 9.0719 9.0779 9.0719 9.0779 9.0779 9.0719 9.07788 9.2743 9.

tri A	XI AL	TEST
-------	-------	------

Project: COLETO CREEK FACILITY	
Boring No.: B-2-1 S-14	
Sample No.: S-14	
Test No.: 17.4 PSI	

Plastic Limit: 24

Project No.: 60225561 Checked By: WPQ Depth: 26.0'-28.0' Elevation: ----

AECOM

Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Specimen Height: 6.08 in Specimen Area: 6.35 in^2 Specimen Volume: 38.65 in^3

Liquid Limit: 42

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform

•	.1 1111 (. 42				- ·		modour of	a specifie of	2107	
	Verti cal Strai n %	Total Verti cal Stress tsf	Total Hori zontal Stress tsf	Excess Pore Pressure tsf	A Parameter	Effecti ve Verti cal Stress tsf	Stress tsf	Stress Ratio	Effective p tsf	q tsf
1234567890112345678901223456789012334567890123345678901234567890123456789012345678901234567890123456777777777777777777777777777777777777	$ \begin{array}{c} 0.04\\ 0.09\\ 0.13\\ 0.23\\ 0.32\\ 0.32\\ 0.42\\ 0.56\\ 0.00\\ 0.56\\ 0.00\\ 0.56\\ 0.00\\ 0.56\\ 0.00\\ 0.56\\ 0.00\\ 0.56\\ 0.00$	$ \begin{array}{c} 6. 2928 \\ 6. 6253 \\ 6. 7379 \\ 6. 8064 \\ 6. 8589 \\ 6. 9032 \\ 6. 9032 \\ 6. 9746 \\ 7. 0028 \\ 7. 0317 \\ 7. 056 \\ 7. 0829 \\ 7. 1064 \\ 7. 1507 \\ 7. 1957 \\ 7. 2431 \\ 7. 2885 \\ 7. 3324 \\ 7. 3697 \\ 7. 4586 \\ 7. 5029 \\ 7. 5379 \\ 7. 5379 \\ 7. 578 \\ 7. 6103 \\ 7. 6438 \\ 7. 6791 \\ 7. 7125 \\ 7. 7464 \\ 7. 7803 \\ 7. 6438 \\ 7. 6791 \\ 7. 7125 \\ 7. 7464 \\ 7. 7803 \\ 7. 6438 \\ 7. 6791 \\ 7. 7125 \\ 7. 7464 \\ 7. 7803 \\ 7. 6438 \\ 7. 6791 \\ 7. 7125 \\ 7. 7464 \\ 7. 7803 \\ 7. 6438 \\ 7. 6791 \\ 7. 7125 \\ 7. 7464 \\ 7. 7803 \\ 7. 6438 \\ 7. 6791 \\ 7. 7125 \\ 7. 7464 \\ 7. 7803 \\ 7. 6438 \\ 7. 6791 \\ 7. 7458 \\ 8. 038 \\ 8. 1449 \\ 8. 1983 \\ 8. 2475 \\ 8. 2951 \\ 8. 3347 \\ 8. 3817 \\ 8. 3817 \\ 8. 3817 \\ 8. 3817 \\ 8. 3817 \\ 8. 3817 \\ 8. 3817 \\ 8. 4275 \\ 8. 4275 \\ 8. 4751 \\ 8. 5205 \\ 8. 5573 \\ 8. 5573 \\ 8. 5952 \\ 8. 6353 \\ 8. 6781 \\ 8. 7752 \\ 8. 4751 \\ 8. 5205 \\ 8. 5573 \\ 8. 5952 \\ 8. 6353 \\ 8. 6781 \\ 8. 7752 \\ 8. 8169 \\ 8. 8571 \\ 8. 8571 \\ 8. 8275 \\ 8. 4275 \\ 8. 4275 \\ 8. 4275 \\ 8. 4275 \\ 8. 4275 \\ 8. 4275 \\ 8. 4275 \\ 8. 4275 \\ 8. 4275 \\ 8. 2951 \\ 8. 3347 \\ 8. 9014 \\ 8. 9329 \\ 8. 9689 \\ 8. 9689 \\ 8. 9689 \\ 8. 9689 \\ 8. 9689 \\ 8. 9689 \\ 8. 9689 \\ 8. 9689 \\ 8. 9689 \\ 8. 9689 \\ 8. 9689 \\ 8. 9251 \\ 8. 3275 \\ 8. 4275 \\ $	$ 6. 2928 \\ 6. 2928 \\ 6. 2928 \\ 6. 2928 \\ 6. 2928 \\ $	0 0.15311 0.23521 0.28847 0.32896 0.36003 0.38444 0.40496 0.42216 0.43658 0.44823 0.45877 0.46765 0.48152 0.49206 0.49816 0.50204 0.50204 0.50426 0.50426 0.50426 0.50426 0.50240 0.49816 0.49816 0.49820 0.49820 0.49539 0.4915 0.48596 0.48596 0.48596 0.48596 0.48596 0.48596 0.48596 0.48596 0.48596 0.48596 0.48596 0.48596 0.48596 0.48596 0.48596 0.48596 0.48596 0.48596 0.47431 0.46709 0.3628 0.33507 0.30733 0.27959 0.25352 0.22578 0.19971 0.17474 0.15034 0.078774 0.056029 0.034394 0.012759 -0.078774 0.056029 0.034394 0.012759 -0.078774 0.026628 -0.047153 -0.064905 -0.083212 -0.11872 -0.1348 -0.15089 -0.16476 -0.18085 -0.23577 -0.24853 -0.26184 -0.27404 -0.28453 -0.3622 -0.3162 -0.3162 -0.3712	$\begin{array}{c} 0.\ 000\\ 0.\ 460\\ 0.\ 528\\ 0.\ 562\\ 0.\ 581\\ 0.\ 593\\ 0.\ 594\\ 0.\ 595\\ 0.\ 594\\ 0.\ 595\\ 0.\ 594\\ 0.\ 595\\ 0.\ 594\\ 0.\ 595\\ 0.\ 594\\ 0.\ 595\\ 0.\ 594\\ 0.\ 595\\ 0.\ 594\\ 0.\ 595\\ 0.\ 594\\ 0.\ 595\\ 0.\ 594\\ 0.\ 595\\ 0.\ 594\\ 0.\ 595\\ 0.\ 594\\ 0.\ 595\\ 0.\ 594\\ 0.\ 595\\ 0.\ 594\\ 0.\ 595\\ 0.\ 594\\ 0.\ 595\\ 0.\ 594\\ 0.\ 595\\ 0.\ 594\\ 0.\ 595\\ 0.\ 594\\ 0.\ 595\\ 0.\ 594\\ 0.\ 595\\ 0.\ 594\\ 0.\ 595\\ 0.\ 595\\ 0.\ 504\\ 0.\ 398\\ 0.\ 388\\ 0.\ 398\\ 0.\ 386\\ 0.\ 342\\ 0.\ 398\\ 0.\ 342\\ 0.\ 326\\ 0.\ 342\\ 0.\ 326\\ 0.\ 342\\ 0.\ 326\\ 0.\ 342\\ 0.\ 326\\ 0.\ 342\\ 0.\ 326\\ 0.\ 342\\ 0.\ 326\\ 0.\ 342\\ 0.\ 326\\ 0.\ 342\\ 0.\ 326\\ 0.\ 342\\ 0.\ 326\\ 0.\ 342\\ 0.\ 326\\ 0.\ 342\\ 0.\ 326\\ 0.\ 342\\ 0.\ 326\\ 0.\ 342\\ 0.\ 326\\ 0.\ 342\\ 0.\ 326\\ 0.\ 342\\ 0.\ 326\\ 0.\ 342\\ 0.\ 326\\ 0.\ 342\\ 0.\ 326\\ 0.\ 342\\ 0.\ 326\\ 0.\ 342\\ 0.\ 326\\ 0.\ 342\\ 0.\ 3$	1. 2474 1. 4268 1. 4573 1. 4726 1. 4845 1. 4978 1. 5111 1. 5242 1. 5353 1. 5498 1. 5624 1. 5787 1. 5934 1. 6238 1. 6582 1. 6795 1. 741 1. 7828 1. 8195 1. 8195 1. 8195 1. 9971 2. 0719 2. 1294 2. 221 2. 24141 2. 5322 2. 4441 2. 5322 2. 4441 2. 5322 2. 4441 2. 5328 3. 0239 3. 0896 3. 1614 3. 3735 3. 4332 3. 4938 3. 3745 3. 623 3. 6811 3. 7236 3. 6811 3. 7236 4. 0744 4. 11567 4. 1547 4. 1547 4. 2552 3. 623 3. 9747 3. 8364 3. 8955 3. 9747 4. 0744 4. 1547 4. 1547 4. 1547 4. 25507 4. 3458 4. 3731 4. 4762 4. 6344 4. 6534	1. 2474 1. 0943 1. 0122 0. 95893 0. 91844 0. 88737 0. 86296 0. 84244 0. 82524 0. 79917 0. 78863 0. 77975 0. 76588 0. 74536 0. 74536 0. 74536 0. 74536 0. 74758 0. 74536 0. 74758 0. 74536 0. 74758 0. 74758 0. 76599 0. 76145 0. 76699 0. 77520 0. 77520 0. 77520 0. 76145 0. 76331 0. 78031 0. 78752 0. 79529 0. 82631 0. 82912 0. 82631 0. 82912 0. 82631 0. 82912 0. 82631 0. 82912 0. 82631 0. 94007 0. 97388 1. 0216 1. 0477 1. 0277 1. 0971 1. 1226 1. 1459 1. 12346 1. 2744 1. 2946 1. 3123 1. 3364 1. 3484 1. 3484 1. 4421 1. 4565 1. 4421 1. 4565 1. 4742 1. 5536 1. 5536 1. 5536 1. 5536 1. 5536 1. 5513 1. 5913 1. 6002 1. 6015 1. 6246	1. 000 1. 304 1. 440 1. 536 1. 616 1. 688 1. 751 1. 809 1. 911 1. 955 2. 002 2. 043 2. 120 2. 120 2. 120 2. 268 2. 336 2. 399 2. 450 2. 564 2. 619 2. 564 2. 700 2. 730 2. 761 2. 949 2. 944 2. 974 2. 944 2. 944 2. 944 2. 944 2. 933 2. 910 2. 910 2. 910 2. 910 2. 974 2. 910 2. 910 2. 910 2. 974 2. 976 2. 923 2. 923 2. 910 2. 910 2. 910 2. 974 2. 976 2. 923 2. 927 2. 910 2. 910 2. 974 2. 976 2. 923 2. 927 2. 910 2. 910 2. 910 2. 976 2. 976 2. 976 2. 923 2. 927 2. 910 2. 976 2. 976 2. 923 2. 927 2. 910 2. 976 2. 976 2. 976 2. 927 2. 910 2. 976 2. 976 2. 977 2. 910 2. 976 2. 976 2. 977 2. 910 2. 977 2. 970 2. 976 2. 977 2. 970 2. 976 2. 874 2. 874 2. 876 2. 866 2. 863 2. 864	1. 2474 1. 2605 1. 2348 1. 2158 1. 2015 1. 1926 1. 187 1. 1833 1. 1803 1. 2813 1. 2631 1. 2244 1. 2432 1. 2631 1. 3283 1. 3226 1. 3746 1. 3746 1. 3746 1. 3746 1. 3745 1. 4202 1. 4425 1. 4202 1. 4425 1. 4202 1. 4425 1. 4636 1. 6941 1. 7532 1. 8661 1. 9206 1. 9713 2. 0228 2. 0275 2. 9473 2. 9054	0 0. 16625 0. 22257 0. 25682 0. 330522 0. 30522 0. 32406 0. 34088 0. 35502 0. 36947 0. 3816 0. 39504 0. 42897 0. 45143 0. 47515 0. 49784 0. 53846 0. 5829 0. 60504 0. 5829 0. 60504 0. 5829 0. 60504 0. 5829 0. 60504 0. 62255 0. 64262 0. 65874 0. 72681 0. 72681 0. 702681 0. 702681 0. 70750 0. 8075 0. 83783 0. 86861 0. 9005 0. 92607 0. 92607 0. 92607 0. 92607 0. 92607 0. 92607 1. 0711 1. 0414 1. 00713 1. 0211 1. 0414 1. 04733 1. 2218 1. 2248 1. 2412 1. 2248 1. 2412 1. 2248 1. 2412 1. 3743 1. 3743 1. 3794 1. 3794 1. 3794 1. 4095 1. 4183 1. 4258 1. 4743 1. 4095 1. 4183 1. 4274 1. 4613 1. 4673 1. 4095 1. 4183 1. 4298 1. 4476 1. 4613 1. 4644 1. 4908 1. 4908 1. 4931 1. 50179 1. 50174

Project: COLETO CREEK FACILITY
Boring No.: B-2-1 S-14
Sample No.: S-14
Test No.: 24.3 PSI

Project No.: 60225561 Checked By: WPQ Depth: 26.0'-28.0' Elevation: ----

Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Specimen Height: 6.02 in Specimen Area: 6.36 in^2 Specimen Volume: 38.27 in^3

Liquid Limit: 42

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Plastic Limit: 24

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform

	Time min	Verti cal Strai n %	Corrected Area i n^2	Deviator Load Ib	Deviator Stress tsf	Pore Pressure tsf	Hori zontal Stress tsf	Verti cal Stress tsf
1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3	$\begin{array}{c} 0\\ 5.\ 0037\\ 10.\ 004\\ 15.\ 004\\ 20.\ 004\\ 25.\ 004\\ 25.\ 004\\ 25.\ 004\\ 25.\ 004\\ 25.\ 004\\ 20.\ 001\\ 30\\ 35\\ 40\\ 45\\ 50\\ 55\\ 60.\ 001\\ 70.\ 001\\ 80.\ 001\\ 100\\ 110\\ 120\\ 130\\ 140\\ 150\\ 160\\ 170\\ 200\\ 220\\ 230\\ 240\\ 270\\ 300\\ 330\\ 390\\ 420\\ 450\\ 480\\ 510\\ 570\\ 600\\ 660\\ 690\\ 720\\ 750\\ 780\\ 810\\ 840\\ 570\\ 600\\ 660\\ 690\\ 720\\ 750\\ 780\\ 810\\ 840\\ 870\\ 990\\ 900\\ 900\\ 1020\\ 1050\\ 1080\\ 1110\\ 1140\\ 1170\\ 1200\\ 1050\\ 1080\\ 1110\\ 1140\\ 1170\\ 1200\\ 1050\\ 1080\\ 1110\\ 1140\\ 1170\\ 1200\\ 1050\\ 1080\\ 1110\\ 1140\\ 1170\\ 1200\\ 1050\\ 1080\\ 1110\\ 1140\\ 1170\\ 1200\\ 1050\\ 1080\\ 1110\\ 1140\\ 1170\\ 1200\\ 1050\\ 1080\\ 1100\\ 1080$	0 0 0 0 0 0 0 0	$\begin{array}{c} 6.36\\ 6.3621\\ 6.365\\ 6.365\\ 6.368\\ 6.371\\ 6.3741\\ 6.3741\\ 6.3741\\ 6.3741\\ 6.3741\\ 6.3741\\ 6.380\\ 6.3803\\ 6.3923\\ 6.3923\\ 6.3923\\ 6.3953\\ 6.4013\\ 6.4077\\ 6.4196\\ 6.4257\\ 6.4196\\ 6.4257\\ 6.4196\\ 6.4257\\ 6.4319\\ 6.4425\\ 6.4438\\ 6.4442\\ 6.4506\\ 6.4565\\ 6.4635\\ 6.565\\ 6.5645\\ 6.5843\\ 6.604\\ 6.6238\\ 6.6637\\ 6.6637\\ 6.565\\ 6.7239\\ 6.5726\\ 6.5843\\ 6.604\\ 6.6238\\ 6.6637\\ 6.565\\ 6.7239\\ 6.5744\\ 6.7239\\ 6.7444\\ 6.7652\\ 6.786\\ 6.8073\\ 6.8285\\ 6.8736\\ 6.8973\\ 6.8285\\ 6.9788\\ 7.00236\\ 7.239\\ 7.1262\\ 7.2295\\ 7.2527\\ 7.2762\\ 7.3003\\ 7.3249\\ 7.3495\\ 7.3746\\ 7.399\\ 7.4481\\ 7.4734\\ 7.4922\\ 7.5203\end{array}$	$\begin{array}{c} 0\\ 36. 347\\ 49. 512\\ 56. 855\\ 61. 995\\ 66. 401\\ 70. 072\\ 73. 376\\ 79. 355\\ 81. 995\\ 84. 443\\ 86. 961\\ 92. 153\\ 97. 083\\ 101. 44\\ 111. 51\\ 116. 075\\ 120. 95\\ 130. 28\\ 134. 85\\ 139. 54\\ 134. 85\\ 139. 54\\ 148. 8\\ 153. 15\\ 161. 7\\ 165. 74\\ 169. 99\\ 181. 26\\ 240. 43\\ 272. 37\\ 280. 03\\ 287. 37\\ 294. 03\\ 301. 017\\ 320. 31\\ 334. 83\\ 357. 76\\ 363. 58\\ 368. 98\\ 373. 05\\ 377. 95\\ 382. 93\\ 387. 34\\ 392. 06\\ 401. 76\\ 404. 59\\ 409. 47\\ 413. 96\\ 429. 93\\ 387. 36\\ 396. 36\\ 401. 76\\ 404. 59\\ 409. 47\\ 413. 96\\ 404. 59\\ 409. 47\\ 413. 96\\ 409. 47\\ 413. 96\\ 425. 99\\ 436. 53\\ 396. 36\\ 401. 76\\ 404. 59\\ 409. 47\\ 413. 96\\ 404. 59\\ 401. 76\\ 404. 59\\ 401. 76\\ 404. 59\\ 402. 16\\ 404. 59\\ 401. 76\\ 404. 59\\ 402. 56\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50$	0 0, 41134 0, 56007 0, 64283 0, 70062 0, 75005 0, 79115 0, 82808 0, 89468 0, 9238 0, 95113 0, 97903 1, 0365 1, 0909 1, 1387 1, 2494 1, 2993 1, 3526 1, 0909 1, 1387 1, 5548 1, 6064 1, 4041 1, 4542 1, 5037 1, 5548 1, 6064 1, 6544 1, 7012 1, 7478 1, 7926 2, 3234 2, 4217 2, 5159 2, 66555 2, 6873 2, 7675 2, 8392 2, 9166 2, 2215 2, 6873 2, 7675 2, 8392 2, 9166 3, 3568 3, 3871 3, 4526 3, 6074 3, 7153 3, 7585 3, 7879 3, 8258 3, 8952 3, 6674 3, 7153 3, 7585 3, 7879 3, 8258 3, 8952 3, 9601 4, 0012 4, 0165 4, 0218 4, 2096 4, 2199 4, 2516 4, 2753 4, 2889	5.0404 5.2561 5.3969 5.4904 5.5581 5.6109 5.6527 5.6874 5.7402 5.7781 5.793 5.8372 5.8374 5.7781 5.773 5.8392 5.777 5.766 5.7523 5.766 5.5625 5.519 5.4343 5.354 5.354 5.354 5.354 5.354 5.354 5.354 5.354 5.354 5.354 5.354 5.3759 5.4343 5.3769 5.4343 5.3947 5.354 5.3769 5.0784 5.	6.8328 6.8328	$\begin{array}{c} 6.8328\\ 7.2441\\ 7.3929\\ 7.4756\\ 7.5334\\ 7.5828\\ 7.6609\\ 7.6642\\ 7.7275\\ 7.7666\\ 7.7275\\ 7.7566\\ 7.7839\\ 7.9237\\ 7.9715\\ 8.0822\\ 8.1321\\ 8.1821\\ 8.2369\\ 8.287\\ 8.3365\\ 8.3876\\ 8.287\\ 8.3365\\ 8.3876\\ 8.4392\\ 8.287\\ 8.3365\\ 8.4392\\ 8.287\\ 8.3365\\ 8.4392\\ 8.287\\ 8.3365\\ 8.4392\\ 8.287\\ 8.3365\\ 8.4392\\ 8.287\\ 8.3365\\ 8.4392\\ 8.287\\ 8.3365\\ 8.4392\\ 8.287\\ 8.3365\\ 8.4392\\ 8.287\\ 8.3365\\ 8.4392\\ 8.287\\ 8.2369\\ 8.287\\ 8.3365\\ 8.4392\\ 8.287\\ 8.3365\\ 8.4392\\ 8.287\\ 8.3365\\ 8.4392\\ 8.287\\ 8.287\\ 8.3365\\ 8.4392\\ 8.287\\ 8.3365\\ 8.4392\\ 8.287\\ 8.3365\\ 8.4392\\ 8.287\\ 8.287\\ 8.3365\\ 8.4392\\ 8.287\\ 8.3365\\ 8.4392\\ 8.287\\ 8.3365\\ 8.4392\\ 8.287\\ 8.3365\\ 8.4392\\ 8.287\\ 8.3365\\ 8.4392\\ 8.287\\ 8.3365\\ 8.3372\\ 8.287\\ 8.3365\\ 8.4392\\ 8.534\\ 8.534\\ 8.534\\ 8.5806\\ 8.6524\\ 8.534\\ 8.5806\\ 8.6524\\ 8.534\\ 8.5806\\ 8.6524\\ 8.534\\ 8.5806\\ 8.6524\\ 8.534\\ 8.5806\\ 8.6524\\ 8.534\\ 8.5806\\ 8.6524\\ 8.534\\ 8.5806\\ 8.6524\\ 8.5562\\ 9.2556\\ 10.072\\ 10.588\\ 10.591\\ 10.625\\ 10.591\\ 10.625\\ 10.591\\ 10.625\\ 10.793\\ 10.844\\ 11.084\\ 11.102\\ 11.0253\\ 11.084\\ 11.102\\ 11.0253\\ 11.084\\ 11.102\\ 11.0253\\ 11.084\\ 11.102\\ 11.053\\ 11.084\\ 11.102\\ 11.053\\ 11.084\\ 11.102\\ 11.053\\ 11.084\\ 11.102\\ 11.053\\ 11.084\\ 11.102\\ 11.053\\ 11.084\\ 11.102\\ 11.053\\ 11.084\\ 11.102\\ 11.053\\ 11.084\\ 11.102\\ 11.053\\ 11.084\\ 11.102\\ 11.053\\ 11.084\\ 11.102\\ 11.053\\ 11.084\\ 11.102\\ 11.053\\ 11.084\\ 11.102\\ 11.053\\ 11.084\\ 11.102\\ 11.053\\ 11.084\\ 11.102\\ 11.053\\ 11.084\\ 11.$

TRI AXI	AL	TEST
---------	----	------

Project: COLETO CREEK FACILITY
Boring No.: B-2-1 S-14
Sample No.: S-14
Test No.: 24.3 PSI

Project No.: 60225561 Checked By: WPQ Depth: 26.0'-28.0' Elevation: ----

AECOM

Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Specimen Height: 6.02 in Specimen Area: 6.36 in^2 Specimen Volume: 38.27 in^3

Liquid Limit: 42

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Plastic Limit: 24

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform

	Vertical Strain %	Total Vertical Stress tsf	Total Hori zontal Stress tsf	Excess Pore Pressure tsf	A Parameter	Effecti ve Verti cal Stress tsf	Effective Horizontal Stress tsf	Stress Ratio	Effective p tsf	q tsf
12345678901123456789012234567890123345678901233456789012334567890123456789012345667890123345677777777777777777777777777777777777	$ \begin{array}{c} 0. \ 00\\ 0. \ 03\\ 0. \ 03\\ 0. \ 03\\ 0. \ 03\\ 0. \ 03\\ 0. \ 03\\ 0. \ 03\\ 0. \ 03\\ 0. \ 03\\ 0. \ 03\\ 0. \ 03\\ 0. \ 03\\ 0. \ 03\\ 0. \ 04\\ 0. \ 05\\ 0. \ 04\\ 0. \ 05\\ 0. \ 04\\ 0. \ 05\\ 0. \ 04\\ 0. \ 05\\ 0. \ 04\\ 0. \ 05\\ 0. \ 04\\ 0. \ 05\\ 0. \ 04\\ 0. \ 05\\ 0. \ 05\\ 0. \ 04\\ 0. \ 05\\ 0.\ 0.\ 05\\ 0. \ 05\\ 0. \ 05\\ 0. \ 05\\ 0. \ 05\\ 0$	$\begin{array}{c} 6.8328\\ 7.2441\\ 7.3929\\ 7.4756\\ 7.5334\\ 7.5828\\ 7.6239\\ 7.6609\\ 7.6942\\ 7.7275\\ 7.7566\\ 7.7839\\ 7.9237\\ 7.9715\\ 8.0287\\ 8.022\\ 8.1321\\ 8.1854\\ 8.2369\\ 8.287\\ 8.3365\\ 8.3876\\ 8.4392\\ 8.4872\\ 8.534\\ 8.5806\\ 8.6254\\ 8.6683\\ 8.7135\\ 8.3876\\ 8.4392\\ 8.4872\\ 8.534\\ 8.9494\\ 9.0543\\ 9.1562\\ 9.2545\\ 9.3487\\ 9.4383\\ 9.5201\\ 9.6003\\ 9.672\\ 9.2545\\ 9.3487\\ 9.4383\\ 9.5201\\ 9.2545\\ 9.3487\\ 9.4383\\ 9.5201\\ 9.2545\\ 9.3487\\ 9.4383\\ 9.5201\\ 9.2545\\ 9.3487\\ 9.4383\\ 9.5201\\ 9.6003\\ 9.672\\ 9.7494\\ 9.8222\\ 9.8912\\ 9.9525\\ 10.016\\ 10.078\\ 10.134\\ 10.19\\ 10.22\\ 10.285\\ 10.331\\ 10.425\\ 10.472\\ 10.55\\ 10.548\\ 10.591\\ 10.629\\ 10.699\\ 10.699\\ 10.699\\ 10.844\\ 10.885\\ 10.916\\ 10.939\\ 10.841\\ 10.621\\ 10.641\\ 1.042\\ 11.084\\ 11.122\\ 10.51\\ 10.61\\ 1.042\\ 11.084\\ 11.122\\ 10.51\\ 10.61\\ 10.61\\ 10.939\\ 10.992\\ 11.016\\ 11.084\\ 11.122\\ 10.51\\ 10.61\\ 11.084\\ 11.122\\ 10.51\\ 10.61\\ 11.084\\ 11.122\\ 10.51\\ 10.61\\ 11.084\\ 11.122\\ 10.51\\ 10.61\\ 11.084\\ 11.122\\ 10.51\\ 10.61\\ 11.084\\ 11.122\\ 10.51\\ 10.61\\ 11.084\\ 11.122\\ 10.51\\ 10.61\\ 11.084\\ 11.122\\ 10.51\\ 10.61\\ 11.084\\ 11.122\\ 10.51\\ 10.61\\ 11.084\\ 11.122\\ 10.51\\ 10.61\\ 11.084\\ 11.122\\ 10.51\\ 10.61\\ 11.084\\ 11.122\\ 10.51\\ 10.61\\ 11.084\\ 11.122\\ 10.51\\ 10.61\\ 11.084\\ 11.122\\ 10.51\\ 10.61\\ 10.61\\ 11.084\\ 11.122\\ 10.51\\ 10.61\\ 11.084\\ 11.122\\ 10.51\\ 10.5$	$ 6. 8328 \\ $	$\begin{array}{c} 0\\ 0, 21566\\ 0, 35649\\ 0, 45002\\ 0, 51768\\ 0, 5705\\ 0, 61231\\ 0, 64697\\ 0, 67558\\ 0, 7977\\ 0, 67558\\ 0, 79781\\ 0, 7526\\ 0, 7768\\ 0, 79496\\ 0, 69703\\ 0, 79881\\ 0, 69703\\ 0, 7768\\ 0, 79711\\ 0, 79331\\ 0, 7888\\ 0, 7975\\ 0, 74874\\ 0, 73644\\ 0, 72564\\ 0, 75975\\ 0, 74874\\ 0, 73644\\ 0, 72564\\ 0, 75975\\ 0, 74874\\ 0, 73644\\ 0, 72564\\ 0, 75975\\ 0, 74874\\ 0, 73648\\ 0, 75975\\ 0, 74874\\ 0, 73644\\ 0, 72564\\ 0, 75975\\ 0, 74874\\ 0, 73644\\ 0, 72564\\ 0, 72564\\ 0, 7975\\ 0, 5672\\ 0, 52209\\ 0, 47862\\ 0, 25975\\ 0, 5672\\ 0, 23546\\ 0, 1997\\ 0, 35429\\ 0, 31358\\ 0, 27562\\ 0, 23546\\ 0, 1997\\ 0, 16504\\ 0, 30399\\ 0, 35429\\ 0, 31358\\ 0, 27562\\ 0, 23546\\ 0, 1997\\ 0, 16504\\ 0, 13939\\ 0, 35429\\ 0, 31358\\ 0, 27562\\ 0, 23546\\ 0, 1997\\ 0, 16504\\ 0, 13939\\ 0, 35429\\ 0, 31358\\ 0, 27562\\ 0, 23546\\ 0, 1997\\ 0, 16504\\ 0, 13939\\ 0, 35429\\ 0, 31358\\ 0, 27562\\ 0, 23546\\ 0, 1997\\ 0, 16504\\ 0, 13939\\ 0, 35429\\ 0, 31358\\ 0, 27562\\ 0, 23546\\ 0, 1997\\ 0, 16504\\ 0, 13939\\ 0, 35429\\ 0, 31358\\ 0, 27562\\ 0, 23546\\ 0, 1997\\ 0, 16504\\ 0, 13939\\ 0, 35429\\ 0, 31358\\ 0, 27562\\ 0, 23546\\ 0, 1997\\ 0, 16504\\ 0, 36089\\ 0, 0, 3752\\ 0, 3752$	$\begin{array}{c} 0.\ 000\\ 0.\ 524\\ 0.\ 637\\ 0.\ 700\\ 0.\ 739\\ 0.\ 761\\ 0.\ 774\\ 0.\ 781\\ 0.\ 784\\ 0.\ 782\\ 0.\ 782\\ 0.\ 780\\ 0.\ 776\\ 0.\ 789\\ 0.\ 749\\ 0.\ 729\\ 0.\ 612\\ 0.\ 668\\ 0.\ 639\\ 0.\ 616\\ 0.\ 593\\ 0.\ 668\\ 0.\ 639\\ 0.\ 616\\ 0.\ 593\\ 0.\ 569\\ 0.\ 549\\ 0.\ 549\\ 0.\ 528\\ 0.\ 507\\ 0.\ 448\\ 0.\ 549\\ 0.\ 528\\ 0.\ 507\\ 0.\ 445\\ 0.\ 428\\ 0.\ 411\\ 0.\ 395\\ 0.\ 379\\ 0.\ 334\\ 0.\ 294\\ 0.\ 262\\ 0.\ 244\\ 0.\ 216\\ 0.\ 197\\ 0.\ 128\\ 0.\ 110\\ 0.\ 095\\ 0.\ 079\\ 0.\ 065\\ 0.\ 079\\ 0.\ 065\\ 0.\ 079\\ 0.\ 065\\ 0.\ 079\\ 0.\ 065\\ 0.\ 079\\ 0.\ 065\\ 0.\ 079\\ 0.\ 065\\ 0.\ 079\\ 0.\ 065\\ 0.\ 079\\ 0.\ 065\\ 0.\ 079\\ 0.\ 065\\ 0.\ 071\\ 0.\ 074\\ 0.\ 078\\ -0.\ 088\\ -0.\ 062\\ -0.\ 067\\ -0.\ 074\\ -0.\ 078\\ -0.\ 088\\ -0.\ 097\\ -0.\ 007\\ -0.\ 0.\ 007\\ -0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ $	1. 7924 1. 9881 1. 9961 1. 9719 1. 9712 1. 9735 1. 9735 1. 9735 1. 9735 1. 97823 1. 9961 2. 0521 2. 0521 2. 0521 2. 0521 2. 0383 2. 2341 2. 243 2. 2907 2. 3435 2. 2907 2. 3435 2. 2907 2. 3435 2. 2907 2. 3435 2. 2907 2. 3435 2. 2907 2. 3435 2. 5594 2. 6198 2. 5594 2. 6198 2. 5594 2. 6198 2. 5594 2. 6198 2. 5594 2. 6198 2. 6772 2. 7338 2. 9023 2. 9023 2. 9023 2. 9023 2. 9023 2. 9023 2. 9023 2. 9023 2. 9023 2. 9023 2. 9023 2. 9023 2. 9023 2. 9023 2. 9023 2. 7338 4. 4333 3. 5486 4. 2056 5. 1241 3. 2856 3. 433 3. 5486 4. 2056 5. 1113 5. 1707 5. 2642 5. 337 5. 5509 5. 5097 5. 5509 5. 5509 5. 5509 5. 5732 5. 7324 5. 7324 5. 7316 5. 8958 5. 9468 6. 3531 6. 3531 6. 3531 6. 3531 6. 3531 6. 3541 6. 5651 6	1. 7924 1. 5767 1. 4359 1. 3424 1. 2747 1. 2219 1. 1801 1. 1454 1. 1168 1. 0926 1. 0723 1. 0547 1. 0398 1. 0156 0. 99744 1. 0954 0. 99359 0. 99359 0. 99359 0. 99359 0. 99359 0. 99359 0. 99369 0. 99369 0. 99369 0. 99369 0. 99369 0. 99369 0. 99369 0. 99368 1. 0436 1. 0134 1. 0227 1. 0326 1. 0436 1. 0436 1. 0436 1. 0438 1. 0668 1. 0668 1. 0805 1. 1245 1. 6615 1. 3985 1. 4381 1. 4788 1. 5168 1. 5569 1. 5569 1. 5569 1. 5569 1. 5569 1. 5569 1. 5569 1. 5569 1. 5569 1. 5569 1. 5569 1. 5569 1. 5569 1. 5569 1. 5569 1. 5569 1. 5569 1. 5569 1. 5744 1. 6615 1. 6939 1. 7242 1. 7544 1. 7836 1. 8116 1. 8386 1. 823 1. 8116 1. 9319 1. 9739 1. 9739 1. 9739 1. 9739 2. 0366 2. 1049 2. 123 2. 1833 2. 1676 2. 1802 2. 1802 2. 1802 2. 1802 2. 1802 2. 1833 2. 1676 2. 2276 2. 2275 2. 2275 2. 2275 2. 2275 2. 2275 2. 2276 2. 2776	1. 000 1. 261 1. 390 1. 479 1. 550 1. 614 1. 670 1. 771 1. 819 1. 862 1. 902 2. 021 2. 094 2. 021 2. 094 2. 021 2. 094 2. 021 2. 094 2. 204 2. 258 2. 311 2. 365 2. 414 2. 462 2. 505 2. 548 2. 548 2. 548 2. 675 2. 647 2. 675 2. 647 2. 675 2. 921 2. 721 2. 741 2. 778 2. 8104 2. 922 2. 924 2. 920 2. 921 2. 922 2. 924 2. 920 2. 921 2. 922 2. 924 2. 920 2. 896 2. 896 2. 896 2. 894 2. 886 2. 886 2. 883 2. 886 2. 883	1. 7924 1. 7824 1. 7159 1. 6638 1. 625 1. 5969 1. 5757 1. 5595 1. 5475 1. 5475 1. 5342 1. 5302 1. 5293 1. 5293 1. 5338 1. 5429 1. 6647 1. 5915 1. 6183 1. 641 1. 6672 1. 6951 1. 7218 1. 751 1. 782 1. 8166 1. 8499 1. 8832 1. 9175 1. 9845 2. 0209 2. 1243 2. 2274 2. 3869 2. 4811 2. 5717 2. 6595 2. 7421 2. 8288 2. 9751 3. 0516 3. 1219 3. 1219 3. 1272 3. 3165 3. 3749 3. 4328 3. 731 3. 7653 3. 8096 3. 8532 3. 877 3. 9264 3. 9264 3. 9991 4. 0351 4. 1055 4. 1313 4. 1648 4. 2208 4. 2481 4. 2208 4. 3274 4. 4221	$\begin{array}{c} 0\\ 0. 20567\\ 0. 28004\\ 0. 32142\\ 0. 35031\\ 0. 37502\\ 0. 39557\\ 0. 41404\\ 0. 4307\\ 0. 44734\\ 0. 4619\\ 0. 47557\\ 0. 48951\\ 0. 51825\\ 0. 54543\\ 0. 56936\\ 0. 59796\\ 0. 62472\\ 0. 64966\\ 0. 67632\\ 0. 70204\\ 0. 7271\\ 0. 75187\\ 0. 7774\\ 0. 80319\\ 0. 82721\\ 0. 85058\\ 0. 87389\\ 0. 89628\\ 0. 91776\\ 0. 94034\\ 0. 99978\\ 1. 0583\\ 1. 1108\\ 1. 258\\ 0. 87389\\ 0. 89628\\ 0. 91776\\ 0. 94034\\ 0. 99978\\ 1. 0583\\ 1. 1108\\ 1. 2588\\ 1. 3028\\ 1. 3437\\ 1. 3837\\ 1. 4196\\ 1. 4583\\ 1. 4947\\ 1. 5292\\ 1. 5598\\ 1. 5918\\ 1. 6226\\ 1. 6507\\ 1. 6784\\ 1. 6935\\ 1. 7263\\ 1. 7492\\ 1. 7746\\ 1. 7968\\ 1. 8198\\ 1. 6226\\ 1. 6507\\ 1. 6784\\ 1. 9649\\ 1. 9726\\ 1. 7492\\ 1. 7746\\ 1. 7968\\ 1. 8337\\ 1. 8577\\ 1. 8792\\ 1. 9476\\ 1. 9649$

Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

TRIAXIAL COMPRESSION TEST REPORT

Project: COLETO CREEK FACILITY	Location: IPR-GDF SUEZ	Project No.: 60225561				
Boring No.: B-4-1 S-7	Tested By: BCM	Checked By: WPQ				
Sample No.: S-7	Test Date: 12/1/11	Depth: 12.0'-14.0'				
Test No.: B-4-1 S-7	Sample Type: 3" ST	Elevation:				
Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC						
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767						

Project: COLETO CREEK FACILITY	
Boring No.: B-4-1 S-7	
Sample No.: S-7	
Test No.: 7 PSI	

Project No.: 60225561 Checked By: WPQ Depth: 12.0'-14.0' Elevation: ----

AECON

Soil Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Specimen Height: 5.98 in Specimen Area: 6.36 in^2 Specimen Volume: 38.06 in^3

Liquid Limit: 27

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Plastic Limit: 11

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform

	Time	Verti cal Strai n	Corrected Area	Deviator Load	Devi ator Stress	Pore Pressure	Hori zontal Stress	Verti cal Stress
	min	%	i n^2	l b	tsf	tsf	tsf	tsf
$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\2\\13\\14\\15\\6\\7\\8\\9\\0\\11\\2\\2\\3\\2\\4\\2\\5\\2\\6\\7\\8\\9\\0\\3\\1\\3\\2\\3\\3\\4\\5\\3\\6\\7\\3\\8\\9\\40\\4\\2\\4\\3\\4\\4\\5\\6\end{array}$	$\begin{array}{c} 0\\ 5\\ 10\\ 15\\ 20\\ 25\\ 30. \ 001\\ 35. \ 001\\ 40. \ 001\\ 45. \ 001\\ 45. \ 001\\ 55. \ 001\\ 60. \ 001\\ 55. \ 001\\ 60. \ 001\\ 70. \ 001\\ 90. \ 002\\ 100\\ 110\\ 120\\ 130\\ 140\\ 150\\ 160\\ 170\\ 180\\ 190\\ 200\\ 210\\ 220\\ 230\\ 240\\ 270\\ 300\\ 330\\ 360\\ 390\\ 420\\ 450\\ 480\\ 510\\ 540\\ 570\\ 600\\ 630\\ 660\\ 690\\ \end{array}$	0 0. 086461 0. 18589 0. 28388 0. 38187 0. 47842 0. 57785 0. 6744 0. 77094 0. 86893 0. 96693 1. 0649 1. 1629 1. 3589 1. 5549 1. 7494 1. 9454 2. 1399 2. 333 2. 5261 2. 7178 2. 9109 3. 1054 3. 2999 3. 4959 3. 4959 3. 4959 3. 6904 3. 8879 4. 0838 4. 2798 4. 2798 4. 4744 4. 6675 5. 2482 5. 839 6. 4298 7. 012 7. 597 8. 1879 8. 7758 9. 3565 9. 943 10. 532 11. 116 11. 698 12. 285 12. 874 13. 463	$\begin{array}{c} 6.36\\ 6.3655\\ 6.3719\\ 6.3781\\ 6.3844\\ 6.3906\\ 6.397\\ 6.4032\\ 6.4094\\ 6.4158\\ 6.4221\\ 6.4285\\ 6.4221\\ 6.4285\\ 6.4249\\ 6.4476\\ 6.4605\\ 6.4733\\ 6.4862\\ 6.4991\\ 6.5119\\ 6.5248\\ 6.5377\\ 6.5507\\ 6.5639\\ 6.5771\\ 6.5507\\ 6.5639\\ 6.5771\\ 6.5507\\ 6.5639\\ 6.5771\\ 6.5507\\ 6.5639\\ 6.5771\\ 6.5607\\ 6.6173\\ 6.6037\\ 6.6173\\ 6.6037\\ 6.6173\\ 6.6037\\ 6.6173\\ 6.6037\\ 6.6714\\ 6.7971\\ 6.8299\\ 6.9719\\ 7.0165\\ 7.0622\\ 7.1087\\ 7.1554\\ 7.2026\\ 7.2508\\ 7.2998\\ 7.3495\end{array}$	$\begin{array}{c} 0\\ 19, 794\\ 24, 744\\ 28, 64\\ 31, 851\\ 34, 536\\ 37, 116\\ 40, 064\\ 42, 433\\ 44, 961\\ 47, 488\\ 50, 015\\ 52, 436\\ 57, 701\\ 63, 545\\ 69, 652\\ 75, 812\\ 82, 287\\ 89, 026\\ 75, 812\\ 82, 287\\ 89, 026\\ 75, 812\\ 82, 287\\ 102, 5\\ 109, 3\\ 115, 93\\ 122, 56\\ 109, 3\\ 115, 93\\ 122, 56\\ 109, 3\\ 115, 93\\ 122, 56\\ 109, 3\\ 115, 93\\ 122, 56\\ 109, 3\\ 122, 56\\ 129, 2\\ 12$	$\begin{array}{c} 0\\ 0.2239\\ 0.2796\\ 0.3233\\ 0.3592\\ 0.38911\\ 0.41775\\ 0.4505\\ 0.47667\\ 0.50456\\ 0.5324\\ 0.56017\\ 0.58671\\ 0.56017\\ 0.58671\\ 0.64434\\ 0.70819\\ 0.77472\\ 0.84155\\ 0.91162\\ 0.98433\\ 1.0579\\ 1.1289\\ 1.2013\\ 1.0579\\ 1.1289\\ 1.2013\\ 1.0579\\ 1.1289\\ 1.2013\\ 1.6721\\ 1.3417\\ 1.4115\\ 1.4769\\ 1.5432\\ 1.6087\\ 1.6721\\ 1.7359\\ 1.7926\\ 1.9596\\ 2.1191\\ 2.2692\\ 2.4014\\ 2.5333\\ 2.6605\\ 2.7794\\ 2.8881\\ 2.9939\\ 3.0911\\ 3.1822\\ 3.2677\\ 3.3526\\ 3.4282\\ 3.5056\end{array}$	$\begin{array}{c} 5.046\\ 5.1593\\ 5.1856\\ 5.2008\\ 5.209\\ 5.2137\\ 5.216\\ 5.216\\ 5.216\\ 5.216\\ 5.216\\ 5.216\\ 5.2125\\ 5.2102\\ 5.2078\\ 5.2078\\ 5.2014\\ 5.1751\\ 5.1652\\ 5.1851\\ 5.1751\\ 5.1652\\ 5.1851\\ 5.1751\\ 5.1652\\ 5.1851\\ 5.0618\\ 5.0443\\ 5.0793\\ 5.0618\\ 5.0443\\ 5.0618\\ 5.0443\\ 5.0618\\ 5.0443\\ 5.0618\\ 5.0443\\ 5.0618\\ 5.0443\\ 5.0618\\ 5.0443\\ 5.0618\\ 5.0443\\ 5.0618\\ 5.0443\\ 5.0618\\ 5.0443\\ 5.0618\\ 5.0443\\ 5.0618\\ 5.0443\\ 5.0618\\ 5.0443\\ 5.0618\\ 5.0443\\ 5.0618\\ 5.0443\\ 5.0618\\ 5.0443\\ 5.0618\\ 5.0443\\ 5.0618\\ 5.0443\\ 5.0618\\ 5.0443\\ 5.0618\\ 5.0443\\ 5.068\\ 4.9905\\ 4.973\\ 4.9555\\ 4.9052\\ 4.8568\\ 4.8118\\ 4.7674\\ 4.7674\\ 4.7674\\ 4.5506\\ 4.6354\\ 4.5921\\ 4.5506\\ 4.5098\\ 4.47\\ 4.428\\ 4.3812\\ 4.3812\\ 4.3812\\ 4.3812\\ 4.3812\\ 4.3808\\ 4.2901\\ \end{array}$	5.544 5.544	5.544 5.7679 5.8236 5.9032 5.9032 5.9931 5.9945 6.0207 6.0486 6.0746 6.1042 6.1042 6.1307 6.1883 6.2522 6.3187 6.3855 6.4556 6.5283 6.6019 6.7453 6.8156 6.8156 6.8857 7.0209 7.0209 7.0272 7.1527 7.2161 7.2799 7.3366 7.5036 7.6631 7.6631 7.8132 7.9454 8.2045 8.2045 8.3234 8.4321 8.5379 8.6351 8.7262 8.8117 8.8966 8.9722 9.0496
47 48 49	720 750 770. 98	14. 047 14. 632 15. 049	7. 3994 7. 4501 7. 4867	367. 48 376. 32 383. 16	3. 5757 3. 6369 3. 6849	4. 2381 4. 2264 4. 1663	5.544 5.544 5.544	9. 1197 9. 1809 9. 2289

TRI A	XI AL	TEST
-------	-------	------

Project: COLETO CREEK FACILITY	Location: IPR-GDF SUEZ
Boring No.: B-4-1 S-7	Tested By: BCM
Sample No.: S-7	Test Date: 12/1/11
Test No.: 7 PSI	Sample Type: 3" ST
	eampre Typer e er

Project No.: 60225561 Checked By: WPQ Depth: 12.0'-14.0' El evation: ----

Soil Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Specimen Height: 5.98 in Specimen Area: 6.36 in^2 Specimen Volume: 38.06 in^3

Liquid Limit: 27

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Plastic Limit: 11

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform

	Verti cal Strai n %	Total Vertical Stress tsf	Total Horizontal Stress tsf	Excess Pore Pressure tsf	A Parameter	Effecti ve Verti cal Stress tsf	Effective Horizontal Stress tsf	Stress Ratio	Effective p tsf	q tsf
$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\6\\17\\18\\19\\20\\22\\23\\24\\22\\27\\28\\29\\031\\32\\33\\45\\37\\38\\9\\01\\42\\44\\45\\46\\7\\8\end{array}$	$\begin{array}{c} 0.\ 00\\ 0.\ 09\\ 0.\ 19\\ 0.\ 28\\ 0.\ 38\\ 0.\ 48\\ 0.\ 57\\ 0.\ 97\\ 1.\ 66\\ 1.\ 55\\ 1.\ 75\\ 2.\ 14\\ 2.\ 33\\ 2.\ 52\\ 2.\ 91\\ 3.\ 30\\ 3.\ 59\\ 4.\ 08\\ 4.\ 27\\ 5.\ 25\\ 5.\ 84\\ 4.\ 47\\ 5.\ 25\\ 5.\ 84\\ 4.\ 47\\ 5.\ 25\\ 5.\ 84\\ 6.\ 43\\ 7.\ 01\\ 7.\ 60\\ 8.\ 19\\ 8.\ 78\\ 9.\ 36\\ 9.\ 94\\ 10.\ 53\\ 11.\ 70\\ 12.\ 28\\ 12.\ 87\\ 13.\ 405\\ 14.\ 63\\ \end{array}$	5.544 5.7679 5.8236 5.9032 5.9032 5.9032 5.9031 5.9618 5.9945 6.0207 6.0486 6.0764 6.1042 6.1307 6.1883 6.2522 6.3187 6.3855 6.4556 6.5283 6.6729 6.7453 6.8857 6.9555 7.0209 7.0872 7.1527 7.2161 7.2799 7.3366 7.5036 7.5036 7.6312 7.9454 8.0773 8.2045 8.3234 8.321 8.325 8.3234 8.4321 8.726 8.857 8.3234 8.3237 8.4321 8.7262 8.8177 8.3234 8.3234 8.4321 8.7262 8.8177 8.8966 8.9722 9.0496 9.1197 9.1809	5.544 5.544 5.544 5.5444 5.5444 5.5444 5.5544 5.5544 5.5544 5.5544 5.5544 5.5544 5.554 5.554 5.554 5.555	$\begin{array}{c} 0\\ 0. 11333\\ 0. 13962\\ 0. 1548\\ 0. 16298\\ 0. 16766\\ 0. 16999\\ 0. 17058\\ 0. 16999\\ 0. 16882\\ 0. 16649\\ 0. 16415\\ 0. 16415\\ 0. 16415\\ 0. 16415\\ 0. 16416\\ 0. 15539\\ 0. 14721\\ 0. 13903\\ 0. 14721\\ 0. 13903\\ 0. 14721\\ 0. 13903\\ 0. 081783\\ 0. 066595\\ 0. 050238\\ 0. 03297\\ 0. 015772\\ -0. 0017525\\ -0. 019862\\ -0. 037971\\ -0. 055496\\ -0. 017525\\ -0. 019862\\ -0. 037971\\ -0. 055496\\ -0. 073021\\ -0. 090546\\ -0. 14078\\ -0. 18927\\ -0. 23425\\ -0. 23425\\ -0. 23425\\ -0. 23425\\ -0. 23425\\ -0. 23425\\ -0. 23425\\ -0. 23425\\ -0. 23425\\ -0. 23425\\ -0. 23425\\ -0. 23425\\ -0. 23425\\ -0. 23425\\ -0. 23425\\ -0. 23425\\ -0. 23425\\ -0. 23425\\ -0. 23425\\ -0. 2365\\ -0. 32304\\ -0. 36744\\ -0. 41078\\ -0. 4539\\ -0. 4539\\ -0. 4539\\ -0. 61805\\ -0. 66478\\ -0. 70918\\ -0. 75591\\ -0. 8079\\ -0. $	$\begin{array}{c} 0.\ 000\\ 0.\ 506\\ 0.\ 499\\ 0.\ 479\\ 0.\ 454\\ 0.\ 431\\ 0.\ 401\\ 0.\ 379\\ 0.\ 357\\ 0.\ 357\\ 0.\ 335\\ 0.\ 213\\ 0.\ 276\\ 0.\ 241\\ 0.\ 208\\ 0.\ 179\\ 0.\ 153\\ 0.\ 241\\ 0.\ 208\\ 0.\ 179\\ 0.\ 153\\ 0.\ 131\\ 0.\ 109\\ 0.\ 072\\ 0.\ 055\\ 0.\ 040\\ 0.\ 025\\ 0.\ 011\\ -0.\ 013\\ -0.\ 025\\ 0.\ 040\\ 0.\ 025\\ 0.\ 011\\ -0.\ 013\\ -0.\ 024\\ -0.\ 033\\ -0.\ 042\\ -0.\ 051\\ -0.\ 072\\ -0.\ 089\\ -0.\ 103\\ -0.\ 128\\ -0.\ 138\\ -0.\ 148\\ -0.\ 138\\ -0.\ 148\\ -0.\ 157\\ -0.\ 165\\ -0.\ 173\\ -0.\ 181\\ -0.\ 189\\ -0.\ 198\\ -0.\ 207\\ -0.\ 216\\ -0.\ 225\\ \end{array}$	0.49798 0.60855 0.63796 0.66448 0.71943 0.74574 0.7779 0.80466 0.83372 0.89493 1.059 1.1337 1.2104 1.2904 1.3748 1.4651 1.6327 1.7194 1.8064 1.8937 1.9766 2.061 2.1446 2.2256 2.3069 2.3811 2.5983 3.0014 3.178 3.5259 3.684 3.9873 4.1254 4.25444 4.2544 4.2544 4.25444 4.25444 4.2544 4.25444 4.25444 4.25444 4.25444 4.25444 4.2544	0.49798 0.38465 0.35836 0.35836 0.35836 0.3279 0.3274 0.32799 0.3274 0.32799 0.32915 0.33149 0.33383 0.33616 0.34259 0.35895 0.36888 0.37881 0.39049 0.40334 0.44334 0.4462 0.43138 0.44774 0.4462 0.4334 0.44774 0.53595 0.55347 0.5717 0.5717 0.5712 0.5742 0.63876 0.68725 0.7563 0.77663 0.82102 0.86542 0.99855 0.99857 0.99335 1.0342 1.0741 1.1628 1.2072 1.25391 1.3059 1.3176	$\begin{array}{c} 1. \ 000\\ 1. \ 582\\ 1. \ 780\\ 1. \ 942\\ 2. \ 072\\ 2. \ 178\\ 2. \ 274\\ 2. \ 376\\ 2. \ 453\\ 2. \ 533\\ 2. \ 606\\ 2. \ 533\\ 2. \ 606\\ 2. \ 745\\ 2. \ 881\\ 3. \ 019\\ 3. \ 158\\ 3. \ 281\\ 3. \ 019\\ 3. \ 158\\ 3. \ 281\\ 3. \ 019\\ 3. \ 158\\ 3. \ 281\\ 3. \ 019\\ 3. \ 158\\ 3. \ 281\\ 3. \ 019\\ 3. \ 158\\ 3. \ 281\\ 3. \ 019\\ 3. \ 158\\ 3. \ 281\\ 3. \ 019\\ 3. \ 921\\ 3. \ 921\\ 3. \ 925\\ 3. \ 980\\ 4. \ 002\\ 4. \ 021\\ 4. \ 046\\ 4. \ 068\\ 4. \ 083\\ 4. \ 074\\ 4. \ 058\\ 4. \ 074\\ 4. \ 068\\ 4. \ 074\\ 4. \ 074\\ 4. \ 034\\ 4. \ 014\\ 3. \ 989\\ 3. \ 928\\ 3. \ 883\\ 3. \ 840\\ 3. \ 798\\ 3. \ 736\\ 3. \ 736\\ 3. \ 736\\ 3. \ 736\\ 3. \ 760\\$	0.49798 0.4966 0.49816 0.50483 0.5146 0.52488 0.53686 0.55265 0.56632 0.58144 0.597691 0.61391 0.62952 0.66476 0.70486 0.7463 0.78965 0.83462 0.88265 0.93229 0.98063 1.032 1.032 1.032 1.2382 1.2894 1.3403 1.3895 1.4389 1.4389 1.4389 1.4385	$\begin{array}{c} 0\\ 0.11195\\ 0.1398\\ 0.16165\\ 0.1796\\ 0.20888\\ 0.22525\\ 0.23834\\ 0.25228\\ 0.26228\\ 0.28009\\ 0.29336\\ 0.32217\\ 0.35409\\ 0.38736\\ 0.32217\\ 0.35409\\ 0.38736\\ 0.42077\\ 0.45581\\ 0.49216\\ 0.52895\\ 0.56444\\ 0.6064\\ 0.52895\\ 0.56444\\ 0.60064\\ 0.63582\\ 0.70573\\ 0.73846\\ 0.7716\\ 0.80433\\ 0.83606\\ 0.86795\\ 0.70573\\ 0.73846\\ 0.7716\\ 0.80433\\ 0.83606\\ 0.86795\\ 0.89631\\ 0.97979\\ 1.0595\\ 1.1346\\ 1.2007\\ 1.2667\\ 1.3302\\ 1.3897\\ 1.4441\\ 1.497\\ 1.5456\\ 1.5911\\ 1.4441\\ 1.497\\ 1.5456\\ 1.5911\\ 1.6338\\ 1.6763\\ 1.7141\\ 1.7528\\ 1.7879\\ 1.8184\\ 0.8184\\ 0.00000000000000000000000000000000000$
49	15.05	9. 2289	5.544	-0. 87975	-0. 239	5.0627	1. 3777	3. 675	3. 2202	1. 8425

Project: COLETO CREEK FACILITY	
Boring No.: B-4-1 S-7	
Samplē No.: S-7	
Test No.: 13.9 PSI	

Project No.: 60225561 Checked By: WPQ Depth: 12.0'-14.0' Elevation: ----

 b:
 12/1/11
 Depth:
 12.0'-14.0'

 ype:
 3"
 ST
 Elevation:

Soil Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Specimen Height: 5.96 in Specimen Area: 6.33 in^2 Specimen Volume: 37.74 in^3

Liquid Limit: 27

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Plastic Limit: 11

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform

	Time min	Verti cal Strai n %	Corrected Area i n^2	Deviator Load Ib	Deviator Stress tsf	Pore Pressure tsf	Hori zontal Stress tsf	Verti cal Stress tsf
$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\14\\15\\16\\7\\8\\9\\01\\12\\22\\24\\26\\7\\28\\9\\01\\32\\33\\45\\6\\7\\89\\01\\42\\43\\44\\56\\47\end{array}$	$\begin{array}{c} \text{min} \\ \text{min} \\ 0 \\ 5.\ 0001 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30.\ 001 \\ 35.\ 001 \\ 35.\ 001 \\ 40.\ 001 \\ 45.\ 001 \\ 55.\ 001 \\ 55.\ 001 \\ 50.\ 001 \\ 50.\ 001 \\ 50.\ 001 \\ 50.\ 001 \\ 80.\ 002 \\ 90.\ 002 \\ 100 \\ 110 \\ 120 \\ 130 \\ 140 \\ 150 \\ 160 \\ 170 \\ 180 \\ 190 \\ 200 \\ 210 \\ 220 \\ 230 \\ 240 \\ 270 \\ 300 \\ 330 \\ 330 \\ 330 \\ 330 \\ 340 \\ 450 \\ 480 \\ 510 \\ 570 \\ 600 \\ 630 \\ 660 \\ 690 \\ 720 \end{array}$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 111^2 \\ 6. 3266 \\ 6. 3322 \\ 6. 3386 \\ 6. 3451 \\ 6. 358 \\ 6. 3647 \\ 6. 358 \\ 6. 3647 \\ 6. 3714 \\ 6. 404 \\ 6. 557 \\ 6. 501 \\ 6. 557 \\ 6. 501 \\ 6. 557 \\ 6. 501 \\ 6. 557 \\ 6. 565 \\ 6. 7021 \\ 6. 644 \\ 6. 658 \\ 6. 7021 \\ 6. 835 \\ 6. 907 \\ 6. 835 \\ 9. 6. 881 \\ 9. 6. 928 \\ 6. 928 \\ 6. 970 \\ 7. 024 \\ 7. 073 \\ 7. 1226 \\ 7. 073 \\ 7. 1226 \\ 7. 073 \\ 7. 1226 \\ 7. 073 \\ 7. 1226 \\ 7. 073 \\ 7. 1226 \\ 7. 2748 \\ 7. 3275 \\ 7. 3808 \\ 7. 4345 \end{array}$	$\begin{array}{c} 0\\ 42.594\\ 57.838\\ 67.028\\ 74.03\\ 79.864\\ 85.335\\ 90.44\\ 95.837\\ 101.02\\ 106.41\\ 111.81\\ 117.43\\ 128\\ 139.67\\ 151.49\\ 163.52\\ 175.56\\ 187.81\\ 200.21\\ 212.32\\ 224.42\\ 236.46\\ 248.35\\ 259.8\\ 270.88\\ 281.75\\ 292.4\\ 302.53\\ 322.3\\ 349.8\\ 375.84\\ 399.69\\ 445.56\\ 468.98\\ 492.1\\ 540.67\\ 563.06\\ 587.2\\ 609.6\\ 633.59\\ 657.68\\ 679.18\\ 701.93\\ \end{array}$	$\begin{array}{c} 0\\ 0. \ 48432\\ 0. \ 65698\\ 0. \ 76059\\ 0. \ 83918\\ 0. \ 9044\\ 0. \ 96534\\ 1. \ 022\\ 1. \ 0819\\ 1. \ 1391\\ 1. \ 1987\\ 1. \ 2582\\ 1. \ 3285\\ 1. \ 6255\\ 2. \ 0843\\ 2. \ 2172\\ 2. \ 3463\\ 2. \ 2172\\ 2. \ 3463\\ 2. \ 2172\\ 2. \ 3463\\ 2. \ 4747\\ 2. \ 6018\\ 2. \ 7267\\ 2. \ 8461\\ 3. \ 0732\\ 3. \ 1824\\ 3. \ 2856\\ 3. \ 4851\\ 3. \ 7579\\ 4. \ 011\\ 4. \ 2378\\ 4. \ 4548\\ 4. \ 6616\\ 4. \ 8733\\ 5. \ 079\\ 5. \ 5038\\ 5. \ 6918\\ 5. \ 8943\\ 6. \ 0761\\ 6. \ 2708\\ 6. \ 4622\\ 6. \ 6254\\ 6. \ 7979\\ \end{array}$	$\begin{array}{c} 1.51\\ 5.\ 0443\\ 5.\ 1902\\ 5.\ 2828\\ 5.\ 3416\\ 5.\ 3816\\ 5.\ 3816\\ 5.\ 4304\\ 5.\ 4304\\ 5.\ 4431\\ 5.\ 4526\\ 5.\ 4587\\ 5.\ 4587\\ 5.\ 4587\\ 5.\ 4581\\ 5.\$		$\begin{array}{c} 1 \\ 6. 0408 \\ 6. 5251 \\ 6. 6978 \\ 6. 8014 \\ 6. 88 \\ 6. 9452 \\ 7. 0061 \\ 7. 0628 \\ 7. 1227 \\ 7. 1799 \\ 7. 2395 \\ 7. 299 \\ 7. 3608 \\ 7. 4766 \\ 7. 6041 \\ 7. 7328 \\ 7. 8633 \\ 7. 9933 \\ 8. 1251 \\ 8. 258 \\ 8. 3871 \\ 8. 5155 \\ 8. 6426 \\ 8. 7675 \\ 8. 8869 \\ 9. 0019 \\ 9. 019 \\ 9. 019 \\ 9. 019 \\ 9. 019 \\ 9. 019 \\ 9. 019 \\ 9. 019 \\ 9. 019 \\ 9. 019 \\ 9. 019 \\ 9. 019 \\ 9. 019 \\ 9. 019 \\ 9. 019 \\ 9. 019 \\ 9. 0019 \\ 9. 010 \\ 9. 010 \\ 9. 010 \\ 9. 010 \\ 9. 010 \\ 9. 01$
48 49	750 772. 22	15. 525 15. 991	7.4893 7.5309	724.47 741.68	6. 9648 7. 0909	3.643 3.5959	6.0408 6.0408	13. 006 13. 132

TRI	AXI	AL	TEST
-----	-----	----	------

Project: COLETO CREEK FACILITY	
Boring No.: B-4-1 S-7	
Sample No.: S-7	
Test No.: 13.9 PSI	

Project No.: 60225561 Checked By: WPQ Depth: 12.0'-14.0' Elevation: ----

Soil Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Specimen Height: 5.96 in Specimen Area: 6.33 in^2 Specimen Volume: 37.74 in^3

Liquid Limit: 27

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Plastic Limit: 11

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform

	Verti cal Strai n %	Total Vertical Stress tsf	Total Horizontal Stress tsf	Excess Pore Pressure tsf	A Parameter	Effective Vertical Stress tsf	Effective Horizontal Stress tsf	Stress Ratio	Effective p tsf	q tsf
$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\0\\1\\1\\2\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1$	$\begin{array}{c} 0.\ 00\\ 0.\ 09\\ 0.\ 19\\ 0.\ 29\\ 0.\ 39\\ 0.\ 40\\ 0.\ 70\\ 0.\ 81\\ 1.\ 122\\ 1.\ 41\\ 1.\ 65\\ 2.\ 27\\ 2.\ 48\\ 2.\ 90\\ 3.\ 32\\ 3.\ 52\\ 4.\ 36\\ 4.\ 36\\ 4.\ 58\\ 6.\ 23\\ 7.\ 45\\ 8.\ 67\\ 9.\ 93\\ 10.\ 55\\ 11.\ 18\\ 11.\ 802\\ 13.\ 66\\ 14.\ 20\\ 15.\ 52\\ \end{array}$	$\begin{array}{c} 6.\ 0408\\ 6.\ 5251\\ 6.\ 6978\\ 6.\ 8014\\ 6.\ 88\\ 6.\ 9452\\ 7.\ 0061\\ 7.\ 0628\\ 7.\ 1227\\ 7.\ 1799\\ 7.\ 2395\\ 7.\ 299\\ 7.\ 3608\\ 7.\ 4766\\ 7.\ 6041\\ 7.\ 7288\\ 7.\ 8633\\ 7.\ 9933\\ 8.\ 1251\\ 8.\ 2558\\ 8.\ 3871\\ 8.\ 5155\\ 8.\ 6426\\ 8.\ 7675\\ 8.\ 8869\\ 9.\ 0019\\ 9.\ 019\\ 9.\ 114\\ 9.\ 2232\\ 9.\ 3264\\ 9.\ 4276\\ 9.\ 5259\\ 9.\ 7987\\ 10.\ 052\\ 10.\ 279\\ 10.\ 496\\ 10.\ 702\\ 10.\ 914\\ 11.\ 12\\ 11.\ 333\\ 11.\ 545\\ 11.\ 733\\ 11.\ 545\\ 11.\ 733\\ 11.\ 545\\ 12.\ 512\\ 12.\ 503\\ 12.\ 666\\ 12.\ 839\\ 13.\ 006\\ \end{array}$		$\begin{array}{c} 0\\ 0.1459\\ 0.23854\\ 0.29734\\ 0.33673\\ 0.36613\\ 0.3861\\ 0.39886\\ 0.40829\\ 0.41217\\ 0.41384\\ 0.41217\\ 0.41384\\ 0.41107\\ 0.40053\\ 0.38277\\ 0.36169\\ 0.33617\\ 0.30844\\ 0.27793\\ 0.2452\\ 0.20914\\ 0.33617\\ 0.30844\\ 0.27793\\ 0.2452\\ 0.20914\\ 0.17474\\ 0.13702\\ 0.09984\\ 0.062686\\ 0.024963\\ 0.012204\\ -0.049372\\ -0.085985\\ -0.12204\\ -0.049372\\ -0.085985\\ -0.12204\\ -0.049372\\ -0.085985\\ -0.12204\\ -0.51536\\ -0.59025\\ -0.66403\\ -0.51536\\ -0.59025\\ -0.66403\\ -0.51536\\ -0.59025\\ -0.66403\\ -0.73559\\ -0.8066\\ -0.8765\\ -0.94362\\ -1.0124\\ -1.0784\\ -1.0784\\ -1.1439\\ -1.2077\\ -1.2737\\ -1.3375\\ -1.4013\end{array}$	$\begin{array}{c} 0.\ 000\\ 0.\ 301\\ 0.\ 363\\ 0.\ 391\\ 0.\ 401\\ 0.\ 405\\ 0.\ 400\\ 0.\ 390\\ 0.\ 377\\ 0.\ 362\\ 0.\ 346\\ 0.\ 329\\ 0.\ 311\\ 0.\ 279\\ 0.\ 245\\ 0.\ 214\\ 0.\ 184\\ 0.\ 158\\ 0.\ 214\\ 0.\ 184\\ 0.\ 158\\ 0.\ 214\\ 0.\ 184\\ 0.\ 158\\ 0.\ 214\\ 0.\ 184\\ 0.\ 158\\ 0.\ 329\\ 0.\ 214\\ 0.\ 184\\ 0.\ 158\\ 0.\ 329\\ 0.\ 214\\ 0.\ 184\\ 0.\ 158\\ 0.\ 133\\ 0.\ 111\\ 0.\ 089\\ 0.\ 071\\ 0.\ 053\\ 0.\ 071\\ 0.\ 022\\ 0.\ 088\\ -0.\ 004\\ -0.\ 016\\ -0.\ 026\\ -0.\ 036\\ -0.\ 045\\ -0.\ 069\\ -0.\ 088\\ -0.\ 004\\ -0.\ 016\\ -0.\ 026\\ -0.\ 036\\ -0.\ 045\\ -0.\ 069\\ -0.\ 088\\ -0.\ 004\\ -0.\ 116\\ -0.\ 127\\ -0.\ 136\\ -0.\ 152\\ -0.\ 159\\ -0.\ 166\\ -0.\ 172\\ -0.\ 159\\ -0.\ 166\\ -0.\ 172\\ -0.\ 182\\ -0.\ 187\\ -0.\ 197\\ -0.\ 201\\ \end{array}$	0.99651 1.3349 1.4598 1.4598 1.5348 1.5757 1.6197 1.6701 1.7235 1.7809 1.9055 2.0318 2.1771 2.3268 2.4828 2.6406 2.8029 2.96857 3.2965 3.4613 3.6233 3.6233 3.78 3.9327 4.0819 4.2283 4.3681 4.5053 4.6386 5.0124 5.3672 5.9667 6.2483 6.5338 6.5338 6.5338 6.5117 7.9056 7.3768 7.9051 8.4112 8.6664 8.8956 9.1319 7.9032 8.1128 8.6664 8.8956 9.1319 7.9032 8.1128 8.6664 8.8956 9.1319 9.3626	0.99651 0.85061 0.75797 0.69917 0.65978 0.63038 0.61041 0.59765 0.58422 0.58434 0.58212 0.58245 0.59599 0.61374 0.63482 0.66342 0.66342 0.66342 0.64822 0.66344 0.63482 0.71858 0.75131 0.78737 0.82177 0.85949 0.93833 0.97155 1.0087 1.0459 1.0825 1.1866 1.7325 1.2545 1.3482 1.4342 1.4342 1.5868 1.6605 1.7321 1.8031 1.873 1.9401 2.0749 2.1404 2.2042 2.334 2.3378	$\begin{array}{c} 1. \ 000\\ 1. \ 569\\ 1. \ 867\\ 2. \ 088\\ 2. \ 272\\ 2. \ 435\\ 2. \ 531\\ 2. \ 710\\ 2. \ 839\\ 2. \ 949\\ 3. \ 025\\ 3. \ 159\\ 3. \ 255\\ 3. \ 409\\ 3. \ 547\\ 3. \ 547\\ 3. \ 665\\ 3. \ 760\\ 3. \ 838\\ 3. \ 901\\ 3. \ 547\\ 3. \ 665\\ 3. \ 760\\ 3. \ 838\\ 3. \ 901\\ 3. \ 947\\ 4. \ 048\\ 4. \ 047\\ 4. \ 048\\ 4. \ 047\\ 4. \ 048\\ 4. \ 047\\ 4. \ 048\\ 4. \ 047\\ 4. \ 048\\ 4. \ 048\\ 4. \ 047\\ 4. \ 048\\ 4. \ 047\\ 4. \ 048\\ 4. \ 048\\ 4. \ 047\\ 4. \ 048\\ 4. \ 048\\ 4. \ 047\\ 4. \ 048\\ 4. \ 048\\ 4. \ 047\\ 4. \ 048\\ 4. \ 048\\ 4. \ 047\\ 4. \ 048\\ 4. \ 048\\ 4. \ 047\\ 4. \ 048\\ 4. \ 048\\ 4. \ 047\\ 4. \ 048\\ 4. \ 048\\ 4. \ 047\\ 3. \ 936\\ 3. \ 975\\ 3. \ 935\\ 3. \ 935\\ 3. \ 935\\ 3. \ 938\\ 3. \ 936\\$	$\begin{array}{c} 0. \ 99651 \\ 1. \ 0928 \\ 1. \ 0865 \\ 1. \ 0795 \\ 1. \ 0794 \\ 1. \ 0826 \\ 1. \ 0931 \\ 1. \ 087 \\ 1. \ 1087 \\ 1. \ 1292 \\ 1. \ 1539 \\ 1. \ 1292 \\ 1. \ 1539 \\ 1. \ 1292 \\ 1. \ 1539 \\ 1. \ 1292 \\ 1. \ 1539 \\ 1. \ 1292 \\ 1. \ 1539 \\ 1. \ 1292 \\ 1. \ 1539 \\ 1. \ 1292 \\ 1. \ 1539 \\ 1. \ 1292 \\ 1. \ 1539 \\ 1. \ 1292 \\ 1. \ 1539 \\ 1. \ 1292 \\ 1. \ 1539 \\ 1. \ 1292 \\ 1. \ 1539 \\ 1. \ 1292 \\ 1. \ 1539 \\ 1. \ 1292 \\ 1. \ 1539 \\ 1. \ 1292 \\ 1. \ 1539 \\$	$\begin{array}{c} 0\\ 0.\ 24216\\ 0.\ 32849\\ 0.\ 3803\\ 0.\ 41959\\ 0.\ 4522\\ 0.\ 48267\\ 0.\ 51101\\ 0.\ 54094\\ 0.\ 56956\\ 0.\ 59937\\ 0.\ 62909\\ 0.\ 66002\\ 0.\ 7179\\ 0.\ 78166\\ 0.\ 84599\\ 0.\ 91125\\ 0.\ 97625\\ 1.\ 0422\\ 1.\ 0482\\ 1.\ 0422\\ 1.\ 0485\\ 0.\ 97625\\ 1.\ 0422\\ 1.\ 0422\\ 1.\ 03631\\ 1.\ 4231\\ 1.\ 2374\\ 1.\ 3009\\ 1.\ 3633\\ 1.\ 4231\\ 1.\ 4806\\ 1.\ 5712\\ 1.\ 6428\\ 1.\ 6934\\ 1.\ 7426\\ 1.\ 5762\\ 2.\ 1189\\ 2.\ 0274\\ 2.\ 3308\\ 2.\ 4367\\ 2.\ 5395\\ 2.\ 6463\\ 2.\ 7519\\ 2.\ 8459\\ 2.\ 97519\\ 2.\ 8459\\ 2.\ 9381\\ 3.\ 1354\\ 3.\ 2311\\ 3.\ 3127\\ 3.\ 3989\\ 3.\ 4824\\ \end{array}$
49	15.99	13. 132	6.0408	-1.4484	-0. 204	9.5358	2.4449	3.900	5.9904	3. 5454

Project: COLETO CREEK FACILITY	
Boring No.: B-4-1 S-7	
Samplē No.: S-7	
Test No.: 20.8 PSI	

Project No.: 60225561 Checked By: WPQ Depth: 12.0'-14.0' Elevation: ----

Specimen Height: 5.71 in Specimen Area: 6.32 in^2 Specimen Volume: 36.08 in^3

Liquid Limit: 27

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Plastic Limit: 11

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform

	Time min	Verti cal Strai n %	Corrected Area i n^2	Deviator Load Ib	Deviator Stress tsf	Pore Pressure tsf	Hori zontal Stress tsf	Verti cal Stress tsf
$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\14\\15\\16\\7\\8\\9\\01\\12\\22\\24\\26\\27\\28\\9\\01\\22\\33\\45\\37\\89\\01\\41\\43\\44\\45\\47\end{array}$	$\begin{array}{c} \text{min}\\ 0\\ 5.0038\\ 10.004\\ 15.004\\ 20.004\\ 25.004\\ 25.004\\ 30\\ 35\\ 40\\ 45.002\\ 50.003\\ 55.003\\ 60.003\\ 55.003\\ 60.003\\ 80.004\\ 90.004\\ 100\\ 110\\ 120\\ 130\\ 140\\ 150\\ 160\\ 170\\ 180\\ 190\\ 200\\ 210\\ 220\\ 230\\ 240\\ 270\\ 330\\ 330\\ 360\\ 390\\ 420\\ 450\\ 480\\ 510\\ 570\\ 600\\ 630\\ 660\\ 690\\ 720\\ \end{array}$	% 0. 074905 0. 17378 0. 27265 0. 37303 0. 4749 0. 57677 0. 67415 0. 77752 0. 87939 0. 97976 1. 0801 1. 1835 1. 3842 1. 5895 1. 7887 1. 9925 2. 1962 2. 3955 2. 5992 2. 8059 3. 0097 3. 2119 3. 4142 3. 6127 4. 0164 4. 2187 4. 0164 4. 2187 4. 0164 4. 2187 4. 0164 4. 2187 4. 0164 4. 2187 4. 4164 4. 6187 4. 8209 5. 4291 6. 6411 7. 2433 7. 8605 8. 4643 9. 6658 10. 283 10. 887 11. 484 12. 084 12. 084 12. 699 13. 303 13. 902 14. 505	1 n^2 6. 3214 6. 3261 6. 3261 6. 3324 6. 3324 6. 3324 6. 3324 6. 3324 6. 3324 6. 3324 6. 3324 6. 3515 6. 3515 6. 358 6. 3643 6. 3774 6. 3839 6. 3774 6. 3839 6. 3774 6. 3839 6. 3774 6. 3774 6. 3774 6. 3774 6. 3774 6. 3774 6. 3709 6. 4305 6. 4305 6. 433 6. 4765 6. 5039 6. 5719 6. 5719 6. 5719 6. 5719 6. 5719 6. 5719 6. 5719 6. 5719 6. 5998 6. 6134 6. 7276 6. 771 6. 8607 6. 9059 6. 9	$\begin{array}{c} 1 \ b \\ 0 \\ 45. \ 054 \\ 62. \ 257 \\ 72. \ 957 \\ 80. \ 614 \\ 86. \ 279 \\ 90. \ 422 \\ 93. \ 779 \\ 90. \ 422 \\ 93. \ 775 \\ 100. \ 65 \\ 104. \ 95 \\ 107. \ 84 \\ 111. \ 51 \\ 117. \ 22 \\ 123. \ 99 \\ 130. \ 13 \\ 137. \ 42 \\ 144. \ 6 \\ 151. \ 58 \\ 158. \ 24 \\ 165. \ 97 \\ 130. \ 13 \\ 199. \ 36 \\ 206. \ 81 \\ 214. \ 52 \\ 224. \ 32 \\ 224. \ 32 \\ 224. \ 32 \\ 224. \ 32 \\ 224. \ 32 \\ 224. \ 32 \\ 224. \ 32 \\ 224. \ 32 \\ 224. \ 32 \\ 250. \ 97 \\ 278. \ 4 \\ 307. \ 61 \\ 336. \ 99 \\ 367. \ 41 \\ 398. \ 56 \\ 431. \ 13 \\ 464. \ 49 \\ 497. \ 43 \\ 529. \ 79 \\ 564. \ 85 \\ 599. \ 97 \\ 634. \ 95 \\ 671. \ 35 \\ 704. \ 95 \\ 671. \ 35 \\ 704. \ 95 \\ 671. \ 35 \\ 704. \ 95 \\ 671. \ 35 \\ 704. \ 95 \\ 704. \ 95 \\ 704. \ 901 \\ 771. \ 63 \end{array}$	$\begin{array}{c} \text{tsf} \\ 0 \\ 0.51278 \\ 0.70787 \\ 0.82871 \\ 0.91477 \\ 0.97804 \\ 1.024 \\ 1.0609 \\ 1.1073 \\ 1.1363 \\ 1.1363 \\ 1.1363 \\ 1.1837 \\ 1.215 \\ 1.255 \\ 1.3167 \\ 1.3898 \\ 1.4556 \\ 1.534 \\ 1.6108 \\ 1.6851 \\ 1.7555 \\ 1.8365 \\ 1.9393 \\ 2.0145 \\ 2.1101 \\ 2.857 \\ 2.3452 \\ 2.4473 \\ 2.657 \\ 2.3452 \\ 2.4473 \\ 2.5637 \\ 2.7207 \\ 2.9988 \\ 3.2921 \\ 3.5833 \\ 3.8816 \\ 4.1827 \\ 4.4949 \\ 4.8112 \\ 5.118 \\ 5.7335 \\ 6.0491 \\ 6.3581 \\ 6.6755 \\ 6.9608 \\ 7.2373 \\ 7.514 \end{array}$	$\begin{array}{c} \text{tst}\\ 5.\ 0958\\ 5.\ 2246\\ 5.\ 3665\\ 5.\ 4806\\ 5.\ 5686\\ 5.\ 5686\\ 5.\ 5686\\ 5.\ 5686\\ 5.\ 5686\\ 5.\ 7316\\ 5.\ 7648\\ 5.\ 7909\\ 5.\ 8104\\ 5.\ 8262\\ 5.\ 8387\\ 5.\ 8387\\ 5.\ 8539\\ 5.\ 8539\\ 5.\ 8583\\ 5.\ 8388\\ 5.\ 8388\\ 5.\ 8388\\ 5.\ 8463\\ 5.\ 8463\\ 5.\ 8463\\ 5.\ 7979\\ 5.\ 77523\\ 5.\ 77523\\ 5.\ 77523\\ 5.\ 77523\\ 5.\ 77523\\ 5.\ 77523\\ 5.\ 77523\\ 5.\ 77523\\ 5.\ 77523\\ 5.\ 77523\\ 5.\ 77523\\ 5.\ 77523\\ 5.\ 77523\\ 5.\ 77523\\ 5.\ 5208\ 5.\ 5208\\ 5.\ 5208\ 5.\ 5208\ 5.\ 5208\ 5.\ 5208\ 5.\ 5208\ 5.\ 5208\ 5.\ 5208\ 5.\ 5208\ 5.\ 520$	$\begin{array}{c} 1 5 5 37 6\\ 6 5 53 76\\ 6$	$\begin{array}{c} \text{tst} \\ 6.5376 \\ 7.0504 \\ 7.2455 \\ 7.3663 \\ 7.4524 \\ 7.5156 \\ 7.5985 \\ 7.6616 \\ 7.5985 \\ 7.6739 \\ 7.7213 \\ 7.7226 \\ 7.7926 \\ 7.7926 \\ 7.7926 \\ 7.7926 \\ 7.7923 \\ 8.0716 \\ 8.1484 \\ 8.2227 \\ 8.2931 \\ 8.3741 \\ 8.3741 \\ 8.4769 \\ 8.5521 \\ 8.6477 \\ 8.7263 \\ 8.8033 \\ 8.828 \\ 8.9849 \\ 9.0877 \\ 9.1746 \\ 9.2583 \\ 8.9849 \\ 9.0877 \\ 9.1746 \\ 9.2583 \\ 8.933 \\ 8.828 \\ 8.9849 \\ 9.0877 \\ 9.1746 \\ 9.2583 \\ 9.5364 \\ 9.8297 \\ 10.121 \\ 10.419 \\ 10.72 \\ 11.033 \\ 11.349 \\ 1.656 \\ 11.951 \\ 12.287 \\ 12.896 \\ 13.213 \\ 13.498 \\ 13.775 \\ 14.052 \end{array}$
48 49	750 773. 86	15. 119 15. 606	7.4473 7.4903	805.72 829.85	7.7897 7.9769	3. 3563 3. 2617	6. 5376 6. 5376	14. 327 14. 514

TRI	AXI	AL	TEST
-----	-----	----	------

Project: COLETO CREEK FACILITY	
Boring No.: B-4-1 S-7	
Samplē No.: S-7	
Test No.: 20.8 PSI	

Project No.: 60225561 Checked By: WPQ Depth: 12.0'-14.0' Elevation: ----

AECOM

Soil Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Specimen Height: 5.71 in Specimen Area: 6.32 in^2 Specimen Volume: 36.08 in^3

Liquid Limit: 27

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Plastic Limit: 11

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform

	Verti cal Strai n %	Total Verti cal Stress tsf	Total Horizontal Stress tsf	Excess Pore Pressure tsf	A Parameter	Effecti ve Verti cal Stress tsf	Effective Horizontal Stress tsf	Stress Ratio	Effective p tsf	q tsf
1 2 3 4 5 6 7 8 9 0 1 1 2 1 3 4 5 6 7 8 9 0 1 1 2 1 3 4 5 6 7 8 9 0 1 1 2 1 3 4 5 6 7 8 9 0 1 1 2 2 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 2 2 3 4 5 6 7 8 9 0 1 1 2 3 4 4 5 6 7 8 9 0 3 3 3 3 3 5 3 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 3 3 4 5 6 7 8 9 0 1 1 2 3 3 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 3 3 4 5 6 7 8 9 0 1 1 2 3 3 3 4 5 6 7 8 9 0 1 1 2 3 3 3 4 5 6 7 8 9 0 1 1 2 3 3 3 3 3 5 6 7 8 9 0 1 1 2 3 3 3 4 4 4 5 6 7 8 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		tsf 6. 5376 7. 0504 7. 2455 7. 3663 7. 4524 7. 5156 7. 5616 7. 5985 7. 6449 7. 6739 7. 7213 7. 7526 7. 7926 7. 8543 7. 9932 8. 0716 8. 1484 8. 2227 8. 2931 8. 3741 8. 4769 8. 5521 8. 6477 8. 7263 8. 8033 8. 8828 8. 9849 9. 0877 9. 1746 9. 2583 9. 5364 9. 8297 10. 419 10. 72 11. 033 11. 349 11. 656 11. 951 12. 271 12. 587 12. 896 13. 213 13. 498 13. 775 14. 052 14. 052 14. 327 15. 1052 14. 1052 15.	tsf 6. 5376	tsf 0 0.12879 0.27063 0.38475 0.47279 0.54018 0.59398 0.63582 0.66897 0.69506 0.71462 0.73038 0.74288 0.7581 0.76244 0.75918 0.75049 0.73799 0.72277 0.70212 0.68039 0.65647 0.63202 0.60593 0.57768 0.54833 0.51898 0.48909 0.45758 0.42497 0.39182 0.28911 0.17879 0.063039 -0.054887 -0.17716 -0.30215 -0.42932 -0.56083 -0.69234 -0.82603 -0.95971 -1.095 -1.2271 -1.3581 -1.4885 -1.6151 -1.7395	0.000 0.251 0.382 0.464 0.517 0.580 0.599 0.604 0.612 0.601 0.592 0.576 0.592 0.576 0.522 0.489 0.458 0.429 0.458 0.429 0.370 0.339 0.314 0.264 0.242 0.221 0.200 0.179 0.161 0.144 0.096 0.018 -0.014 -0.089 -0.184 -0.172 -0.184 -0.265 -0.215 -0.223	$\begin{array}{c} tsf\\ 1. 4418\\ 1. 8258\\ 1. 879\\ 1. 8857\\ 1. 8838\\ 1. 8796\\ 1. 8838\\ 1. 8796\\ 1. 8801\\ 1. 8801\\ 1. 8801\\ 1. 8801\\ 1. 9108\\ 1. 9264\\ 1. 9539\\ 2. 0004\\ 2. 0691\\ 1. 9539\\ 2. 0004\\ 2. 0691\\ 1. 9539\\ 2. 0004\\ 2. 0691\\ 2. 3253\\ 2. 3146\\ 2. 4041\\ 2. 4951\\ 2. 5979\\ 2. 7246\\ 2. 8242\\ 2. 9459\\ 3. 1592\\ 3. 268\\ 3. 3999\\ 3. 5343\\ 3. 6538\\ 3. 7707\\ 4. 1515\\ 4. 5551\\ 4. 5551\\ 4. 9621\\ 5. 3783\\ 5. 8017\\ 6. 2388\\ 6. 6822\\ 7. 1206\\ 7. 5479\\ 8. 0013\\ 8. 4506\\ 8. 8949\\ 9. 3444\\ 9. 7607\\ 10. 168\\ 10. 571\\ 10. 971\\ \end{array}$	$\begin{array}{c} tsf \\ 1. 4418 \\ 1. 313 \\ 1. 1711 \\ 1. 057 \\ 0. 96898 \\ 0. 9016 \\ 0. 80595 \\ 0. 7728 \\ 0. 74672 \\ 0. 72715 \\ 0. 74672 \\ 0. 72715 \\ 0. 71139 \\ 0. 69889 \\ 0. 68368 \\ 0. 67933 \\ 0. 68259 \\ 0. 69129 \\ 0. 70379 \\ 0. 719 \\ 0. 73965 \\ 0. 76139 \\ 0. 76139 \\ 0. 7853 \\ 0. 80976 \\ 0. 83584 \\ 0. 8641 \\ 0. 89345 \\ 0. 92279 \\ 0. 95268 \\ 0. 9842 \\ 1. 0168 \\ 1. 05 \\ 1. 1527 \\ 1. 263 \\ 1. 3787 \\ 1. 4967 \\ 1. 6189 \\ 1. 7439 \\ 1. 8711 \\ 2. 0026 \\ 2. 1341 \\ 2. 2678 \\ 2. 4015 \\ 2. 5368 \\ 2. 6689 \\ 2. 7998 \\ 2. 9303 \\ 3. 0569 \\ 3. 1813 \\ \end{array}$	$\begin{array}{c} 1.\ 000\\ 1.\ 391\\ 1.\ 604\\ 1.\ 784\\ 1.\ 944\\ 2.\ 028\\ 2.\ 208\\ 2.\ 316\\ 2.\ 433\\ 2.\ 522\\ 2.\ 628\\ 2.\ 708\\ 2.\ 796\\ 2.\ 926\\ 3.\ 048\\ 2.\ 796\\ 2.\ 926\\ 3.\ 048\\ 3.\ 132\\ 3.\ 219\\ 3.\ 289\\ 3.\ 344\\ 3.\ 528\\ 3.\ 531\\ 3.\ 412\\ 3.\ 469\\ 3.\ 488\\ 3.\ 524\\ 3.\ 533\\ 3.\ 536\\ 3.\ 541\\ 3.\ 569\\ 3.\ 591\\ 591\\ 591\\ 591\\ 591\\ 591\\ 591\\ 59$	tsf 1. 4418 1. 5694 1. 5251 1. 4714 1. 4264 1. 3906 1. 3598 1. 3364 1. 3264 1. 3149 1. 3149 1. 3189 1. 3264 1. 342 1. 3742 1. 4104 1. 4583 1. 5092 1. 5616 1. 6174 1. 6797 1. 7549 1. 817 1. 8909 1. 9584 2. 0263 2. 0954 2. 1763 2. 0954 2. 1763 2. 0954 2. 1763 2. 0954 2. 1763 2. 2593 2. 3353 2. 4103 2. 6521 2. 9054 2. 1763 2. 2593 2. 3353 2. 4103 2. 6521 2. 909 3. 1704 3. 4375 3. 7103 3. 9914 4. 2767 4. 5616 4. 841 5. 1345 5. 426 5. 7159 6. 0066 6. 2803 6. 5489 6. 8139 7. 0762	tsf 0 0. 25639 0. 35394 0. 41435 0. 45738 0. 48902 0. 51198 0. 53047 0. 55363 0. 56816 0. 59183 0. 60749 0. 62751 0. 65834 0. 69489 0. 72781 0. 76699 0. 80542 0. 84255 0. 87774 0. 91827 0. 96965 1. 0072 1. 055 1. 0943 1. 1329 1. 1726 1. 2236 1. 2751 1. 3185 1. 3604 1. 4994 1. 4994 1. 6461 1. 7917 1. 9408 2. 0914 2. 2475 2. 4056 2. 559 2. 7069 2. 8667 3. 0245 3. 1791 3. 3378 3. 4804 3. 757 3. 8948
49	15.61	14. 514	6.5376	-1.8341	-0. 230	11. 253	3. 2759	3. 435	7.2643	3. 9884

Mon, 12-DEC-2011 10:51:49

TRIAXIAL COMPRESSION TEST REPORT

Project: COLETO CREEK FACILITY	Location: IPR-GDF SUEZ	Project No.: 60225561			
Boring No.: B-4-1 S-13	Tested By: BCM	Checked By: WPQ			
Sample No.: S-13	Test Date: 12/2/11	Depth: 24.0'-26.0'			
Test No.: B-4-1 S-13	Sample Type: 3" ST	Elevation:			
Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC					
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767					

Project: COLETO CREEK FACILITY Boring No.: B-4-1 S-13 Sample No.: S-13 Test No.: 10.4 PSI Location: IPR-GDF SUEZ Tested By: BCM Test Date: 12/2/11 Sample Type: 3" ST Project No.: 60225561 Checked By: WPQ Depth: 24.0'-26.0' Elevation: ----

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Specimen Height: 6.06 in Specimen Area: 5.82 in^2 Specimen Volume: 35.25 in^3

Liquid Limit: 40

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Plastic Limit: 24

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform

Time	Verti cal	Corrected	Deviator	Deviator	Pore	Hori zontal	Verti cal
	Strai n	Area	Load	Stress	Pressure	Stress	Stress
$\begin{array}{c} \mbox{min}\\ 0\\ 5.\ 0041\\ 10\\ 15\\ 20\\ 25\\ 30\\ 35.\ 001\\ 40.\ 001\\ 45.\ 001\\ 55.\ 001\\ 55.\ 001\\ 55.\ 001\\ 55.\ 001\\ 60.\ 001\\ 70.\ 001\\ 80.\ 001\\ 90.\ 002\\ 100\\ 110\\ 120\\ 130\\ 140\\ 150\\ 160\\ 170\\ 180\\ 190\\ 200\\ 210\\ 220\\ 230\\ 270\\ 300\\ 330\\ 360\\ 390\\ 420\\ 480\\ 510\\ 540\\ 570\\ 600\\ 630\\ 660\\ 690\\ 720\\ 750\\ 780\\ 810\\ 840\\ 870\\ 900\\ 930\\ 900\\ 1020\\ 1050\\ 1080\\ 1110\\ 1140\\ 1170\\ 1200\\ 1230\\ 1230\\ 1230\\ 1230\\ 100\\ 110\\ 1100\\ 1230\\ 1230\\ 100\\ 100\\ 1230\\ 100\\ 100\\ 100\\ 1230\\ 100\\ 100\\ 100\\ 1230\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 1$	Strain $\%$ 0 0.017083 0.037013 0.056944 0.075451 0.093957 0.11389 0.13239 0.1509 0.21069 0.2292 0.26764 0.3075 0.34593 0.38579 0.42281 0.46124 0.50111 0.54097 0.5794 0.65628 0.69471 0.73457 0.77159 0.81145 0.84846 0.8869 1.0406 1.156 1.7325 1.8492 1.966 2.009 2.3176 2.6721 1.7325 1.8492 1.966 2.0841 2.2009 2.3176 2.6721 1.7325 1.8492 1.966 2.0841 2.2009 2.3176 2.6721 2.7902 2.9056 3.0223 3.1376 3.2515 3.3654 3.4807 3.5946 3.7085 3.8238 3.9377 4.053 4.053 4.6352 4.752	Area i n^2 5. 8194 5. 8204 5. 8204 5. 8204 5. 8228 5. 8238 5. 8249 5. 8249 5. 8261 5. 8272 5. 8282 5. 8306 5. 8317 5. 8328 5. 8374 5. 8328 5. 8374 5. 8328 5. 8374 5. 8328 5. 8374 5. 8374 5. 8374 5. 8424 5. 8464 5. 8441 5. 8464 5. 8457 5. 8602 5. 9013 5. 922 5. 9291 5. 9204 5. 9204 5. 9504 5. 9504 5. 9504 5. 9504 5. 9504 5. 9504 5. 9504 5. 9504 5. 9504 5. 9504 5. 9504 5. 9204 5. 9203 6. 0079 6. 015 6. 00293 6. 00364 6. 00508 6. 00508 6. 00508 6. 00508 6. 00508 6. 00726 6. 008 6. 00726 6. 008 6. 00726 6. 008 6. 00726 6. 008 6. 00726 6. 008 6. 00726 6. 008 6. 00726 6. 008 6. 00726 6. 008 6. 00726 6. 0072	Load I b 0 6. 8968 11. 372 14. 478 16. 9 18. 795 20. 48 21. 901 23. 27 24. 428 25. 481 26. 481 27. 428 29. 272 30. 904 32. 325 33. 694 34. 905 36. 063 37. 116 38. 169 39. 117 40. 907 41. 802 42. 644 43. 276 44. 013 44. 75 45. 645 45. 645 45. 645 46. 862 65. 44 63. 966 65. 44 77. 707 78. 971 80. 287 81. 498 82. 656 84. 025 85. 235 86. 447 88. 658 89. 658 90. 813 97. 133	Stress tsf 0 0.085314 0.14064 0.17902 0.20893 0.23232 0.25309 0.27061 0.327061 0.32695 0.33923 0.36119 0.36119 0.38118 0.39856 0.41527 0.43003 0.44413 0.45691 0.46969 0.44816 0.46969 0.48116 0.50279 0.51359 0.52379 0.52373 0.53129 0.52373 0.55973 0.524012 0.54896 0.55973 0.54896 0.55973 0.54896 0.55973 0.54896 0.55973 0.54896 0.55973 0.54896 0.55973 0.54896 0.55973 0.54896 0.55973 0.54896 0.55973 0.54896 0.55973 0.64116 0.66096 0.68137 0.771492 0.771817 0.73714 0.77540 0.88251 0.88251 0.87254 0.901548 0.93016 0.94417 0.95876 0.97207 0.98472 0.99983 1.013 1.022 1.0368 1.0499 1.0604 1.0725 1.0852 1.0852 1.0975	$\begin{array}{c} \text{Pressure} \\ \text{tsf} \\ \hline 5.0425 \\ 5.2419 \\ 5.2811 \\ 5.308 \\ 5.3273 \\ 5.3425 \\ 5.3553 \\ 5.3425 \\ 5.3553 \\ 5.3658 \\ 5.3746 \\ 5.3828 \\ 5.3892 \\ 5.3951 \\ 5.4097 \\ 5.4097 \\ 5.4097 \\ 5.4097 \\ 5.4231 \\ 5.4231 \\ 5.4231 \\ 5.4231 \\ 5.4231 \\ 5.4424 \\ 5.4372 \\ 5.4436 \\ 5.4455 \\ 5.4565 \\$	Stress tsf 5. 7888	Stress tsf 5. 7888 5. 9294 5. 9294 5. 9294 5. 9294 5. 9294 5. 9277 6. 0211 6. 0419 6. 0594 6. 0763 6. 1035 6. 1035 6. 1035 6. 1035 6. 128 6. 2041 6. 2188 6. 2045 6. 2188 6. 22808 6. 2457 6. 22885 6. 22808 6. 2457 6. 22885 6. 3024 6. 3024 6. 3024 6. 3024 6. 3289 6. 3289 6. 3289 6. 3289 6. 3289 6. 3289 6. 3289 6. 3289 6. 3289 6. 3289 6. 3289 6. 3289 6. 3289 6. 3289 6. 3289 6. 3289 6. 3289 6. 3289 6. 5259 6. 54498 6. 55637 6. 55259 6. 5637 6. 5637 6. 5636 6. 5969 6. 6131 6. 6747 6. 7735 6. 7886 6. 8015 6. 8277 6. 8863 6. 8874 6. 8863
1170	4.5185	6. 0948	90. 816	1.0728	5. 3308	5. 7888	6. 8616
1200	4.6352	6. 1023	91. 974	1.0852	5. 3243	5. 7888	6. 874
	$ \begin{array}{c} \mbox{min} \\ 0 \\ 5. \ 0041 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 35. \ 001 \\ 40. \ 001 \\ 55. \ 001 \\ 55. \ 001 \\ 55. \ 001 \\ 55. \ 001 \\ 55. \ 001 \\ 55. \ 001 \\ 55. \ 001 \\ 55. \ 001 \\ 55. \ 001 \\ 55. \ 001 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 200 \\ 210 \\ 220 \\ 230 \\ 270 \\ 330 \\ 360 \\ 390 \\ 420 \\ 450 \\ 480 \\ 510 \\ 540 \\ 540 \\ 570 \\ 600 \\ 630 \\ 660 \\ 690 \\ 720 \\ 750 \\ 780 \\ 810 \\ 840 \\ 870 \\ 900 \\ 990 \\ 1020 \\ 1050 \\ 1080 \\ 1110 \\ 1200 \\ 1050 \\ 1080 \\ 1110 \\ 1200 \\ 1230 \\ 1260 \\ 1290 \\ 1320 \\ 1350 \\ 1380 \\ 1410 \\ 140 \\ 1500 \\ 1530 \\ 1380 \\ 1410 \\ 1500 \\ 1590 \\ 1620 \\ 1650 \\ 1620 \\ 1650 \\ 1620 \\ 1650 \\ 1650 \\ 1620 \\ 1650 \\ 100 \\ 1$	Time minStrain %005.00410.017083100.037013150.056944200.075451250.093957300.1138935.0010.1323940.0010.150945.0010.1708350.0010.2106960.0010.229270.0010.2676480.0010.307590.0020.345931000.385791100.422811200.461241300.501111400.540971500.57941600.617841700.656281800.694711900.734572000.771592100.811452200.848462300.88692701.04063001.1563301.27133601.38663901.50054201.61724501.73254801.84925101.9665402.08415702.20096002.31766302.43586602.55396902.67217202.79027502.90567803.02238103.13768403.25158703.6549003.48079303.59469603.70859903.8238 <t< td=""><td>Time minStrain $\%$Area in^2005.81945.00410.0170835.8204100.0370135.8216150.0569445.8228200.0754515.8238250.0939575.8249300.113895.827240.0010.15095.828245.0010.170835.827440.0010.170835.827440.0010.170835.827440.0010.210695.831760.0010.22925.832870.0010.267645.835180.0010.30755.837490.0020.345935.83961000.385795.8421100.422815.84641300.501115.84871400.540975.85341600.617845.85561700.656285.87791800.694715.86472000.71595.86472100.811455.8672200.848465.8063001.1565.87152300.88695.87152401.61725.91514501.73255.9224801.84925.9214801.38665.90133901.50055.98365702.90565.9726902.67215.97526302.43585.96476602.55395.9726903.6546.023</td><td>TimeStrainAreaLoadmin%in^21b005.819405.00410.0170835.82046.8968100.0370135.821611.372200.0754515.823814.478200.0754515.824918.795300.113895.826120.4835.0010.13295.824223.2745.0010.170835.829424.42850.0010.190765.837420.99450.0010.210695.831726.48150.0010.22025.832823.251000.365795.84233.6941100.422815.844134.9051200.461245.846436.0631300.501115.845737.1161400.540975.851138.1691500.57945.862244.752000.771595.862744.0132100.81455.866744.0132200.848465.867743.2762300.88695.871545.6452300.88695.871545.6452300.88695.871545.6452300.88695.871545.6452300.88695.871545.6452401.73255.92259.074801.38665.901354.1773001.1565.887550.5413001.3766.002975.986</td></t<> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td></td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	Time minStrain $\%$ Area in^2005.81945.00410.0170835.8204100.0370135.8216150.0569445.8228200.0754515.8238250.0939575.8249300.113895.827240.0010.15095.828245.0010.170835.827440.0010.170835.827440.0010.170835.827440.0010.210695.831760.0010.22925.832870.0010.267645.835180.0010.30755.837490.0020.345935.83961000.385795.8421100.422815.84641300.501115.84871400.540975.85341600.617845.85561700.656285.87791800.694715.86472000.71595.86472100.811455.8672200.848465.8063001.1565.87152300.88695.87152401.61725.91514501.73255.9224801.84925.9214801.38665.90133901.50055.98365702.90565.9726902.67215.97526302.43585.96476602.55395.9726903.6546.023	TimeStrainAreaLoadmin%in^21b005.819405.00410.0170835.82046.8968100.0370135.821611.372200.0754515.823814.478200.0754515.824918.795300.113895.826120.4835.0010.13295.824223.2745.0010.170835.829424.42850.0010.190765.837420.99450.0010.210695.831726.48150.0010.22025.832823.251000.365795.84233.6941100.422815.844134.9051200.461245.846436.0631300.501115.845737.1161400.540975.851138.1691500.57945.862244.752000.771595.862744.0132100.81455.866744.0132200.848465.867743.2762300.88695.871545.6452300.88695.871545.6452300.88695.871545.6452300.88695.871545.6452300.88695.871545.6452401.73255.92259.074801.38665.901354.1773001.1565.887550.5413001.3766.002975.986	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

7.0 7
5.7888 5.7888
5.2185 5.2127 5.2057 5.1998 5.1998 5.1998 5.1951 5.1887 5.184 5.1776 5.1723 5.1665 5.1612 5.1443 5.139 5.1326 5.1279 5.1326 5.1279 5.1238 5.1127 5.0744 5.0922 5.0881 5.0922 5.0881 5.0922 5.0881 5.0922 5.0881 5.0922 5.0881 5.0922 5.0881 5.0648 5.055 5.046 5.055 5.025 5.046 5.025 5.026 5.025 5.046 5.025 5.026 5.026 5.025 5.026 5.025 5.026 5.025 5.026 5.025
1. 2686 1. 2791 1. 2872 1. 2941 1. 3027 1. 3101 1. 3168 1. 3248 1. 3248 1. 3322 1. 3377 1. 3451 1. 3511 1. 3644 1. 373 1. 3791 1. 3664 1. 4059 1. 4059 1. 411 1. 4006 1. 4059 1. 411 1. 4264 1. 4218 1. 4264 1. 4218 1. 4264 1. 4357 1. 4432 1. 4432 1. 44311 1. 4357 1. 4432 1. 44311 1. 44575 1. 4654 1. 4768 1. 4768 1. 4768 1. 4768 1. 4768 1. 4768 1. 4768 1. 5096 1. 5044 1. 5099 1. 5119 1. 5066 1. 5044 1. 5099 1. 5162 1. 5222 1. 5242 1. 5242 1. 5284 1. 5333 1. 5378 1. 5557 1. 5558 1. 5605 1. 5624 1. 5778 1. 5778 1. 5778 1. 5778 1. 5778 1. 5778 1. 5778 1. 5916 1. 5917 1. 5979 1. 60685 1. 6097 1. 613 1. 6147
109. 93 110. 98 111. 82 112. 56 113. 45 114. 24 114. 98 115. 82 116. 61 117. 24 118. 03 118. 72 119. 56 120. 35 121. 09 121. 77 122. 56 123. 14 124. 14 124. 77 125. 3 126. 67 127. 25 127. 83 128. 41 129. 25 129. 88 130. 35 131. 04 132. 09 132. 72 133. 46 134. 20 132. 72 133. 46 134. 88 135. 41 135. 99 136. 67 137. 2 138. 83 139. 94 140. 51 141. 15 141. 62 144. 94 142. 67 137. 88 138. 25 138. 83 139. 94 140. 51 141. 15 144. 62 144. 99 145. 36 144. 99 145. 36 144. 57 144. 99 145. 36 144. 57 144. 99 145. 36 146. 89 147. 46 149. 41 149. 89 150. 25 150. 52
1740 1770 1800 1830 1860 1920 1950 1950 2010 2040 2070 2100 2130 2160 2190 2220 2250 2280 2310 2340 2460 2400 2430 2460 2440 2520 2550 2580 2610 2640 2670 2730 2760 2730 2760 2790 2850 2880 2910 2940 2970 3030 3030 3030 3030 3040 3090 3120 3150 3180 3210 3240 3270 3300 3330 3360 3390 3420 3450 3570 3600 3570 3600 3570 3600 3570 3600 3570 3600 3570 3600 3570 3600 3570 3600 3570 3600 3750 3750 3780 3810 3810 3810 3810 3810 3750 3750 3780 3750 3780 3810 3810 3810 3810 3810 3810 3750 3750 3750 3780 3810 3810 3810 3810 3810 3810 3810 38
$\begin{array}{c} 80\\ 81\\ 82\\ 83\\ 85\\ 87\\ 89\\ 99\\ 99\\ 99\\ 99\\ 99\\ 99\\ 99\\ 99\\ 99$

TRI	AXI	AL	TEST
-----	-----	----	------

Project: COLETO CREEK FACILITY	
Boring No.: B-4-1 S-13	
Sample No.: S-13	
Test No.: 10.4 PSI	
Test NO TO. 4 F31	

Project No.: 60225561 Checked By: WPQ Depth: 24.0'-26.0' El evation: ----

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Specimen Height: 6.06 in Specimen Area: 5.82 in^2 Specimen Volume: 35.25 in^3

Liquid Limit: 40

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Plastic Limit: 24

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform

	Verti cal Strai n	Total Verti cal Stress	Total Hori zontal Stress	Excess Pore Pressure	A Parameter	Effecti ve Verti cal Stress	Effecti ve Hori zontal Stress	' Stress Rati o	Effective p	q
123456789011121345678901112134567890122234256789031233456789041243	Strain % 0.00 0.02 0.04 0.06 0.08 0.09 0.11 0.13 0.15 0.17 0.21 0.23 0.27 0.31 0.35 0.39 0.42 0.46 0.50 0.54 0.562 0.66 0.69 0.73 0.77 0.81 0.85 0.89 1.04 1.16 1.27 1.39 1.50 1.62 1.73 1.85 1.97 2.08 2.20 2.32	Verti cal Stress tsf 5.7888 5.8741 5.9294 5.9678 5.9977 6.0211 6.0419 6.0594 6.0763 6.1035 6.1035 6.1035 6.1035 6.1035 6.128 6.128 6.128 6.128 6.128 6.128 6.128 6.128 6.2457 6.2885 6.27 6.2885 6.27 6.2808 6.3024 6.3024 6.3024 6.3024 6.3289 6.3485 6.3838 6.4069 6.433 6.4498 6.4702 6.4899 6.507 6.5259 6.5449 6.5637 6.5866 6.5969	Hori zontal Stress tsf 5. 7888	Pore Pressure tsf 0 0. 19936 0. 23853 0. 26543 0. 28472 0. 29992 0. 31278 0. 3231 0. 3231 0. 33208 0. 34026 0. 34026 0. 34669 0. 35254 0. 3578 0. 36716 0. 38586 0. 39113 0. 39463 0. 39814 0. 40282 0. 40516 0. 40691 0. 40282 0. 40516 0. 40691 0. 40282 0. 40516 0. 41042 0. 41159 0. 41276 0. 41393 0. 41276 0. 41393 0. 41276 0. 41393 0. 41276 0. 41393 0. 41276 0. 41393 0. 41276 0. 41042 0. 40309 0. 40106 0. 39814 0. 39054 0. 38586	Parameter 0.000 2.337 1.696 1.483 1.363 1.291 1.236 1.195 1.155 1.128 1.102 1.078 1.057 0.983 0.955 0.929 0.910 0.889 0.871 0.854 0.837 0.824 0.875 0.784 0.784 0.784 0.784 0.764 0.784 0.754 0.764 0.764 0.754 0.764 0.754 0.764 0.754 0.764 0.622 0.646 0.622 0.563 0.544 0.527 0.509 0.478	Verti cal Stress tsf 0. 74626 0. 63221 0. 64837 0. 65986 0. 67047 0. 67866 0. 68657 0. 69356 0. 70165 0. 70165 0. 70172 0. 71423 0. 7266 0. 7403 0. 75268 0. 76421 0. 77566 0. 78517 0. 79576 0. 80503 0. 81488 0. 84214 0. 82505 0. 87575 0. 86596 0. 87363 0. 88113 0. 885957 0. 86596 0. 97349 0. 92612 0. 94925 0. 97349 0. 92612 0. 97349 0. 92612 0. 97349 0. 92612 0. 97349 0. 92612 0. 97349 0. 97447 1. 0172 1. 0393 1. 0604 1. 0823 1. 1042 1. 1271 1. 1475	Hori zontal Stress tsf 0. 74626 0. 5469 0. 50773 0. 48083 0. 46154 0. 44634 0. 43348 0. 42295 0. 41418 0. 406 0. 39957 0. 39372 0. 38846 0. 37911 0. 36566 0. 3604 0. 35514 0. 34812 0. 3452 0. 34344 0. 34711 0. 33656 0. 34812 0. 33233 0. 3323 0. 33233 0. 3325 0. 33284 0. 33282 0. 33284 0. 33284 0. 33284 0. 33282 0. 33284 0. 33284 0. 33282 0. 33284 0. 33284 0. 33284 0. 33284 0. 33284 0. 33284 0. 33284 0. 33282 0. 33284 0. 33	Rati o 1. 000 1. 156 1. 277 1. 372 1. 453 1. 520 1. 584 1. 640 1. 640 1. 640 1. 743 1. 787 1. 830 1. 873 2. 026 2. 090 2. 152 2. 211 2. 263 2. 313 2. 361 2. 401 2. 482 2. 521 2. 559 2. 559 2. 559 2. 559 2. 559 2. 559 2. 521 2. 559 2. 521 2. 525 2. 620 2. 622 2. 684 2. 797 2. 662 2. 684 2. 797 2. 864 2. 797 2. 864 2. 797 2. 862 3. 029 3. 073 3. 098 3. 135 3. 172 3. 206 3. 242	Effecti ve ptsf 0. 74626 0. 58956 0. 57805 0. 57035 0. 56601 0. 5625 0. 56002 0. 55826 0. 55792 0. 55826 0. 55792 0. 55888 0. 55792 0. 55808 0. 55772 0. 556209 0. 56209 0. 56494 0. 56494 0. 56603 0. 57015 0. 57658 0. 57658 0. 57658 0. 57658 0. 57658 0. 57659 0. 57659 0. 57659 0. 57659 0. 57804 0. 58709 0. 59771 0. 60327 0. 60327 0. 60322 0. 62864 0. 64021 0. 65291 0. 66398 0. 67653 0. 64872 0. 70163 0. 71377 0. 72615 0. 73967 0. 75163 0. 76443 0. 77842	qtsf 0 0.042657 0.070321 0.089512 0.10447 0.11616 0.12655 0.1353 0.14373 0.16347 0.16962 0.1806 0.19059 0.19059 0.19059 0.20763 0.21501 0.22206 0.22846 0.23484 0.24058 0.24599 0.25139 0.25139 0.25139 0.2588 0.24599 0.25139 0.2588 0.24599 0.25139 0.2568 0.26187 0.26565 0.27006 0.27448 0.27986 0.27748 0.30904 0.32058 0.3094 0.35054 0.35909 0.36857 0.37803 0.38746 0.39591 0.40403 0.41276
43 445 447 490 55 55 55 55 55 55 60 123 45 67 77 77 77 77 77 77 77 77 77 77 77 77	$\begin{array}{c} 2.\ 44\\ 2.\ 55\\ 2.\ 67\\ 2.\ 79\\ 2.\ 91\\ 3.\ 02\\ 3.\ 14\\ 3.\ 25\\ 3.\ 37\\ 3.\ 48\\ 3.\ 59\\ 3.\ 71\\ 3.\ 82\\ 3.\ 94\\ 4.\ 07\\ 4.\ 29\\ 4.\ 40\\ 4.\ 52\\ 4.\ 64\\ 4.\ 75\\ 4.\ 97\\ 5.\ 22\\ 5.\ 34\\ 5.\ 46\\ 5.\ 57\\ 5.\ 68\\ 5.\ 80\\ 5.\ 91\\ 6.\ 03\\ 6.\ 14\\ 6.\ 26\\ 6.\ 37\\ 6.\ 49\\ \end{array}$		5.7888 5.7888	$\begin{array}{c} 0.\ 3806\\ 0.\ 37709\\ 0.\ 37783\\ 0.\ 36657\\ 0.\ 36657\\ 0.\ 36657\\ 0.\ 36657\\ 0.\ 3657\\ 0.\ 3558\\ 0.\ 35137\\ 0.\ 34611\\ 0.\ 34026\\ 0.\ 33558\\ 0.\ 33558\\ 0.\ 32389\\ 0.\ 32389\\ 0.\ 31337\\ 0.\ 30928\\ 0.\ 31337\\ 0.\ 30928\\ 0.\ 31337\\ 0.\ 30928\\ 0.\ 31337\\ 0.\ 30928\\ 0.\ 31337\\ 0.\ 30928\\ 0.\ 31337\\ 0.\ 30928\\ 0.\ 31337\\ 0.\ 30928\\ 0.\ 31337\\ 0.\ 30928\\ 0.\ 31337\\ 0.\ 30928\\ 0.\ 31337\\ 0.\ 30928\\ 0.\ 31337\\ 0.\ 30928\\ 0.\ 31337\\ 0.\ 30928\\ 0.\ 31337\\ 0.\ 31337\\ 0.\ 30928\\ 0.\ 31337\\ 0.\ 31337\\ 0.\ 31337\\ 0.\ 31337\\ 0.\ 31337\\ 0.\ 29875\\ 0.\ 29875\\ 0.\ 24087\\ 0.\ 24555\\ 0.\ 24087\\ 0.\ 24555\\ 0.\ 24087\\ 0.\ 24555\\ 0.\ 24087\\ 0.\ 24555\\ 0.\ 24087\\ 0.\ 22743\\ 0.\ 22333\\ 0.\ 21749\\ 0.\ 20989\\ 0.\ 20521\\ 0.\ 19878\\ 0.\ 19293\\ 0.\ 18767\\ \end{array}$	$\begin{array}{c} 0.\ 461\\ 0.\ 448\\ 0.\ 420\\ 0.\ 407\\ 0.\ 395\\ 0.\ 385\\ 0.\ 372\\ 0.\ 360\\ 0.\ 350\\ 0.\ 340\\ 0.\ 350\\ 0.\ 340\\ 0.\ 329\\ 0.\ 320\\ 0.\ 0$	$\begin{array}{c} 1. \ 1912\\ 1. \ 2115\\ 1. \ 2315\\ 1. \ 2522\\ 1. \ 2729\\ 1. \ 2929\\ 1. \ 3103\\ 1. \ 3502\\ 1. \ 3694\\ 1. \ 3803\\ 1. \ 3502\\ 1. \ 3694\\ 1. \ 3803\\ 1. \ 4674\\ 1. \ 5847\\ 1. \ 4632\\ 1. \ 4797\\ 1. \ 4974\\ 1. \ 5132\\ 1. \ 5309\\ 1. \ 5497\\ 1. \ 5678\\ 1. \ 5847\\ 1. \ 6027\\ 1. \ 6208\\ 1. \ 6376\\ 1. \ 5678\\ 1. \ 5847\\ 1. \ 6027\\ 1. \ 6208\\ 1. \ 6376\\ 1. \ 5678\\ 1. \ 5678\\ 1. \ 5678\\ 1. \ 5678\\ 1. \ 5678\\ 1. \ 5678\\ 1. \ 5678\\ 1. \ 5678\\ 1. \ 5678\\ 1. \ 5678\\ 1. \ 5678\\ 1. \ 6809\\ 1. \ 6866\\ 1. \ 7045\\ 1. \ 717\\ 1. \ 7349\\ 1. \ 7486\\ 1. \ 7809\\ 1. \ 7956\\ 1. \ 8079\end{array}$	$\begin{array}{c} 0. \ 36566\\ 0. \ 36917\\ 0. \ 37443\\ 0. \ 37969\\ 0. \ 38963\\ 0. \ 39489\\ 0. \ 40015\\ 0. \ 40015\\ 0. \ 40015\\ 0. \ 40015\\ 0. \ 40016\\ 0. \ 41594\\ 0. \ 42237\\ 0. \ 42646\\ 0. \ 43289\\ 0. \ 53859\\ 0. \ 53859\\ 0. \ 55859\\$	$\begin{array}{c} 3.\ 258\\ 3.\ 289\\ 3.\ 298\\ 3.\ 307\\ 3.\ 318\\ 3.\ 307\\ 3.\ 318\\ 3.\ 324\\ 3.\ 326\\ 3.\ 335\\ 3.\ 324\\ 3.\ 326\\ 3.\ 335\\ 3.\ 337\\ 3.\ 334\\ 3.\ 344\\ 3.\ 340\\ 3.\ 344\\ 3.\ 344\\ 3.\ 344\\ 3.\ 344\\ 3.\ 344\\ 3.\ 344\\ 3.\ 344\\ 3.\ 344\\ 3.\ 344\\ 3.\ 344\\ 3.\ 344\\ 3.\ 344\\ 3.\ 344\\ 3.\ 344\\ 3.\ 344\\ 3.\ 344\\ 3.\ 344\\ 3.\ 344\\ 3.\ 345\\ 3.\ 345\\ 3.\ 328\\ 3.\ 312\\ 3.\ 305\\ 3.\ 304\\ 3.\ 295\\ 3.\ 283\\ 3.\ 281\\ 3.\ 260\\ 3.\ 253\\ 3.\ 245\\ 3.\ 236\\ \end{array}$	$\begin{array}{c} 0. \ / 7842\\ 0. \ 79031\\ 0. \ 80299\\ 0. \ 81596\\ 0. \ 82893\\ 0. \ 84128\\ 0. \ 85263\\ 0. \ 85263\\ 0. \ 87808\\ 0. \ 90197\\ 0. \ 91473\\ 0. \ 92638\\ 0. \ 90197\\ 0. \ 91473\\ 0. \ 92638\\ 0. \ 93941\\ 0. \ 95008\\ 0. \ 96124\\ 0. \ 97246\\ 0. \ 93941\\ 0. \ 95008\\ 0. \ 96124\\ 0. \ 97246\\ 0. \ 93941\\ 0. \ 95008\\ 0. \ 96124\\ 0. \ 97246\\ 0. \ 9833\\ 0. \ 99445\\ 1. \ 0778\\ 1. \ 0071\\ 1. \ 0304\\ 1. \ 04543\\ 1. \ 0456\\ 1. \ 0778\\ 1. \ 0877\\ 1. \ 0992\\ 1. \ 1117\\ 1. \ 121\\ 1. \ 1318\\ 1. \ 143\\ 1. \ 1434\\ 1. \ 1524\\ 1. \ 1642\\ 1. \ 1745\\ 1. \ 1832\end{array}$	0.41276 0.42114 0.42856 0.43627 0.45165 0.45774 0.4508 0.47208 0.47208 0.47208 0.47208 0.47938 0.47938 0.47938 0.50652 0.51841 0.51841 0.52495 0.53022 0.53842 0.54876 0.54876 0.54876 0.54876 0.54876 0.55427 0.56649 0.55427 0.56642 0.57135 0.57713 0.58227 0.587435 0.59285 0.59285 0.59703 0.60304 0.60366 0.61135 0.61671 0.62114 0.62463

$\begin{array}{c} 79\\ 80\\ 81\\ 82\\ 83\\ 84\\ 85\\ 86\\ 87\\ 88\\ 89\\ 90\\ 91\\ 92\\ 93\\ 94\\ 95\\ 96\\ 97\\ 98\\ 99\\ 90\\ 101\\ 102\\ 103\\ 104\\ 105\\ 106\\ 107\\ 108\\ 109\\ 110\\ 112\\ 123\\ 124\\ 122\\ 123\\ 124\\ 125\\ 126\\ 127\\ 128\\ 130\\ 131\\ 135\\ 136\\ 137\\ 138\\ 139\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ 146\\ 147\\ 148\\ 146\\ 147\\ 148\\ 150\\ 151\\ 152\\ 153\\ 151\\ 152\\ 153\\ 152\\ 153\\ 152\\ 153\\ 152\\ 153\\ 153\\ 152\\ 152\\ 152\\ 153\\ 152\\ 152\\ 152\\ 152\\ 152\\ 152\\ 152\\ 152$
7.0469 7.0574 7.0676 7.0829 7.0915 7.0989 7.1056 7.121 7.1265 7.121 7.1265 7.1330 7.1479 7.1479 7.1552 7.1618 7.1679 7.1751 7.1751 7.2053 7.2106 7.2152 7.2199 7.2245 7.2199 7.2245 7.2199 7.2245 7.22107 7.2245 7.22107 7.2245 7.22107 7.2245 7.22107 7.2321 7.2406 7.2719 7.2794 7.2839 7.2839 7.2839 7.2839 7.2839 7.2839 7.3007 7.3007 7.3007 7.3027 7.3027 7.32566 7.3325 7.3395 7.3468 7.3512 7.3561 7.3654 7.3654 7.3775 7.3805 7.3805 7.3805 7.3805 7.3973 7.3985 7.4018 7.4035
5.7888 -
$\begin{array}{c} 0. \ 18124\\ 0. \ 17598\\ 0. \ 17013\\ 0. \ 16312\\ 0. \ 15727\\ 0. \ 15259\\ 0. \ 14616\\ 0. \ 15259\\ 0. \ 14616\\ 0. \ 13505\\ 0. \ 12979\\ 0. \ 12394\\ 0. \ 13605\\ 0. \ 12979\\ 0. \ 12394\\ 0. \ 11868\\ 0. \ 11225\\ 0. \ 10757\\ 0. \ 10173\\ 0. \ 096466\\ 0. \ 090035\\ 0. \ 085358\\ 0. \ 081265\\ 0. \ 070157\\ 0. \ 085358\\ 0. \ 081265\\ 0. \ 076033\\ 0. \ 070157\\ 0. \ 064895\\ 0. \ 055541\\ 0. \ 049695\\ 0. \ 045602\\ 0. \ 049695\\ 0. \ 045602\\ 0. \ 049695\\ 0. \ 045602\\ 0. \ 049695\\ 0. \ 045602\\ 0. \ 049695\\ 0. \ 045602\\ 0. \ 049695\\ 0. \ 045602\\ 0. \ 049695\\ 0. \ 049695\\ 0. \ 049695\\ 0. \ 049695\\ 0. \ 049695\\ 0. \ 049695\\ 0. \ 049695\\ 0. \ 049695\\ 0. \ 049695\\ 0. \ 045602\\ 0. \ 030986\\ 0. \ 022216\\ 0. \ 015785\\ -0. \ 012862\\ -0. \ 012862\\ -0. \ 012862\\ -0. \ 012862\\ -0. \ 012862\\ -0. \ 012862\\ -0. \ 012862\\ -0. \ 029817\\ -0. \ 03274\\ -0. \ 03274\\ -0. \ 03274\\ -0. \ 03274\\ -0. \ 03274\\ -0. \ 03274\\ -0. \ 03274\\ -0. \ 03274\\ -0. \ 03274\\ -0. \ 03274\\ -0. \ 03274\\ -0. \ 03274\\ -0. \ 03274\\ -0. \ 03274\\ -0. \ 03274\\ -0. \ 03274\\ -0. \ 058464\\ -0. \ 059634\\ -0. \ 062557\\ -0. \ 076588\\ -0. \ 080096\\ -0. \ 083019\\ -0. \ 073665\\ -0. \ 070568\\ -0. \ 080096\\ -0. \ 083019\\ -0. \ 073665\\ -0. \ 010056\\ -$
$\begin{array}{c} 0. \ 144\\ 0. \ 139\\ 0. \ 133\\ 0. \ 127\\ 0. \ 122\\ 0. \ 117\\ 0. \ 112\\ 0. \ 107\\ 0. \ 102\\ 0. \ 097\\ 0. \ 093\\ 0. \ 093\\ 0. \ 093\\ 0. \ 093\\ 0. \ 097\\ 0. \ 074\\ 0. \ 070\\ 0. \ 065\\ 0. \ 062\\ 0. \ 074\\ 0. \ 070\\ 0. \ 065\\ 0. \ 062\\ 0. \ 058\\ 0. \ 058\\ 0. \ 056\\ 0. \ 062\\ 0. \ 058\\ 0. \ 058\\ 0. \ 056\\ 0. \ 062\\ 0. \ 058\\ 0. \ 056\\ 0. \ 062\\ 0. \ 035\\ 0. \ 056\\ 0. \ 058\\ 0. \ 050\\ 0. \ 035\\ 0. \ 032\\ 0. \ 035\\ 0. \ 032\\ 0. \ 035\\ 0. \ 032\\ 0. \ 035\\ 0. \ 032\\ 0. \ 032\\ 0. \ 035\\ 0. \ 032\\ 0. \ 035\\ 0. \ 032\\ 0. \ 032\\ 0. \ 032\\ 0. \ 032\\ 0. \ 032\\ 0. \ 032\\ 0. \ 032\\ 0. \ 032\\ 0. \ 007\\ 0. \ 007\\ 0. \ 022\\ -0. \ 024\\ -0. \ 038\\ -0. \ 038\\ -0. \ 041\\ -0. \ 043\\ -0. \ 043\\ -0. \ 043\\ -0. \ 045\\ -0. \ 047\\ -0. \ 047\\ -0. \ 047\\ -0. \ 051\\ -0. \ 057\\ -0. \ 057\\ -0. \ 077\\$
1. 8231 1. 8389 1. 8553 1. 8704 1. 8831 1. 9964 1. 9216 1. 9216 1. 9487 1. 9487 1. 9616 1. 9726 1. 9726 1. 9726 1. 9726 1. 9726 2. 0709 2. 0228 2. 0109 2. 0228 2. 0472 2. 0561 2. 0709 2. 0228 2. 0472 2. 0561 2. 0709 2. 082 2. 0914 2. 1031 2. 1233 2. 1317 2. 1416 2. 1538 2. 1636 2. 1717 2. 1815 2. 123 2. 1899 2. 2069 2. 2305 2. 2356 2. 2356 2. 2418 2. 2497 2. 2685 2. 22377 2. 286 2. 2909 2. 29874 2. 33149 2. 3238 2. 3311 2. 34417 2. 3525 2. 3636 2. 3714 2. 3834 2. 3884 2. 3947 2. 4094 2. 4158 2. 4211 2. 4426 2. 4519 2. 4549 2. 4909 2. 4943
0.56502 0.57028 0.57028 0.57028 0.57028 0.57028 0.57028 0.57028 0.58315 0.58899 0.59367 0.6001 0.6121 0.6147 0.62232 0.62758 0.63401 0.63869 0.64453 0.6498 0.64453 0.6499 0.65623 0.6609 0.665 0.67026 0.67026 0.6702 0.67026 0.70066 0.70592 0.71066 0.71528 0.71528 0.71995 0.72404 0.72872 0.73632 0.74275 0.74743 0.75503 0.75503 0.75912 0.76205 0.76205 0.76205 0.76205 0.775537 0.775712 0.775537 0.77790 0.78251 0.779711 0.80473 0.80589 0.80589 0.80882 0.81291 0.8285 0.829285 0.82636 0.83337 0.83688 0.83922 0.84331 0.84682 0.85335 0.85325 0.85325 0.85325 0.85331 0.85325 0.85331 0.85325 0.85331 0.85325 0.85331 0.85325 0.85331 0.85325 0.85331 0.85325 0.85331 0.85325 0.85331 0.85325 0.85331 0.85325 0.85331 0.85325 0.85325 0.85331 0.85325 0.85325 0.85331 0.85325 0.85331 0.85325 0.85325 0.85331 0.85325 0.85325 0.85331 0.85325 0.85331 0.85325 0.85325 0.85331 0.85325 0.85331 0.85325 0.85331 0.85325 0.85331 0.85325 0.85331 0.85325 0.85331 0.85325 0.85331 0.85325 0.85331 0.85325 0.85331 0.85325 0.85331 0.85325 0.85331 0.85325 0.85331 0.85325 0.85331 0.85325 0.85331 0.85325 0.85331 0.85331 0.85325 0.85331 0.85331 0.87781 0.8
3. 227 3. 225 3. 2207 3. 197 3. 194 3. 183 3. 177 3. 168 3. 161 3. 163 3. 143 3. 128 3. 120 3. 131 3. 128 3. 120 3. 098 3. 099 3. 099 3. 069 3. 069 3. 069 3. 069 3. 069 3. 069 3. 069 3. 069 3. 069 3. 069 3. 0042 3. 0042 3. 0042 3. 0042 3. 0042 3. 0042 3. 0042 3. 0042 3. 0042 3. 0042 3. 0042 3. 0042 3. 0042 3. 0042 2. 988 2. 984 2. 962 2. 964 2. 962 2. 964 2. 962 2. 964 2. 962 2. 964 2. 928 2. 929 2. 908 2. 908 2. 909 2. 908 2. 909 2. 908 2. 909 2. 908 2. 909 2. 908 2. 909 2. 908 2. 909 2. 908 2. 909 2. 908 2. 909 2. 881 2. 879 2. 879 2. 879 2. 862 2. 862 2. 862 2. 862 2. 862 2. 865 2. 862 2. 844 2. 845 2. 838 3. 838 3. 838 3. 838 3. 838 3. 838 3. 838 3. 838 3. 838 3. 838 3. 838 3. 838 3. 838 3. 838 3. 838 3. 838 3. 836 3. 838
1. 1941 1. 2046 1. 2157 1. 2268 1. 245 1. 245 1. 245 1. 2532 1. 2736 1. 2826 1. 2912 1. 3006 1. 3182 1. 3096 1. 3182 1. 3096 1. 3182 1. 3605 1. 3706 1. 3706 1. 3707 1. 3864 1. 3605 1. 3706 1. 3791 1. 3864 1. 4098 1. 4458 1. 4528 1. 4528 1. 4528 1. 4528 1. 4528 1. 4528 1. 4528 1. 4528 1. 4528 1. 4528 1. 4528 1. 4528 1. 4528 1. 4528 1. 4528 1. 4528 1. 4528 1. 4528 1. 5543 1. 5543 1. 55596 1. 5748 1. 55596 1. 5748 1. 5528 1. 5576 1. 5748 1. 5528 1. 5748 1. 5839 1. 6076 1. 612 1. 6275 1. 6363 1. 6476 1. 6552 1. 6762 1. 6762 1. 6762 1. 6762 1. 6762 1. 6803 1. 6762 1. 6803 1. 6762 1. 6803 1. 6869
0.62903 0.6343 0.63957 0.64703 0.64703 0.65135 0.65542 0.66241 0.66241 0.66281 0.66283 0.67253 0.67561 0.67956 0.68319 0.68954 0.69514 0.69554 0.70297 0.70502 0.70502 0.70502 0.71321 0.71783 0.71783 0.72158 0.72588 0.722588 0.72874 0.73271 0.73271 0.73527 0.73527 0.73841 0.74533 0.75288 0.72588 0.72588 0.72588 0.72570 0.73527 0.73527 0.73541 0.74533 0.7522 0.75595 0.75808 0.76611 0.766838 0.76818 0.77536 0.77580 0.77530 0.7522 0.75495 0.75808 0.77530 0.78250 0.78250 0.78250 0.78250 0.79555 0.79584 0.79555

Project: COLETO CREEK FACILITY
Boring No.: B-4-1 S-13
Samplē No.: S-13
Test No.: 17.4 PSI

Project No.: 60225561 Checked By: WPQ Depth: 24.0'-26.0' Elevation: ----

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Specimen Height: 5.41 in Specimen Area: 6.29 in^2 Specimen Volume: 34.03 in^3

Liquid Limit: 40

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Plastic Limit: 24

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	% i n^2 l b tsf tsf tsf tsf 0 6.2898 0 0 5.0399 6.2928 6.2928 151 6.2908 12.364 0.14151 5.111 6.2928 6.4343 234 6.292 19.701 0.22544 5.1588 6.2928 6.5182 045 6.2934 25.408 0.29068 5.1965 6.2928 6.5835 856 6.2948 29.756 0.34035 5.2265 6.2928 6.6331 067 6.2962 33.696 0.38533 5.2526 6.2928 6.6781 248 6.2975 23.234 0.26563 5.2232 6.2928 6.5584
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1516. 290812. 3640. 141515. 1116. 29286. 43432346. 29219. 7010. 225445. 15886. 29286. 51820456. 293425. 4080. 290685. 19656. 29286. 58358566. 294829. 7560. 340355. 22656. 29286. 63310676. 296233. 6960. 385335. 225266. 29286. 67812486. 297523. 2340. 265635. 22326. 29286. 5584
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	261 6. 2988 33. 628 0. 38439 5. 2704 6. 2928 6. 6772 442 6. 3002 37. 976 0. 4344 5. 2948 6. 2928 6. 1789 557 6. 3028 37. 297 0. 42606 5. 3066 6. 2928 6. 6188 557 6. 3028 37. 297 0. 42606 5. 3066 6. 2928 6. 6853 524 6. 3061 30. 304251 5. 3066 6. 2928 6. 6853 524 6. 3084 42. 12 0. 49693 5. 3776 6. 2928 6. 6712 7113 6. 316 42. 751 0. 49693 5. 3775 6. 2928 6. 6069 302 6. 3221 27. 882 0. 31412 5. 3459 6. 2928 6. 6289 951 6. 3329 51. 971 0. 59087 5. 4514 6. 2928 6. 6283 951 6. 3329 51. 971 0. 59087 5. 4514 6. 2928 6. 8675 957 6. 3343 56. 794 0. 64515 5. 4472 6. 2928 6. 8675 9567 6. 3441 30. 979 0. 31515 5

$\begin{array}{c} 80\\ 81\\ 82\\ 83\\ 84\\ 85\\ 86\\ 87\\ 88\\ 99\\ 90\\ 91\\ 92\\ 93\\ 94\\ 95\\ 96\\ 97\\ 98\\ 99\\ 90\\ 101\\ 102\\ 103\\ 104\\ 105\\ 106\\ 107\\ 108\\ 109\\ 101\\ 102\\ 103\\ 104\\ 105\\ 106\\ 107\\ 108\\ 109\\ 111\\ 112\\ 113\\ 114\\ 115\\ 116\\ 117\\ 118\\ 120\\ 121\\ 122\\ 123\\ 134\\ 135\\ 137\\ 138\\ 139\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 146\\ 146\\ 146\\ 146\\ 146\\ 146\\ 146\\ 146$
$\begin{array}{c} 1710\\ 1740\\ 1770\\ 1800\\ 1830\\ 1830\\ 1860\\ 1890\\ 1920\\ 2010\\ 2040\\ 2070\\ 2100\\ 2130\\ 2160\\ 2190\\ 2220\\ 2250\\ 2280\\ 2310\\ 2340\\ 24400\\ 24400\\ 24400\\ 24400\\ 24400\\ 24400\\ 24400\\ 24400\\ 2450\\ 2520\\ 2550\\ 2580\\ 2610\\ 2610\\ 2790\\ 2850\\ 2880\\ 2610\\ 2790\\ 2850\\ 2880\\ 2910\\ 2940\\ 2970\\ 3000\\ 3030\\ 3060\\ 3090\\ 3120\\ 3150\\ 3180\\ 3210\\ 3240\\ 3270\\ 3000\\ 3030\\ 3030\\ 3060\\ 3090\\ 3120\\ 3150\\ 3180\\ 3210\\ 3240\\ 3450\\ 3480\\ 3510\\ 3540\\ 3570\\ 3600\\ 3690\\ 3690\\ 3690\\ 3690\\ 3695, 9\end{array}$
7. 3991 7. 5299 7. 6641 7. 7984 7. 9292 8. 0618 8. 1927 8. 3235 8. 4527 8. 5836 8. 7128 8. 842 8. 9695 9. 0987 9. 2295 9. 3604 9. 4913 9. 6238 9. 7547 9. 8872 10. 02 10. 102 10. 285 10. 417 10. 285 10. 417 10. 548 10. 81 10. 939 11. 07 11. 199 11. 59 11. 718 11. 459 11. 718 12. 243 12. 771 12. 243 12. 771 12. 983 12. 112 12. 243 12. 375 12. 639 13. 169 13. 298 13. 427 13. 566 13. 689 13. 818 13. 947 14. 078 14. 078 15. 525 15. 655 15. 786 16. 048 16. 073
6.7924 6.802 6.8119 6.8218 6.8315 6.8414 6.8511 6.8609 6.9706 6.9996 6.9994 6.9294 6.9294 6.9494 6.9494 6.9494 6.9494 6.9494 6.9494 6.9494 6.9697 6.9697 6.9697 6.9697 6.9697 6.9697 6.9697 6.9697 7.0004 7.00109 7.0213 7.0315 7.0422 7.0624 7.0728 7.0624 7.0728 7.0831 7.0934 7.0728 7.0831 7.0934 7.1144 7.1247 7.1566 7.1673 7.1781 7.1889 7.2107 7.2217 7.2245 7.2654 7.2654 7.2654 7.2654 7.2654 7.2654 7.2654 7.2654 7.2654 7.3655 7.3765 7.3879 7.4804 7.4944
$\begin{array}{c} 144.57\\ 144.91\\ 145.45\\ 144.91\\ 145.45\\ 144.91\\ 145.45\\ 144.91\\ 145.45\\ 144.97\\ 146.13\\ 147.01\\ 146.81\\ 148.18\\ 149.39\\ 150.75\\ 150.48\\ 150.48\\ 150.48\\ 150.48\\ 155.51\\ 155.51\\ 155.51\\ 155.51\\ 155.51\\ 155.71\\ 155.71\\ 155.71\\ 155.71\\ 155.71\\ 157.75\\ 158.97\\ 159.78\\ 160.66\\ 164.95\\ 159.92\\ 159.86\\ 160.49\\ 160.87\\ 165.92\\ 165.49\\ 165.56\\ 165.49\\ 165.56\\ 165.49\\ 165.56\\ 165.49\\ 165.56\\ 165.56\\ 165.56\\ 166.99\\ 167.12\\ 166.31\\ 167.12\\ 166.31\\ 167.12\\ 166.31\\ 167.12\\ 166.31\\ 167.12\\ 166.31\\ 167.12\\ 166.31\\ 167.12\\ 166.39\\ 167.12\\ 166.31\\ 166.31\\ 166.$
1. 5324 1. 5339 1. 5374 1. 5374 1. 5472 1. 5472 1. 5428 1. 5542 1. 5542 1. 5753 1. 5753 1. 5776 1. 5778 1. 5778 1. 5932 1. 6057 1. 6041 1. 5976 1. 6041 1. 6041 1. 6041 1. 6041 1. 6041 1. 6041 1. 6041 1. 6021 1. 6053 1. 6041 1. 6057 1. 6054 1. 6057 1. 6056 1. 6057 1. 6056 1. 6057 1. 6056 1. 6057 1. 6056 1. 6057 1. 6056 1. 6057 1. 6056 1. 6057 1. 6056 1. 6057 1. 6056 1. 6057 1. 6057 1. 6065 1. 6057 1. 6075 1. 6065 1. 6075 1. 6075 1. 6075 1. 6075 1. 6075 1. 6075 1. 6075 1. 6075 1. 6076 1. 5976 1. 5976 1. 5976 1. 5942 1. 5942 1. 5976 1. 5976 1. 5976 1. 5976 1. 5976 1. 5976 1. 5976 1. 5976 1. 6078 1. 6078 1. 6078 1. 6078 1. 6078 1. 6072 1. 6122 1. 6122 1. 6122 1. 6122 1. 6122 1. 6122 1. 6122 1. 6122 1. 6122 1. 6122 1. 6122 1. 6122 1. 6122 1. 6122 1. 6132 1. 6132 1. 6232
5.6597 5.6585 5.6563 5.6547 5.6447 5.6447 5.6443 5.6441 5.6408 5.6386 5.6386 5.6319 5.6241 5.6241 5.6241 5.6241 5.6152 5.6169 5.6152 5.6169 5.6088 5.5963 5.5963 5.5963 5.5963 5.5963 5.5963 5.5963 5.5963 5.5963 5.5963 5.5963 5.5963 5.5963 5.5773 5.5773 5.5773 5.5773 5.5773 5.5773 5.5769 5.55475 5.55475 5.55475 5.55475 5.55475 5.5458 5.55475
7.8252 7.8267 7.8302 7.8229 7.8229 7.8329 7.84 7.8356 7.847 7.8626 7.8561 7.8631 7.8636 7.8561 7.8636 7.8985 7.9159 7.9159 7.913 7.8969 7.8943 7.9081 7.9013 7.8969 7.8943 7.9081 7.9082 7.9135 7.9194 7.9081 7.9057 7.9082 7.9135 7.9194 7.9284 7.913 7.9284 7.913 7.9284 7.913 7.9284 7.9284 7.903 7.8965 7.8904 7.8979 7.8979 7.8979 7.8979 7.8974 7.8979 7.8977 7.9065 7.8904 7.8979 7.8977 7.8979 7.8977 7.9006 7.8977 7.9006 7.8977 7.9006 7.8907 7.9025 7.9025 7.9025 7.9035 7.9025 7.9035 7.9056 7.9035 7.9056 7.9035 7.9056 7.9056 7.9056 7.9057 7.9057 7.9056 7.9057 7.9056 7.9056 7.9056 7.9056 7.9056 7.9056 7.9056 7.9056 7.9057 7.9056 7.9056 7.9056 7.9056 7.9056 7.9056 7.9056 7.9056 7.9057 7.9056 7.9057 7.9056 7.9056 7.9056 7.9056 7.9056 7.9056 7.9057 7.9056 7.9056 7.9056 7.9057 7.9056 7.9057 7.9057 7.9057 7.9057 7.9057 7.9057 7.9056 7.9056 7.9057 7.9057 7.9056 7.

Project: COLETO CREEK FACILITY	
Boring No.: B-4-1 S-13	
Sample No.: S-13	
Test No.: 17.4 PSI	
1031 110 17.4 131	

Project No.: 60225561 Checked By: WPQ Depth: 24.0'-26.0' El evation: ----

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Specimen Height: 5.41 in Specimen Area: 6.29 in^2 Specimen Volume: 34.03 in^3

Liquid Limit: 40

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Plastic Limit: 24

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform

•	r ini t. 40							opeenne o	1 avi ty. 2.00	
	Verti cal Strai n %	Total Verti cal Stress tsf	Total Hori zontal Stress tsf	Excess Pore Pressure tsf	A Parameter	Stress tsf	Effective Horizontal Stress tsf	Stress Ratio	Effective p tsf	q tsf
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{c} 0.002\\ 0.04\\ 0.08\\ 0.12\\ 0.14\\ 0.12\\ 0.25\\ 0.30\\ 0.25\\ 0.30\\ 0.25\\ 0.30\\ 0.25\\ 0.30\\ 0.25\\ 0.30\\ 0.25\\ 0.30\\ 0.25\\ 0.30\\ 0.25\\ 0.30\\ 0.25\\ 0.30\\ 0.25\\ 0.30\\ 0.25\\ 0.30\\ 0.25\\ 0.30\\ 0.25\\ 0.2$		6. 2928 6. 2928	0 0.071079 0.11883 0.1566 0.18658 0.21268 0.23045 0.25488 0.22767 0.2677 0.26988 0.2655 0.25999 0.33707 0.33929 0.33712 0.30597 0.36872 0.36872 0.36872 0.36872 0.36872 0.36872 0.36872 0.36872 0.36872 0.36872 0.36872 0.36872 0.36872 0.36872 0.36872 0.36872 0.36872 0.36872 0.36872 0.6872 0.6872 0.68131 0.67025 0.64193 0.64859 0.65281 0.6725 0.67144 0.67025 0.67144 0.67025 0.67914 0.68025 0.67914 0.67469 0.67710 0.63749	$\begin{array}{c} 0.\ \ 000\\ 0.\ \ 502\\ 0.\ \ 527\\ 0.\ \ 539\\ 0.\ \ 548\\ 0.\ \ 552\\ 0.\ \ 600\\ 0.\ \ 587\\ 0.\ \ 698\\ 0.\ \ 677\\ 0.\ \ 588\\ 0.\ \ 774\\ 0.\ \ 941\\ 0.\ \ 676\\ 0.\ \ 771\\ 0.\ \ 973\\ 0.\ \ 676\\ 0.\ \ 771\\ 0.\ \ 973\\ 0.\ \ 676\\ 0.\ \ 771\\ 0.\ \ 773\\ 0.\ \ 973\\ 0.\ \ 676\\ 0.\ \ 771\\ 0.\ \ 773\\ 0.\ \ 973\\ 0.\ \ 676\\ 0.\ \ 771\\ 0.\ \ 773\\ 0.\ \ 973\\ 0.\ \ 676\\ 0.\ \ 677\\ 0.\ \ 731\\ 1.\ \ 033\\ 0.\ \ 676\\ 0.\ \ 677\\ 0.\ \ 731\\ 1.\ \ 033\\ 0.\ \ 676\\ 0.\ \ 677\\ 0.\ \ 731\\ 1.\ \ 033\\ 0.\ \ 676\\ 0.\ \ 677\\ 0.\ \ 575\\ 0.\ \ 565\\ 0.\ \ 5571\\ 0.\ \ 565\\ 0.\ \ 5571\\ 0.\ \ 565\\ 0.\ \ 5571\\ 0.\ \ 565\\ 0.\ \ 5571\\ 0.\ \ 565\\ 0.\ \ 5571\\ 0.\ \ 565\\ 0.\ \ 5571\\ 0.\ \ 565\\ 0.\ \ 5571\\ 0.\ \ 565\\ 0.\ \ 5571\\ 0.\ \ 565\\ 0.\ \ 5571\\ 0.\ \ 565\\ 0.\ \ 5571\\ 0.\ \ 565\\ 0.\ \ 5571\\ 0.\ \ 565\\ 0.\ \ 5571\\ 0.\ \ 565\\ 0.\ \ 5571\\ 0.\ \ 567\\ 0.\ \ 577\\ 0.\ \ 515\\ 0.\ \ 507\ 0.\ \ 507\ 0.$	$\begin{array}{c} 1.\ 2529\\ 1.\ 3233\\ 1.\ 3595\\ 1.\ 3869\\ 1.\ 4066\\ 1.\ 4255\\ 1.\ 3352\\ 1.\ 4068\\ 1.\ 4255\\ 1.\ 3512\\ 1.\ 4068\\ 1.\ 432\\ 1.\ 3755\\ 1.\ 3306\\ 1.\ 2689\\ 1.\ 4147\\ 1.\ 3937\\ 1.\ 3937\\ 1.\ 3502\\ 1.\ 4161\\ 1.\ 3657\\ 1.\ 4568\\ 1.\ 4668\\ 1.\ 4671\\ 1.\ 4072\\ 1.\ 2413\\ 1.\ 4376\\ 1.\ 2955\\ 1.\ 4572\\ 1.\ 4568\\ 1.\ 5061\\ 1.\ 3682\\ 1.\ 5061\\ 1.\ 5067\\ 1.\ 5157\\ 1.\ 556\\ 1.\ 5686\\ 1.\ 5686\\ 1.\ 5061\\ 1.\ 5067\\ 1.\ 5157\\ 1.\ 556\\ 1.\ 5686\\ 1.\ 6382\\ 1.\ 5061\\ 1.\ 3682\\ 1.\ 5061\\ 1.\ 3682\\ 1.\ 5061\\ 1.\ 3682\\ 1.\ 5068\\ 1.\ 5061\\ 1.\ 3682\\ 1.\ 5061\\ 1.\ 3682\\ 1.\ 5063\\ 1.\ 6584\\ 1.\ 6382\\ 1.\ 6584\\ 1.\ 6382\\ 1.\ 6584\\ 1.\ 6382\\ 1.\ 6584\\ 1.\ 6382\\ 1.\ 6584\\ 1.\ 6382\\ 1.\ 6584\\ 1.\ 6382\\ 1.\ 6584\\ 1.\ 6382\\ 1.\ 6584\\ 1.\ 6382\\ 1.\ 8063\\ 1.\ 8154\\ 1.\ 8066\\ 1.\ 8155\\ 1.\ 8673\\ 1.\ 8748\\ 1.\ 8944\\ 1.\ 90877\\ 1.\ 92077\\ 1.\ 92078\\ 1.\ 9499\\ 1.\ 9631\\ 1.\ 9735\ 1.\ 9735\ 1.\ 9735\ 1.\ 9735\ 1.\ 9735\ 1.\ 9735\ 1.\ 9735\ 1.\ 9735\ 1.\ 9735\ 1.\ 9735\ 1.\ 9735\ 1.\ 9735\ 1.\ 9735\ 1.\ 9735\$	1. 2529 1. 1818 1. 134 1. 0963 1. 0402 1. 0696 1. 0224 0. 99798 1. 0252 0. 98576 1. 0363 0. 98299 0. 98576 1. 0363 0. 97357 0. 91357 0. 91357 0. 91357 0. 91357 0. 94689 0. 84689 0. 84684 0. 81584 0. 8257 0. 8897 0. 88684 0. 83257 0. 82638 0. 78641 0. 83257 0. 78641 0. 8375 0. 77869 0. 72921 0. 76753 0. 69645 0. 6757 0. 6757 0. 67573 0. 67657 0. 67575 0. 67757 0. 67814 0. 6313 0. 6498 0. 61926 0. 61926 0. 67975 0. 57765 0. 57765 0. 57773 0. 57262 0. 57751 0. 57262 0. 57751 0. 57262 0. 57751 0. 57262 0. 57751 0. 57262 0. 57751 0. 57262 0. 57751 0. 57262 0. 57751 0. 57262 0. 57751 0. 57262 0. 57751 0. 57262 0. 57751 0. 57262 0. 57751 0. 57262 0. 57717 0. 57262 0. 57751 0. 57262 0. 57717 0. 57262 0. 57751 0. 57262	$\begin{array}{c} 1.\ 000\\ 1.\ 120\\ 1.\ 199\\ 1.\ 265\\ 1.\ 319\\ 1.\ 370\\ 1.\ 248\\ 1.\ 376\\ 1.\ 435\\ 1.\ 376\\ 1.\ 435\\ 1.\ 376\\ 1.\ 435\\ 1.\ 376\\ 1.\ 376\\ 1.\ 376\\ 1.\ 376\\ 1.\ 376\\ 1.\ 376\\ 1.\ 376\\ 1.\ 545\\ 1.\ 526\\ 1.\ 366\\ 1.\ 526\\ 1.\ 366\\ 1.\ 526\\ 1.\ 366\\ 1.\ 568\\ 1.\ 568\\ 1.\ 568\\ 1.\ 568\\ 1.\ 568\\ 1.\ 568\\ 1.\ 568\\ 1.\ 568\\ 1.\ 568\\ 1.\ 568\\ 1.\ 568\\ 1.\ 568\\ 1.\ 568\\ 1.\ 568\\ 1.\ 568\\ 2.\ 678\\ 2.\ 678\\ 2.\ 678\\ 2.\ 678\\ 2.\ 678\\ 2.\ 678\\ 2.\ 753\\ 2.\ 817\\ 2.\ 870\\ 2.\ 970\\ 3.\ 015\\ 3.\ 062\\ 3.\ 176\\ 3.\ 204\\ 3.\ 276\\ 3.\ 148\\ 3.\ 165\\ 3.\ 176\\ 3.\ 204\\ 3.\ 276\\ 3.\ 308\\ 3.\ 330\\ 3.\ 357\\ 3.\ 357\\ 3.\ 357\\ 3.\ 357\\ 3.\ 357\\ 3.\ 357\\ 3.\ 357\\ 3.\ 357\\ 3.\ 357\\ 3.\ 357\\ 3.\ 357\\ 3.\ 357\\ 3.\ 357\\ 3.\ 360\\ 3.\ 361\\ 3.\ 371\\ 3.\ 389\\ 3.\ 371\\ 3.\ 371\\ 3.\ 371\\ 3.\ 371\\ 3.\ 371\\ 3.\ 371\\ 3.\ 371\\ 3.\ 371\\ 3.\ 371\\ 3.\ 371\\ 3.\ 371\\ 3.\ 371\\ 3.\ 371\\ 3.\ 371\\ 3.\ 371\\ 3.\ 371\\ 3.\ 371\\ 3.\ 371\\ 3.\ 371\\ 3.\ 3$	1. 2529 1. 2525 1. 2468 1. 2416 1. 2365 1. 2328 1. 2024 1. 2146 1. 215 1. 1882 1. 1988 1. 1581 1. 1792 1. 1585 1. 1329 1. 1653 1. 1358 1. 104 1. 1424 1. 1234 1. 0872 1. 1368 1. 1104 1. 1424 1. 1234 1. 0872 1. 1368 1. 1122 1. 0759 1. 1229 1. 0759 1. 1229 1. 0753 1. 1125 1. 1177 1. 1188 1. 10658 1. 1061 1. 1138 1. 11654 1. 1188 1. 1654 1. 1554 1. 1554 1. 1554 1. 1554 1. 1554 1. 1654 1. 1654 1. 1654 1. 1654 1. 1654 1. 1654 1. 1654 1. 1654 1. 1654 1. 1654 1. 1654 1. 12297 1. 2235 1. 2057 1. 2235 1. 2409 1. 2235 1. 2409 1. 2247 1. 2335 1. 2409 1. 2247 1. 2335 1. 22947 1. 3014 1. 3093 1. 3741 1. 3776 1. 3893 1. 3741 1. 3776 1. 3741 1. 3765 1. 3741 1. 3765 1. 3741 1. 3765 1. 3741 1. 3765	0 0.070757 0.11272 0.14534 0.17017 0.13282 0.217 0.13282 0.217 0.16301 0.21303 0.12181 0.19626 0.17213 0.1303 0.12181 0.19626 0.24947 0.24006 0.21441 0.15706 0.27378 0.23926 0.16806 0.29543 0.24396 0.23783 0.24396 0.32258 0.23783 0.24396 0.3156 0.23783 0.35436 0.38845 0.29823 0.43624 0.43624 0.43624 0.43624 0.43624 0.43624 0.43624 0.43624 0.57833 0.54885 0.53554 0.53554 0.53554 0.54885 0.57833 0.56814 0.57833 0.58697 0.59672 0.604176 0.6476 0.6476 0.67923 0.64176 0.67923 0.64176 0.67923 0.6842 0.67923 0.6842 0.67923 0.6842 0.67923 0.6476 0.7237 0.72962 0.74061 0.74799 0.72962 0.7461 0.74799 0.75092 0.75092 0.76113

$\begin{array}{c} 79\\ 80\\ 81\\ 82\\ 83\\ 84\\ 85\\ 86\\ 87\\ 88\\ 89\\ 90\\ 91\\ 92\\ 93\\ 94\\ 95\\ 96\\ 97\\ 98\\ 90\\ 101\\ 102\\ 103\\ 104\\ 105\\ 106\\ 107\\ 108\\ 109\\ 110\\ 111\\ 112\\ 113\\ 106\\ 107\\ 108\\ 109\\ 110\\ 111\\ 112\\ 122\\ 123\\ 124\\ 125\\ 126\\ 127\\ 128\\ 129\\ 131\\ 132\\ 133\\ 134\\ 135\\ 136\\ 137\\ 138\\ 140\\ 141\\ 142\\ 143\\ 145\\ 146\\ 147\\ 146\\ 146\\ 146\\ 146\\ 146\\ 146\\ 146\\ 146$
$\begin{array}{c} 7.\ 27\\ 7.\ 40\\ 7.\ 53\\ 7.\ 66\\ 7.\ 93\\ 8.\ 06\\ 8.\ 19\\ 8.\ 32\\ 8.\ 45\\ 8.\ 58\\ 8.\ 71\\ 8.\ 845\\ 8.\ 97\\ 9.\ 10\\ 9.\ 23\\ 9.\ 36\\ 9.\ 62\\ 9.\ 75\\ 9.\ 89\\ 9.\ 62\\ 9.\ 75\\ 9.\ 89\\ 9.\ 62\\ 9.\ 75\\ 9.\ 89\\ 9.\ 62\\ 9.\ 75\\ 9.\ 89\\ 10.\ 15\\ 10.\ 28\\ 10.\ 42\\ 10.\ 68\\ 10.\ 94\\ 11.\ 07\\ 11.\ 33\\ 11.\ 46\\ 11.\ 59\\ 11.\ 98\\ 12.\ 11\\ 12.\ 38\\ 12.\ 51\\ 12.\ 64\\ 12.\ 70\\ 13.\ 30\\ 13.\ 56\\ 13.\ 82\\ 13.\ 98\\ 14.\ 21\\ 14.\ 34\\ 14.\ 60\\ 14.\ 73\\ 14.\ 86\\ 14.\ 91\\ 5.\ 26\\ 15.\ 52\\ 15.\ 52\\ 15.\ 52\\ 15.\ 52\\ 15.\ 52\\ 15.\ 52\\ 15.\ 52\\ 15.\ 52\\ 15.\ 52\\ 15.\ 52\\ 15.\ 52\\ 15.\ 69\\ 15.\ 92\\ 16.\ 07\\ \end{array}$
7.8101 7.8252 7.8267 7.8267 7.8267 7.8229 7.8329 7.844 7.8561 7.8626 7.8626 7.8626 7.8637 7.8637 7.8644 7.8867 7.8867 7.8867 7.8867 7.89697 7.90137 7.90137 7.904877790827 $7.9082779082779135779082779082779082779082779082779082779082779082779082779082779083778904779083778904779083778904778906778908779027790067790577900677902579006779035779089779048790277903577908977904879025779089579048790267790487902577904879025779048790257790487902577904879025779048790257790487902577904879025779048790257790487902577904879025790487902577904879025779048790257904879902579048790257904879902579904579025790487990257990457902579904579904577904$
$\begin{array}{c} 0.\ 6225\\ 0.\ 61972\\ 0.\ 61861\\ 0.\ 61472\\ 0.\ 61472\\ 0.\ 61472\\ 0.\ 60472\\ 0.\ 60972\\ 0.\ 60972\\ 0.\ 60084\\ 0.\ 59862\\ 0.\ 59862\\ 0.\ 59862\\ 0.\ 59862\\ 0.\ 59862\\ 0.\ 59195\\ 0.\ 58918\\ 0.\ 58918\\ 0.\ 58418\\ 0.\ 58418\\ 0.\ 58418\\ 0.\ 58418\\ 0.\ 58418\\ 0.\ 58418\\ 0.\ 57918\\ 0.\ 57696\\ 0.\ 57529\\ 0.\ 57759\\ 0.\ 57696\\ 0.\ 57529\\ 0.\ 57529\\ 0.\ 57529\\ 0.\ 57529\\ 0.\ 56974\\ 0.\ 56696\\ 0.\ 56419\\ 0.\ 56696\\ 0.\ 56419\\ 0.\ 56696\\ 0.\ 56419\\ 0.\ 56696\\ 0.\ 56419\\ 0.\ 56696\\ 0.\ 564223\\ 0.\ 55808\\ 0.\ 55641\\ 0.\ 55253\\ 0.\ 56441\\ 0.\ 55253\\ 0.\ 56446\\ 0.\ 54253\\ 0.\ 53809\\ 0.\ 53309\\ 0.\ 53309\\ 0.\ 53309\\ 0.\ 53309\\ 0.\ 53309\\ 0.\ 53309\\ 0.\ 53309\\ 0.\ 53309\\ 0.\ 53031\\ 0.\ 52698\\ 0.\ 52476\\ 0.\ 52199\\ 0.\ 52032\\ 0.\ 5181\\ 0.\ 51421\\ 0.\ 51255\\ 0.\ 50755\\ 0.\ 50588\\ 0.\ 50422\\ 0.\ 50311\\ 0.\ 50033\\ 0.\ 49977\\ 0.\ 49811\\ 0.\ 49533\\ 0.\ 49922\\ 0.\ 48756\\ 0.\ 48589\\ 0.\ 48422\\ 0.\ 48754\\ 0.\ 47701\\ 0.\ 47534\\ 0.\ 47534\\ 0.\ 4759\end{array}$
0. 410 0. 404 0. 403 0. 402 0. 398 0. 394 0. 393 0. 383 0. 383 0. 383 0. 375 0. 375 0. 375 0. 377 0. 357 0. 357 0. 357 0. 357 0. 357 0. 357 0. 357 0. 357 0. 354 0. 352 0. 354 0. 348 0. 345 0. 348 0. 345 0. 320 0. 320 0. 320 0. 320 0. 320 0. 322 0. 322 0. 323 0. 322 0. 323 0. 325 0. 325 0. 325 0. 325 0. 325 0. 325 0. 325 0. 325 0. 325 0. 325 0. 325 0. 325 0. 321 0. 313 0. 311 0. 316 0. 313 0. 317 0. 316 0. 303 0. 305 0. 305 0. 304 0. 303 0. 303 0. 303 0. 303 0. 304 0. 303 0. 305 0. 304 0. 303 0. 302 0. 298 0. 297 0. 296 0. 293 0. 293 0. 293 0. 293 0.
2. 1476 2. 1656 2. 1681 2. 1738 2. 1683 2. 1805 2. 1903 2. 1893 2. 2029 2. 2218 2. 2175 2. 2323 2. 2311 2. 2352 2. 2443 2. 2619 2. 2772 2. 2968 2. 2931 2. 2851 2. 2827 2. 2874 2. 2926 2. 3041 2. 3093 2. 3157 2. 3249 2. 3394 2. 3394 2. 3394 2. 3394 2. 3352 2. 3352 2. 3354 2. 3354 2. 3359 2. 3374 2. 3579 2. 3645 2. 3745
0. 63037 0. 63315 0. 63315 0. 633426 0. 63814 0. 64036 0. 64344 0. 64036 0. 64314 0. 64869 0. 65203 0. 65425 0. 65702 0. 66091 0. 66369 0. 66369 0. 66369 0. 67146 0. 67368 0. 6759 0. 6759 0. 68312 0. 6859 0. 6859 0. 6859 0. 6859 0. 68868 0. 69201 0. 6845 0. 70034 0. 70422 0. 70034 0. 70422 0. 707 0. 71033 0. 71311 0. 71478 0. 72555 0. 72588 0. 72588 0. 72555 0. 72588 0. 72555 0. 72588 0. 72555 0. 73477 0. 73088 0. 73255 0. 74698 0. 74698 0. 74698 0. 755753 0. 75753 0. 75753 0. 75753 0. 75753 0. 75753 0. 76364 0. 76697 0. 766975 0. 77786 0. 77786 0. 77752 0. 77786 0. 77752 0. 77786 0. 77752 0. 77786 0. 77752 0. 77786 0. 77752 0. 77786 0. 77752 0. 77786 0. 77752 0. 77786 0. 77752 0. 77787
3.407 3.420 3.418 3.418 3.415 3.398 3.405 3.406 3.387 3.396 3.408 3.387 3.396 3.387 3.396 3.387 3.398 3.397 3.393 3.374 3.329 3.329 3.329 3.329 3.329 3.329 3.329 3.329 3.329 3.293 3.293 3.294 3.201 3.125 3.130 3.125 3.094 3.092 3.080 3.080 3.089
1. 389 1. 3994 1. 4012 1. 4052 1. 4032 1. 4104 1. 4167 1. 4179 1. 4258 1. 4369 1. 4359 1. 4447 1. 44653 1. 4743 1. 44554 1. 4653 1. 4743 1. 4852 1. 4845 1. 4845 1. 4829 1. 4829 1. 4845 1. 4829 1. 4829 1. 5024 1. 5024 1. 5029 1. 5024 1. 5029 1. 5024 1. 5029 1. 5024 1. 5029 1. 5024 1. 5029 1. 5024 1. 5029 1. 5309 1. 5249 1. 5309 1. 5249 1. 5342 1. 5373 1. 5373 1. 5341 1. 5342 1. 5373 1. 5342 1. 5373 1. 5416 1. 5433 1. 54555 1. 5557 1. 5587 1. 5636 1. 5688 1. 5688 1. 5688 1. 5685 1. 5733 1. 5706 1. 5733 1. 5733 1. 5739 1. 5773 1. 5706 1. 5733 1. 5773 1. 5789 1. 5789 1. 5789 1. 5824 1. 5824 1. 5824 1. 5733 1. 5733 1. 5789 1. 5789 1. 5789 1. 5789 1. 5886
0.75864 0.76693 0.76693 0.76693 0.76506 0.7706 0.77142 0.7711 0.7849 0.78165 0.78511 0.78578 0.78578 0.78591 0.79659 0.80285 0.81154 0.80427 0.80285 0.81154 0.80427 0.80285 0.81154 0.80602 0.80763 0.80643 0.80769 0.80769 0.81033 0.80769 0.81033 0.80769 0.81453 0.81782 0.81453 0.81782 0.81453 0.81782 0.81453 0.81782 0.80376 0.80376 0.80376 0.80375 0.79878 0.80376 0.80376 0.80375 0.79878 0.80376 0.80495 0.80495 0.80495 0.80495 0.80495 0.80495 0.80492 0.80584 0

Project: COLETO CREEK FACILITY	
Boring No.: B-4-1 S-13	
Sample No.: S-13	
Test No.: 24.3 PSI	

Location: IPR-GDF SUEZ Tested By: BCM Test Date: 12/2/11 Sample Type: 3" ST SILT - BROWNISH GRAY ST Project No.: 60225561 Checked By: WPQ Depth: 24.0'-26.0' Elevation: ----

AECOM

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Specimen Height: 5.93 in Specimen Area: 5.37 in^2 Specimen Volume: 31.88 in^3

Liquid Limit: 40

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Plastic Limit: 24

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform

Ti me mi n	Verti cal Strai n %	Corrected Area i n^2	Deviator Load Ib	Deviator Stress tsf	Pore Pressure tsf	Hori zontal Stress tsf	Verti cal Stress tsf
$\begin{array}{c} 0\\ 5\\ 10\\ 15\\ 20\\ 25\\ 30. 001\\ 35. 001\\ 40. 001\\ 45. 001\\ 50. 001\\ 50. 001\\ 50. 001\\ 50. 001\\ 70. 001\\ 80. 001\\ 70. 001\\ 70. 001\\ 80. 001\\ 70. 001\\ 80. 001\\ 70. 001\\ 70. 001\\ 70. 001\\ 80. 001\\ 70. 000\\ 7$	$\begin{array}{c} 0\\ 0, 017296\\ 0, 036033\\ 0, 054771\\ 0, 073508\\ 0, 092245\\ 0, 11242\\ 0, 13116\\ 0, 15134\\ 0, 17152\\ 0, 19026\\ 0, 20899\\ 0, 22773\\ 0, 26521\\ 0, 30124\\ 0, 34015\\ 0, 37907\\ 0, 41799\\ 0, 45546\\ 0, 34015\\ 0, 37907\\ 0, 41799\\ 0, 45546\\ 0, 37907\\ 0, 41799\\ 0, 45546\\ 0, 7322\\ 0, 53473\\ 0, 57365\\ 0, 61401\\ 0, 65292\\ 0, 69184\\ 0, 7322\\ 0, 77111\\ 0, 85039\\ 0, 8893\\ 0, 92966\\ 1, 0493\\ 1, 2871\\ 1, 4053\\ 1, 5235\\ 1, 6417\\ 1, 7599\\ 1, 8781\\ 1, 9977\\ 2, 2326\\ 2, 3494\\ 2, 4704\\ 2, 5872\\ 2, 7068\\ 2, 8236\\ 2, 9483\\ 3, 6451\\ 3, 7633\\ 3, 883\\ 3, 9997\\ 4, 1179\\ 4, 2346\\ 4, 3514\\ 4, 4681\\ 3, 7633\\ 3, 883\\ 3, 9997\\ 4, 1179\\ 4, 2346\\ 4, 3514\\ 4, 45849\\ 4, 7045\\ 4, 8213\\ 4, 9438\\ 5, 0576\\ 5, 1744\\ 5, 294\\ 5, 4643\\ 5, 7596\\ 5, 7596\\ 5, 7596\\ 5, 7596\\ 5, 7596\\ 5, 7596\\ 5, 7596\\ 5, 7596\\ 5, 1141\\ \end{array}$	5.3738 5.3747 5.3757 5.3767 5.3788 5.3788 5.3788 5.3788 5.3789 5.3809 5.3819 5.3831 5.3851 5.3851 5.3861 5.3881 5.3861 5.3881 5.3861 5.3881 5.3943 5.3943 5.3943 5.3943 5.3943 5.3943 5.3943 5.3943 5.3943 5.4027 5.4048 5.4027 5.4048 5.4027 5.4048 5.4027 5.4048 5.4027 5.4048 5.4027 5.4048 5.4091 5.412 5.4134 5.4178 5.4767 5.422 5.4304 5.4504 5.4535 5.5731 5.5434 5.4509 5.5434 5.5502 5.5568 5.55771 5.5502 5.5568 5.5771 5.5502 5.5568 5.5771 5.5839 5.5771 5.5839 5.5631 5.632 5.6321 5.632 5.6321 5.632 5.6321 5.6321 5.632 5.6321 5.7033 5.70323 5.70323 5.7033 5.7033 5.70323 5.7033	$\begin{array}{c} 0\\ 9.\ 9129\\ 12.\ 588\\ 13.\ 427\\ 13.\ 847\\ 14.\ 813\\ 15.\ 945\\ 17.\ 046\\ 18.\ 519\\ 22.\ 553\\ 29.\ 708\\ 35.\ 048\\ 45.\ 788\\ 48.\ 463\\ 53.\ 427\\ 45.\ 788\\ 55.\ 439\\ 57.\ 274\\ 45.\ 788\\ 53.\ 498\\ 55.\ 439\\ 57.\ 274\\ 61.\ 837\\ 63.\ 935\\ 57.\ 274\\ 61.\ 837\\ 63.\ 935\\ 57.\ 274\\ 61.\ 837\\ 63.\ 935\\ 57.\ 274\\ 61.\ 837\\ 63.\ 935\\ 57.\ 274\\ 61.\ 837\\ 63.\ 935\\ 57.\ 274\\ 61.\ 837\\ 63.\ 935\\ 57.\ 274\\ 61.\ 837\\ 63.\ 935\\ 57.\ 274\\ 61.\ 837\\ 63.\ 935\\ 57.\ 274\\ 61.\ 837\\ 63.\ 935\\ 57.\ 274\\ 61.\ 837\\ 63.\ 935\\ 57.\ 274\\ 61.\ 837\\ 63.\ 935\\ 57.\ 274\\ 61.\ 837\\ 63.\ 935\\ 57.\ 274\\ 61.\ 837\\ 63.\ 935\\ 57.\ 274\\ 61.\ 837\\ 63.\ 935\\ 57.\ 274\\ 61.\ 837\\ 63.\ 935\\ 57.\ 274\\ 61.\ 837\\ 63.\ 935\\ 57.\ 274\\ 61.\ 837\\ 63.\ 935\\ 65.\ 824\\ 67.\ 937\\ 99.\ 999\\ 77.\ 939\\ 77.\ 9$	$\begin{array}{c} 0\\ 0. 13279\\ 0. 16859\\ 0. 1798\\ 0. 18538\\ 0. 19167\\ 0. 19865\\ 0. 21335\\ 0. 22804\\ 0. 24764\\ 0. 26653\\ 0. 28331\\ 0. 30149\\ 0. 39739\\ 0. 46871\\ 0. 52245\\ 0. 57055\\ 0. 61092\\ 0. 646371\\ 0. 71295\\ 0. 73853\\ 0. 76267\\ 0. 78401\\ 0. 80464\\ 0. 82245\\ 0. 84166\\ 0. 84968\\ 0. 87443\\ 0. 8908\\ 0. 90436\\ 0. 9429\\ 0. 9751\\ 1. 0052\\ 1. 0256\\ 1. 0755\\ 1. 0949\\ 1. 1129\\ 1. 1315\\ 1. 148\\ 1. 1638\\ 1. 1811\\ 1. 2001\\ 1. 0526\\ 1. 0755\\ 1. 0949\\ 1. 1129\\ 1. 3155\\ 1. 0296\\ 1. 0526\\ 1. 0755\\ 1. 0949\\ 1. 1129\\ 1. 3155\\ 1. 148\\ 1. 1638\\ 1. 1811\\ 1. 2001\\ 1. 2273\\ 1. 2456\\ 1. 2591\\ 1. 2705\\ 1. 2859\\ 1. 2953\\ 1. 3166\\ 1. 3292\\ 1. 3411\\ 1. 3516\\ 1. 3627\\ 1. 3732\\ 1. 3732\\ 1. 3857\\ 1. 3732\\ 1. 3732\\ 1. 3732\\ 1. 3732\\ 1. 3732\\ 1. 3732\\ 1. 3732\\ 1. 4478\\ 1. 4094\\ 1. 419\\ 1. 4287\\ 1. 4388\\ 1. 4478\\ 1. 4094\\ 1. 419\\ 1. 4094\\ 1. 419\\ 1. 4094\\ 1. 4094\\ 1. 4094\\ 1. 5038\\ 1. 5159\\ 1. 5359\\ 1. 5359\\ 1. 5359\\ 1. 5452\\ \end{array}$	5.042 5.1121 5.1464 5.167 5.1822 5.2083 5.2083 5.2214 5.2632 5.2632 5.2768 5.2898 5.3404 5.3887 5.3404 5.3887 5.5664 5.5376 5.5664 5.5376 5.66393 5.6694 5.7284 5.7284 5.7284 5.7431 5.7667 5.8034 5.7284 5.7431 5.7667 5.8034 5.8746 5.8746 5.8925 5.6774 5.7284 5.7284 5.7431 5.7667 5.8034 5.8746 5.8925 5.9743 5.9675 5.9743 5.9674 5.9743 5.9675 5.9743 5.9743 5.9743 5.9675 5.9744 5.9925 5.9743 5.9744 5.99333 5.9441 5.9974 5.9744 5.9974 5.9979 6.0001 6.0034 5.9972 5.9979 6.0001 6.0035 6.0116 6.0126 6.0131 6.0148 6.0126 6.0028 6.00	$ 6.84 \\ 6.84 \\ 6.84 \\ 6.84 \\ 6.84 \\ 6.84 \\ 6.84 \\ 6.84 \\ 6.84 \\ 6.84 \\ 6.84 \\ 6.84 \\ 6.84 \\ 6.84 \\ 6.84 \\ 6.84 \\ 6.84 \\ 6.84 \\ 6.84 \\ 6.84 \\ 6.84 \\ 6.84 \\ 6.84 \\ 6.84 \\ 6.84 \\ 6.84 \\ 6.84 \\ $	tsf 6.84 6.9728 7.0086 7.0198 7.0254 7.0317 7.0386 7.0533 7.065 7.1065 7.1233 7.1415 7.2374 7.3087 7.3625 7.4106 7.4509 7.4509 7.4507 7.624 7.6627 7.624 7.6627 7.624 7.6627 7.624 7.6627 7.624 7.6627 7.727 8850 7.9155 7.9349 7.9257 8.0038 8.021 8.0051 8.0251 8.1259 8.1259 8.1259 8.1259 8.1259 8.2257 8.2
1620 1650 1680	6. 3491 6. 4673 6. 5854	5. 7381 5. 7454 5. 7526	124. 93 125. 83 126. 87	1. 5676 1. 5768 1. 588	5. 9914 5. 9892 5. 9882	6.84 6.84 6.84	8. 4076 8. 4168 8. 428
	$\begin{array}{c} \min n\\ 0\\ 5\\ 10\\ 15\\ 20\\ 25\\ 30. 001\\ 35. 001\\ 35. 001\\ 40. 001\\ 35. 001\\ 55. 001\\ 60. 001\\ 55. 001\\ 60. 001\\ 90. 002\\ 100\\ 1100\\ 120\\ 130\\ 140\\ 150\\ 160\\ 170\\ 180\\ 190\\ 200\\ 210\\ 220\\ 230\\ 240\\ 270\\ 300\\ 330\\ 360\\ 390\\ 420\\ 450\\ 570\\ 600\\ 630\\ 660\\ 690\\ 720\\ 750\\ 780\\ 810\\ 840\\ 570\\ 600\\ 630\\ 660\\ 690\\ 720\\ 750\\ 780\\ 810\\ 840\\ 570\\ 600\\ 630\\ 660\\ 690\\ 720\\ 750\\ 780\\ 810\\ 840\\ 570\\ 600\\ 630\\ 660\\ 690\\ 720\\ 750\\ 780\\ 810\\ 840\\ 870\\ 990\\ 990\\ 1020\\ 1050\\ 1080\\ $	Time minStrain %0050.017296100.036033150.054771200.073508250.09224530.0010.1124235.0010.1311640.0010.1513445.0010.1715250.0010.1902655.0010.2089960.0010.2277370.0010.2652180.0010.3012490.0020.340151000.379071100.417991200.455461300.495821400.534731500.573651600.614011700.652922000.771112100.811472200.850392300.88932400.929662701.04933001.16893301.28713601.40533901.52354201.64174501.75994801.87815101.99775402.11595702.23266002.34946302.47046602.58726902.70687202.82367502.94187803.05998103.17818403.29348703.41029303.64519603.76339903.88310204.7045 <td>TimeStrainAreamin%in^2005.373850.0172965.3747100.0360335.3757150.0547715.3767200.0735085.3778250.0922455.378830.0010.112425.379935.0010.131165.380940.0010.151345.381945.0010.171525.38350.0010.208995.385160.0010.227735.386170.0010.265215.39211000.379075.39431100.417995.39641200.455465.39841300.495825.40061400.534735.40271500.573655.44242000.711115.41562100.811475.41782200.850395.41292300.88935.4222400.929665.42422701.04935.43083001.16895.43743301.28715.44393601.40535.40594201.64175.41743301.28715.44393601.40535.5493702.23265.49656002.47045.50996602.47045.50996602.47045.50997502.94185.5637003.92345.56688703.410</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td>	TimeStrainAreamin%in^2005.373850.0172965.3747100.0360335.3757150.0547715.3767200.0735085.3778250.0922455.378830.0010.112425.379935.0010.131165.380940.0010.151345.381945.0010.171525.38350.0010.208995.385160.0010.227735.386170.0010.265215.39211000.379075.39431100.417995.39641200.455465.39841300.495825.40061400.534735.40271500.573655.44242000.711115.41562100.811475.41782200.850395.41292300.88935.4222400.929665.42422701.04935.43083001.16895.43743301.28715.44393601.40535.40594201.64175.41743301.28715.44393601.40535.5493702.23265.49656002.47045.50996602.47045.50996602.47045.50997502.94185.5637003.92345.56688703.410	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

$\begin{array}{c} 80\\ 81\\ 82\\ 83\\ 84\\ 85\\ 86\\ 87\\ 88\\ 89\\ 90\\ 92\\ 93\\ 94\\ 96\\ 97\\ 98\\ 90\\ 101\\ 102\\ 104\\ 105\\ 106\\ 107\\ 108\\ 109\\ 111\\ 112\\ 113\\ 114\\ 115\\ 117\\ 118\\ 119\\ 121\\ 122\\ 123\\ 124\\ 125\\ 126\\ 127\\ 128\\ 133\\ 134\\ 135\\ 136\\ 137\\ 138\\ 139\\ 140\\ 142\\ 143\\ 144\\ 145\\ 147\\ 148\\ 149\\ 151\\ 152\\ 155\\ 155\\ 155\\ 155\\ 155\\ 155$
1710 1740 1770 1800 1830 1840 1990 1950 1980 2010 2040 2070 2130 2130 2130 2130 2250 2280 2310 2340 2400 2550 2580 2400 2550 2580 2610 2640 2670 2730 2760 2730 2760 2740 2640 2670 2730 2760 2740 2640 2640 2640 2640 2640 2640 2640 26
6.7036 6.8204 6.9386 7.0582 7.1793 7.2946 7.4099 7.5252 7.6405 7.7558 7.8726 8.3396 8.3396 8.3396 8.4577 8.5745 8.6956 8.9305 9.0516 9.1683 9.2865 9.2865 9.4033 9.5214 9.6382 9.7549 9.8731 9.9884 10.107 10.222 9.7549 9.8731 11.049 11.67 11.284 12.224 12.464 12.577 13.694 13.527 13.644 13.527 13.644 13.527 13.644 13.527 13.644 13.527 13.644 13.763 13.998 14.187 14.237 14.364 15.164 15.164 15.281 14.702 15.419
5.7599 5.76715 5.7819 5.7819 5.7819 5.7819 5.7819 5.7819 5.7819 5.80315 5.80315 5.8479 5.8479 5.8535 5.8778 5.8778 5.8778 5.8778 5.9939 5.9939 5.9939 5.9939 5.9939 5.9937 5.9937 5.9937 5.9937 5.9937 5.9937 5.9937 5.9937 5.9937 5.9937 5.9937 5.9937 5.9937 5.9937 6.0033 6.0253 6.0334 6.0335 6.1144 6.1222 6.1387 6.1469 6.1893 6.22144 6.2228 6.23159 6.23255 6.33441 6.33255 6.33441 6.33522 6.3355
$\begin{array}{c} 128.13\\ 128.92\\ 130.23\\ 131.33\\ 132.43\\ 133.48\\ 134.58\\ 135.27\\ 136.05\\ 136.84\\ 138.05\\ 139.25\\ 140.14\\ 140.98\\ 141.87\\ 143.03\\ 144.08\\ 145.44\\ 146.87\\ 147.149.17\\ 149.79\\ 150.42\\ 152.78\\ 155.56\\ 156.77\\ 158.08\\ 158.71\\ 159.76\\ 160.28\\ 161.49\\ 162.17\\ 163.07\\ 163.9\\ 164.74\\ 165.58\\ 167.47\\ 168.57\\ 169.46\\ 170.28\\ 177.18\\ 175.23\\ 176.28\\ 177.17\\ 178.69\\ 179.59\\ 180.28\\ 181.89\\ 182.68\\ 183.52\\ 184.56\\ 186.14\\ 188.82\\ 188.56\\ 186.14\\ 188.82\\ 188.56\\ 186.14\\ 188.82\\ 188.56\\ 186.14\\ 188.82\\ 188.56\\ 186.14\\ 188.82\\ 188.56\\ 186.14\\ 188.82\\ 188.56\\ 190.55\\ 191.32\\ 188.82\\ 188.56\\ 186.14\\ 188.82\\ 188.56\\ 186.14\\ 188.82\\ 188.56\\ 190.55\\ 191.32\\ 192.12\\ 192.49\\ 193.12\\ 192.49\\ 193.12\\ 194.17\\ 194.$
1. 6017 1. 6095 1. 6017 1. 6095 1. 6354 1. 647 1. 658 1. 6696 1. 676 1. 6836 1. 6912 1. 704 1. 7255 1. 7336 1. 7449 1. 7743 1. 7649 1. 7743 1. 7649 1. 7792 1. 7926 1. 8055 1. 8147 1. 8025 1. 8147 1. 8206 1. 8259 1. 8147 1. 8205 1. 8147 1. 8205 1. 8147 1. 8206 1. 8259 1. 8356 1. 8498 1. 8257 1. 9015 1. 9065 1. 9065 1. 9065 1. 9065 1. 9065 1. 9066 1. 9204 1. 9323 1. 9373 1. 9534 1. 9608 1. 9608 1. 9608 1. 9608 1. 9608 1. 9608 1. 9608 1. 9608 1. 9204 2. 0036 2. 018 2. 0024 2. 0024 2. 0098 2. 1074 2. 1074 2. 1074 2. 1074 2. 1074 2. 1074 2. 1074 2. 1074 2. 1204 2. 0742 2. 098 2. 1074 2. 1204 2. 1272 2. 1382 2. 1419 2. 1777 2. 1847 2. 1291 2. 12951 2. 2022 2. 2004
5.9849 5.9816 5.9784 5.9784 5.9784 5.9784 5.9784 5.9784 5.9784 5.9784 5.9784 5.9784 5.9659 5.955 5.9299 5.9422 5.9422 5.9422 5.9422 5.9422 5.9422 5.9422 5.9422 5.9422 5.9422 5.9422 5.9422 5.9422 5.9422 5.9229 5.9229 5.9229 5.9227 5.9227 5.9229 5.9227 5.9229 5.8952 5.8952 5.8929 5.8929 5.8929 5.8929 5.8929 5.8929 5.88729 5.88729 5.88729 5.88729 5.88129 5.88127 5.88129 5.88129 5.88129 5.88129 5.88129 5.88129 5.88129 5.88129 5.88129 5.7728 5.7728 5.7728 5.7728 5.7728 5.7728 5.7723 5.6925 5.6817 5.6626
6.666666666666666666666666666666666666
8.4417 8.4495 8.4495 8.4754 8.4754 8.4978 8.5096 8.5166 8.5236 8.5236 8.5567 8.5655 8.5677 8.5655 8.6049 8.6192 8.6362 8.6322 8.6455 8.6547 8.6659 8.6576 8.6659 8.6756 8.6898 8.6975 8.7723 8.7723 8.7723 8.7723 8.7723 8.7723 8.7723 8.7723 8.7723 8.7723 8.7723 8.7723 8.7934 8.8008 8.8082 8.8082 8.8092 8.8753 8.8436 8.857 8.8436 8.857 8.9021 8.9218 8.9222 8.9344 8.9537 8.96042 8.978

TRI AXI AL	TEST
------------	------

roject: COLETO CREEK FACILITY pring No.: B-4-1 S-13 ample No.: S-13 est No.: 24.3 PSI	Location: IPR-GDF SUEZ Tested By: BCM Test Date: 12/2/11 Sample Type: 3" ST	
ample No.: S-13	Test Date: 12/	′2/11

Proj Chec Dept El ev

Project No.: 60225561 Checked By: WPQ Depth: 24.0'-26.0' El evation: ----

AECON

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Specimen Height: 5.93 in Specimen Area: 5.37 in^2 Specimen Volume: 31.88 in^3

Liquid Limit: 40

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Plastic Limit: 24

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform

	Verti cal	Total Verti cal	Total Hori zontal	Excess Pore	А	Effecti ve Verti cal	Effecti ve Hori zontal	Stress	Effecti ve	
	Strain %	Stress	Stress tsf	Pressure tsf	Parameter	Stress tsf	Stress tsf	Ratio	p tsf	q tsf
1234567890112345678901223456789012334567890123345678901233456789012345678901234566789012334567890123345677777777777777777777777777777777777	$ \begin{array}{c} 0. \ 00\\ 0. \ 02\\ 0. \ 04\\ 0. \ 05\\ 0. \ 07\\ 0. \ 09\\ 0. \ 11\\ 0. \ 13\\ 0. \ 17\\ 0. \ 21\\ 0. \ 23\\ 0. \ 34\\ 0. \ 15\\ 0. \ 17\\ 0. \ 21\\ 0. \ 23\\ 0. \ 34\\ 0. \ 46\\ 0. \ 53\\ 0. \ 65\\ 0. \ 67\\ 0. \ 65\\ 0. \ 67\\ 0. \ 65\\ 0. \ 67\\ 0. \ 85\\ 0. \ 67\\ 0. \ 85\\ 0. \ 67\\ 0. \ 85\\ 0. \ 67\\ 0. \ 85\\ 0. \ 67\\ 0. \ 85\\ 0. \ 67\\ 0. \ 85\\ 0. \ 67\\ 0. \ 85\\ 0. \ 67\\ 0. \ 85\\ 0. \ 67\\ 0. \ 85\\ 0. \ 89\\ 3. \ 22\\ 2. \ 25\\ 2. \ 87\\ 2. \ 80\\ 2. \ 22\\ 2. \ 33\\ 3. \ 65\\ 3. \ 88\\ 4. \ 42\\ 4. \ 35\\ 5. \ 64\\ 5. \ 55\\ 5. \ 64\\ 5. \ 55\\ 5. \ 64\\ 5. \ 88\\ 91\\ 1. \ 55\\ 5. \ 64\\ 5. \ 88\\ 91\\ 1. \ 55\\ 5. \ 64\\ 5. \ 88\\ 91\\ 1. \ 80\\ 1$	$\begin{array}{c} 6.84\\ 6.9728\\ 7.0086\\ 7.0198\\ 7.0254\\ 7.0317\\ 7.0386\\ 7.0533\\ 7.0676\\ 7.1065\\ 7.1233\\ 7.1415\\ 7.2374\\ 7.3087\\ 7.3625\\ 7.4106\\ 7.4509\\ 7.4864\\ 7.5218\\ 7.553\\ 7.6027\\ 7.624\\ 7.6446\\ 7.625\\ 7.6027\\ 7.644\\ 7.6446\\ 7.625\\ 7.6897\\ 7.7144\\ 7.7308\\ 7.7144\\ 7.7308\\ 7.7444\\ 7.7829\\ 7.8151\\ 7.8452\\ 7.8697\\ 7.7144\\ 7.7308\\ 7.7444\\ 7.7308\\ 7.7444\\ 7.7308\\ 7.7444\\ 7.7308\\ 7.7444\\ 7.7308\\ 7.7444\\ 7.7308\\ 7.7444\\ 7.7308\\ 7.9715\\ 7.9349\\ 7.9715\\ 7.9349\\ 7.955\\ 7.9349\\ 7.955\\ 7.9349\\ 7.955\\ 7.9349\\ 7.955\\ 7.9349\\ 7.555\\ 7.9349\\ 7.955\\ 7.9349\\ 7.955\\ 7.9349\\ 7.955\\ 7.9349\\ 7.955\\ 7.9349\\ 7.555\\ 7.9349\\ 7.522\\ 8.2687\\ 8.0038\\ 8.021\\ 8.105\\ 8.1259\\ 8.1353\\ 8.1473\\ 8.1666\\ 8.1692\\ 8.1811\\ 8.2044\\ 8.259\\ 8.2687\\ 8.2788\\ 8.207\\ 8.2788\\ 8.207\\ 8.2788\\ 8.307\\ 8.3095\\ 8.3203\\ 8.3203\\ 8.3203\\ 8.3552\\ 8.3071\\ 8.4168\\$	6.84 6.844 6.844 6.844 6.844 6.844 6.844 6.844 6.844 6.844 6.844 6.844 6.844 6.844 6.844 6.844 8.844 <	0 0.070104 0.10434 0.12499 0.14021 0.15379 0.16629 0.17933 0.20651 0.22118 0.23477 0.24781 0.29835 0.34671 0.39019 0.42823 0.46355 0.49562 0.5755 0.5755 0.5755 0.57524 0.63691 0.65379 0.63691 0.65375 0.63691 0.65375 0.67115 0.68636 0.70104 0.71462 0.72766 0.76136 0.78853 0.81244 0.83255 0.85048 0.8624 0.9211 0.91135 0.92583 0.9211 0.92583 0.92591 0.92591 0.92591 0.92591 0.95319 0.92591 0.92591 0.92591 0.95319 0.92591 0.92591 0.92591 0.92591 0.96895 0.96406 0.96732 0.96895 0.97221 0.96895 0.97276 0.97276 0.97276 0.96895 0.96297 0.96895 0.96297 0.96297 0.966732 0.966732 0.966732 0.966732 0.96732 0.966732 0.966732 0.96695 0.96695 0.96695 0.96695 0.96695 0.96695 0.96695 0.96695 0.96695 0.96695 0.96695 0.96697 0.96297 0.96297 0.96597 0.96597 0.96297 0.96732 0.96752 0.96752 0.96752 0.96752 0.96752 0.96752 0.96752 0.96752 0.96752 0.96752 0.96752 0.96752 0.96752 0.96752 0.96752 0.96752 0.96752 0.96752 0.9	0.000 0.528 0.619 0.695 0.756 0.802 0.837 0.841 0.834 0.834 0.830 0.829 0.751 0.740 0.740 0.747 0.759 0.767 0.769 0.772 0.772 0.777 0.783 0.792 0.797 0.797 0.808 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.805 0.807 0.809 0.808 0.805 0.807 0.797 0.794 0.797 0.772 0.772 0.797 0.797 0.797 0.797 0.797 0.797 0.797 0.797 0.797 0.797 0.6808 0.809 0.805 0.807 0.759 0.759 0.750 0.768 0.690 0.675 0.675 0.675 0.675 0.640 0.634 0.630 0.640 0.634 0.601 0.601	1.798 1.8607 1.8622 1.8528 1.8529 1.8336 1.8336 1.8336 1.8336 1.8337 1.8433 1.8433 1.8465 1.8517 1.921 1.9403 1.9453 1.9453 1.9453 1.9644 1.9655 1.9714 1.9742 1.9742 1.9742 1.9742 1.9755 1.9655 1.9742 1.9742 1.9742 1.9742 1.9745 2.00745 2.00745 2.02745 2.0829 2.0661 2.0745 2.0829 2.0681 2.1739 2.1833 2.1739 2.1833 2.1739 2.1833 2.1739 2.1833 2.1739 2.1833 2.1739 2.1833 2.1739 2.1833 2.1739 2.1833 2.1739 2.1833 2.1739 2.1833 2.1739 2.1833 2.1739 2.2221 2.2276 2.2448 2.2661 2.2673 2.2902 2.3001 2.3115 2.3388 2.3531 2.363 2.3747 2.3388 2.3531 2.3642 2.4276 2.4276 2.4276 2.4276 2.4276 2.4276 2.4276 2.4276 2.4276 2.4486 2.4276 2.4276 2.4276 2.4276 2.4276 2.4276 2.4276 2.4486 2.427	1. 798 1. 7279 1. 6936 1. 673 1. 6578 1. 6442 1. 6317 1. 6186 1. 6056 1. 5915 1. 5768 1. 5502 1. 4996 1. 4513 1. 4078 1. 3024 1. 2736 1. 2475 1. 2255 1. 2007 1. 1806 1. 1611 1. 1426 1. 1268 1. 1116 1. 0969 1. 0834 1. 0703 1. 0366 1. 0094 0. 98553 0. 96543 0. 94749 0. 93173 0. 91815 0. 90674 0. 89587 0. 88663 0. 87848 0. 8725 0. 86598 0. 85565 0. 85296 0. 85565 0. 85296 0. 8407 0. 83989 0. 84078 0. 83920 0. 83920 0. 83283 0. 83718 0. 82739 0. 82655 0. 82739 0. 82655 0. 83392 0. 82739 0. 82655 0. 83392 0. 83283 0. 83714 0. 8276 0. 82739 0. 82655 0. 82739 0. 82655 0. 82739 0. 82655 0. 82739 0. 82655 0. 82739 0. 82655 0. 82739 0. 82655 0. 82739 0. 82655 0. 82739 0. 82655 0. 83392 0. 83718 0. 83718 0. 83772 0. 83283 0. 83718 0. 83772 0. 83283 0. 83718 0. 83772 0. 83283 0. 83718 0. 83772 0. 83283 0. 83718 0. 83772 0. 83283 0. 83718 0. 83772 0. 83283 0. 83772 0. 83283 0. 83772 0. 83283 0. 83772 0. 83283 0. 83772 0. 83283 0. 83772 0. 83283 0. 83772 0. 83283 0. 83772 0. 83285 0. 83283 0. 83772 0. 83285 0. 83283 0. 83772 0. 83285 0. 83283 0. 83772 0. 83285 0. 83283 0. 83772 0. 83283 0. 83772 0. 83283 0. 83772 0. 83285 0. 83283 0. 83772 0. 83285 0. 83283 0. 83772 0. 83285 0. 83283 0. 83772 0. 83285	1. 000 1. 077 1. 100 1. 107 1. 102 1. 117 1. 122 1. 132 1. 142 1. 156 1. 169 1. 181 1. 194 1. 265 1. 323 1. 371 1. 417 1. 458 1. 496 1. 535 1. 572 1. 664 1. 693 1. 747 1. 764 1. 797 1. 825 1. 910 1. 966 2. 020 2. 066 2. 111 2. 154 2. 263 2. 325 2. 325 2. 356 2. 325 2. 356 2. 357 2. 576 2. 574 2. 576 2. 574 2. 576 2. 325 2. 356 2. 357 2. 576 2. 356 2. 357 2. 576 2. 356 2. 357 2. 576 2. 356 2. 357 2. 576 2. 576 2. 577 2. 566 2. 671 2. 686 2. 671 2. 686 2. 708 2. 708 2. 781 2. 769 2. 781 2. 781 2. 837 2. 837 2. 837 2. 841 2. 853	1. 798 1. 7943 1. 7779 1. 7629 1. 7505 1. 74 1. 731 1. 7253 1. 7193 1. 7153 1. 7101 1. 7049 1. 7049 1. 6093 1. 6555 1. 6399 1. 6555 1. 6399 1. 6555 1. 6344 1. 5726 1. 5634 1. 5726 1. 5342 1. 5287 1. 5365 1. 5342 1. 5288 1. 5225 1. 5081 1. 4977 1. 4881 1. 4695 1. 4656 1. 4632 1. 4656 1. 4632 1. 4666 1. 4632 1. 4675 1. 4675 1. 4675 1. 4675 1. 4675 1. 4675 1. 4675 1. 4675 1. 4675 1. 4675 1. 4675 1. 4675 1. 4675 1. 4675 1. 4675 1. 4675 1. 5156 1. 5218 1. 5248 1. 5275 1. 5156 1. 5218 1. 5248 1. 5279 1. 5529 1. 5524 1. 5279 1. 5529 1. 5654 1. 5714 1. 5785 1. 5869 1. 5859 1. 5644 1. 6024 1. 6324 1. 6392	$\begin{array}{c} 0\\ 0. 066397\\ 0. 084297\\ 0. 084297\\ 0. 092692\\ 0. 095834\\ 0. 099325\\ 0. 10667\\ 0. 11402\\ 0. 12382\\ 0. 13326\\ 0. 14165\\ 0. 1507\\ 0. 23436\\ 0. 26123\\ 0. 28528\\ 0. 30546\\ 0. 32318\\ 0. 30546\\ 0. 32318\\ 0. 30546\\ 0. 32318\\ 0. 34088\\ 0. 35648\\ 0. 36488\\ 0. 35648\\ 0. 36248\\ 0. 34088\\ 0. 35648\\ 0. 34088\\ 0. 35648\\ 0. 34088\\ 0. 35648\\ 0. 34088\\ 0. 35648\\ 0. 34088\\ 0. 35648\\ 0. 34088\\ 0. 35648\\ 0. 34088\\ 0. 35648\\ 0. 36548\\ 0. 52628\\ 0. 51479\\ 0. 445218\\ 0. 47145\\ 0. 445218\\ 0. 47145\\ 0. 48755\\ 0. 50258\\ 0. 51479\\ 0. 52628\\ 0. 51479\\ 0. 52628\\ 0. 57402\\ 0. 57402\\ 0. 58192\\ 0. 59049\\ 0. 6004\\ 0. 60754\\ 0. 55655\\ 0. 56576\\ 0. 57402\\ 0. 58192\\ 0. 59049\\ 0. 60044\\ 0. 60754\\ 0. 63528\\ 0. 66229\\ 0. 62958\\ 0. 66459\\ 0. 67054\\ 0. 67578\\ 0. 68137\\ 0. 68659\\ 0. 67054\\ 0. 67578\\ 0. 67054\\ 0. 67578\\ 0. 68137\\ 0. 68659\\ 0. 67054\\ 0. 67578\\ 0. 67054\\ 0. 67578\\ 0. 67054\\ 0. 67578\\ 0. 67054\\ 0. 67578\\ 0. 70471\\ 0. 74016\\ 0. 70952\\ 0. 77258\\ 0. 77258\\ 0. 77258\\ 0. 77258\\ 0. 77854\\ 0. 78381\\ 0. 78841\\ $

$\begin{array}{c} 80\\ 81\\ 82\\ 83\\ 84\\ 85\\ 86\\ 87\\ 99\\ 92\\ 93\\ 94\\ 95\\ 997\\ 98\\ 990\\ 101\\ 102\\ 103\\ 106\\ 107\\ 108\\ 100\\ 110\\ 105\\ 106\\ 107\\ 108\\ 110\\ 111\\ 112\\ 113\\ 114\\ 115\\ 116\\ 117\\ 122\\ 123\\ 124\\ 125\\ 127\\ 128\\ 1290\\ 131\\ 132\\ 133\\ 135\\ 136\\ 137\\ 138\\ 140\\ 141\\ 145\\ 146\\ 148\\ 149\\ 150\\ 152\\ 153\\ 155\\ 155\\ 155\\ 155\\ 155\\ 155\\ 155$
6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.
0.94613 0.94287 0.93961 0.93961 0.93634 0.92928 0.92928 0.92928 0.9204 0.92385 0.92004 0.91732 0.91461 0.907 0.907 0.907 0.907 0.907 0.907 0.89993 0.8798 0.8731 0.8577 0.82331 0.7726 0.7828 0.7869 0.78499 0.78499 0.78495 0.74951 0.74951 0.74971 0.74971 0.74971 0.74995 0.67549 0.62985 0.62495 0.62061
0.596 0.589 0.584 0.570 0.564 0.553 0.570 0.545 0.545 0.541 0.524 0.524 0.519 0.524 0.519 0.528 0.524 0.519 0.553 0.497 0.497 0.484 0.475 0.447 0.448 0.447 0.447 0.447 0.467 0.447 0.447 0.447 0.447 0.443 0.433 0.437 0.438 0.398 0.390 0.375 0.372 0.368 0.357 0.353 0.353 0.325 0.322 0.325 0.322 0.229 0.22
2. 4398 2. 4568 2. 4569 2. 4528 2. 5009 2. 5157 2. 5294 2. 5157 2. 5239 2. 5643 2. 5746 2. 5746 2. 5746 2. 5747 2. 6317 2. 6437 2. 6437 2. 6437 2. 6437 2. 6437 2. 6437 2. 6437 2. 723 2. 7723 2. 7302 2. 7437 2. 7631 2. 7766 2. 7766 2. 7766 2. 7766 2. 8169 2. 8169 2. 8169 2. 8169 2. 9385 2. 9733 2. 9859 3. 0019 3. 0161 3. 0278 3. 0731 3. 0876 3. 0731 3. 0876 3. 0731 3. 0878 3. 0731 3. 0878 3. 0731 3. 1467 3. 1467 3. 1467 3. 1467 3. 1467 3. 1467 3. 1467 3. 1242 3. 1367 3. 1242 3. 1367 3. 1242 3. 1367 3. 1242 3. 1242 3. 1367 3. 1242 3. 3252 3. 3733 3. 3442 3. 3742 3. 3742 3. 3783 3. 3772
0. 85185 0. 85511 0. 85511 0. 85511 0. 85637 0. 86163 0. 8643 0. 87141 0. 87793 0. 88065 0. 88377 0. 88065 0. 883777 0. 89098 0. 89424 0. 89044 0. 901326 0. 91706 0. 91326 0. 91706 0. 92087 0. 92467 0. 92087 0. 92467 0. 92087 0. 92467 0. 92087 0. 92467 0. 92087 0. 92467 0. 92728 0. 94097 0. 94423 0. 94804 0. 95728 0. 96217 0. 94097 0. 94423 0. 94845 0. 98445 0. 98445 0. 97447 0. 97467 0. 97467 0. 97467 0. 97467 0. 97467 0. 97467 0. 97467 0. 97467 0. 974457 0. 9888 0. 99314 0. 99749 1. 0008 1. 00711 1. 0165 1. 0203 1. 0241 1. 0165 1. 0203 1. 0241 1. 0165 1. 0203 1. 0241 1. 0768 1. 0328 1. 0328 1. 0322 1. 0437 1. 0437 1. 0437 1. 0768 1. 0768 1. 0773 1. 0622 1. 0573 1. 0622 1. 0671 1. 07768 1. 0768 1. 0773 1. 0768 1. 0773 1. 0768 1. 0768 1. 0773 1. 1225 1. 1279 1. 1328 1. 1328 1. 1437 1. 1475 1. 1225 1. 1279 1. 1529 1. 15832 1. 1681 1. 1773 1. 1774
2. 864 2. 873 2. 882 2. 890 2. 909 2. 912 2. 909 2. 912 2. 915 2. 927 2. 930 2. 930 2. 930 2. 933 2. 930 2. 930 2. 930 2. 930 2. 930 2. 930 2. 930 2. 953 2. 953 2. 955 2. 955 2. 955 2. 955 2. 956 2. 966 2. 966 2. 966 2. 966 2. 966 2. 955 2. 955 2. 955 2. 955 2. 955 2. 955 2. 955 2. 955 2. 955 2. 955 2. 956 2. 956 2. 956 2. 956 2. 955 2.
1. 6458 1. 6521 1. 6631 1. 6722 1. 6722 1. 7004 1. 7089 1. 7159 1. 7225 1. 7292 1. 7493 1. 757 1. 7648 1. 7725 1. 7648 1. 7725 1. 7833 1. 7924 1. 8029 1. 8139 1. 8274 1. 8029 1. 8274 1. 8364 1. 8437 1. 8501 1. 8768 1. 8768 1. 8768 1. 8768 1. 8768 1. 9963 1. 9777 1. 9658 1. 9742 1. 9742 1. 9333 1. 9247 1. 9247 1. 8768 2. 0633 1. 9778 1. 9247 1. 9247 1. 8768 2. 0678 2. 0092 2. 0182 2. 0259 2. 0333 2. 0418 2. 0746 2. 0746 2. 0746 2. 0746 2. 0746 2. 1777 2. 1263 2. 1686 2. 1763 2. 1686 2. 1763 2. 12776 2. 2776 2. 2776 2. 2776 3. 2776
0.79398 0.80084 0.80084 0.80084 0.80475 0.81762 0.8235 0.82399 0.8348 0.83798 0.8418 0.851999 0.85834 0.86273 0.8681 0.87713 0.86681 0.87713 0.87713 0.82244 0.8968 0.90108 0.90108 0.90276 0.90108 0.90276 0.90135 0.91296 0.91781 0.92488 0.92876 0.93197 0.93806 0.94409 0.95831 0.96019 0.96895 0.97267 0.97267 0.97669 0.98396 0.98409 0.98743 1.0018 1.0078 1.0012 1.0471 1.0263 1.0311 1.0409 1.0446 1.0472 1.0472 1.0471 1.0568 1.0409 1.0741 1.0789 1.0741 1.0789 1.0741 1.0795 1.0975 1.0975 1.0975 1.0975 1.0975 1.0975 1.007

DIRECT SHEAR TEST REPORT

Project: COLETO CREEK FACILITY Boring No.: B-1-1 Sample No.: S-16-18 Test No.: .75 TSF Location: IPR-GDF SUEZ Tested By: BCM Test Date: 12/17/11 Sample Type: TRIMMED Project No.: 60225561 Checked By: WPQ Depth: ----Elevation: ----

Soil Description: CALICHE SOIL (CALSIUM CARBONATE) SOME F-C SAND TRACE F GRAVEL - WHITE Remarks: TEST PERFORMED AS PER ASTM D 3080. SPECIMEN REMOLDED TO 117.0 PCF@ 16.5 WC

Step: 1 of 1

	sed Vertical ime Stress min tsf		Hori zontal Stress tsf	Hori zontal Di spl acement i n	Cumulative Displacement in
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00 0.75 .00 0.75 <td>0. 01127 0. 01182 0. 01225 0. 01266 0. 0135 0. 01429 0. 01498 0. 01557 0. 01607 0. 01648 0. 01683 0. 01715 0. 01757 0. 02125</td> <td>$\begin{array}{c} 0\\ 0.\ 06009\\ 0.\ 1469\\ 0.\ 143\\ 0.\ 2189\\ 0.\ 2873\\ 0.\ 3483\\ 0.\ 4009\\ 0.\ 4496\\ 0.\ 5329\\ 0.\ 5689\\ 0.\ 6005\\ 0.\ 6294\\ 0.\ 6524\\ 0.\ 6574\\ 0.\ 6724\\ \end{array}$</td> <td>$\begin{array}{c} 0\\ 0.\ 001129\\ 0.\ 004796\\ 0.\ 008888\\ 0.\ 0127\\ 0.\ 01651\\ 0.\ 02031\\ 0.\ 02384\\ 0.\ 02751\\ 0.\ 03104\\ 0.\ 03456\\ 0.\ 03809\\ 0.\ 0419\\ 0.\ 04543\\ 0.\ 04938\\ 0.\ 1943\\ 0.\ 3589\end{array}$</td> <td>$\begin{array}{c} 0\\ 0.\ 001129\\ 0.\ 004796\\ 0.\ 008888\\ 0.\ 0127\\ 0.\ 01651\\ 0.\ 02031\\ 0.\ 02384\\ 0.\ 02751\\ 0.\ 03104\\ 0.\ 03104\\ 0.\ 03456\\ 0.\ 03809\\ 0.\ 0419\\ 0.\ 04543\\ 0.\ 04938\\ 0.\ 1943\\ 0.\ 3589\end{array}$</td>	0. 01127 0. 01182 0. 01225 0. 01266 0. 0135 0. 01429 0. 01498 0. 01557 0. 01607 0. 01648 0. 01683 0. 01715 0. 01757 0. 02125	$\begin{array}{c} 0\\ 0.\ 06009\\ 0.\ 1469\\ 0.\ 143\\ 0.\ 2189\\ 0.\ 2873\\ 0.\ 3483\\ 0.\ 4009\\ 0.\ 4496\\ 0.\ 5329\\ 0.\ 5689\\ 0.\ 6005\\ 0.\ 6294\\ 0.\ 6524\\ 0.\ 6574\\ 0.\ 6724\\ \end{array}$	$\begin{array}{c} 0\\ 0.\ 001129\\ 0.\ 004796\\ 0.\ 008888\\ 0.\ 0127\\ 0.\ 01651\\ 0.\ 02031\\ 0.\ 02384\\ 0.\ 02751\\ 0.\ 03104\\ 0.\ 03456\\ 0.\ 03809\\ 0.\ 0419\\ 0.\ 04543\\ 0.\ 04938\\ 0.\ 1943\\ 0.\ 3589\end{array}$	$\begin{array}{c} 0\\ 0.\ 001129\\ 0.\ 004796\\ 0.\ 008888\\ 0.\ 0127\\ 0.\ 01651\\ 0.\ 02031\\ 0.\ 02384\\ 0.\ 02751\\ 0.\ 03104\\ 0.\ 03104\\ 0.\ 03456\\ 0.\ 03809\\ 0.\ 0419\\ 0.\ 04543\\ 0.\ 04938\\ 0.\ 1943\\ 0.\ 3589\end{array}$

Project: COLETO CREEK FACILITY Boring No.: B-1-1 Sample No.: S-16-18 Test No.: 1.25 TSF Location: IPR-GDF SUEZ Tested By: BCM Test Date: 12/17/11 Sample Type: TRIMMED Project No.: 60225561 Checked By: WPQ Depth: ----Elevation: ----

Soil Description: CALICHE SOIL (CALSIUM CARBONATE) SOME F-C SAND TRACE F GRAVEL - WHITE Remarks: TEST PERFORMED AS PER ASTM D 3080. SPECIMEN REMOLDED TO 117.0 PCF@ 16.5 WC

Step: 1 of 1

	El apsed	Vertical	Vertical	Hori zontal	Horizontal	Cumulative
	Ti me	Stress	Displacement	Stress	Displacement	Displacement
	mi n	tsf	in	tsf	in	in
$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\0\\1\\1\\1\\2\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1$	0. 00 12. 00 14. 00 16. 00 18. 00 22. 00 24. 00 26. 00 28. 00 33. 00 38. 00 43. 00 43. 00 53. 00 53. 00 53. 00 53. 00 73. 00 78. 00 83. 00 93. 00 93. 00 93. 00 93. 00 93. 00 93. 00 93. 00 103. 00 108. 00 103. 00 113. 00 123. 00 128. 00 133. 00 148. 00 153. 00 158. 00 163. 00 163. 00 163. 00 163. 00 168. 00 173. 00 188. 00 193. 00 208. 00 213. 00 228. 00 223. 00	$\begin{array}{c} 1.\ 25\\ 1.\ 25\$	0.01189 0.01458 0.01451 0.01467 0.01488 0.0147 0.01489 0.0153 0.01616 0.01703 0.01703 0.02177 0.02223 0.02302 0.02348 0.02364 0.02364 0.02364 0.02364 0.02385 0.02424 0.0247 0.02532 0.02424 0.0247 0.02532 0.02424 0.0247 0.02532 0.02424 0.0247 0.02532 0.02424 0.0247 0.02532 0.02424 0.02478 0.02478 0.02479 0.02531 0.03015 0.03082 0.03154 0.03304 0.03368 0.03505 0.03568 0.03568 0.03568 0.03568 0.03568 0.03505 0.03568 0.03568 0.03505 0.03568 0.03691 0.03753 0.03808 0.03874 0.03976 0.04033 0.04033 0.04034 0.04139 0.04296 0.04459 0.04511	$\begin{array}{c} 0\\ 0, 07233\\ 0, 07971\\ 0, 08127\\ 0, 1684\\ 0, 313\\ 0, 413\\ 0, 5094\\ 0, 5094\\ 0, 5879\\ 0, 7097\\ 0, 8061\\ 0, 8912\\ 0, 9647\\ 1, 018\\ 1, 05\\ 1, 067\\ 1, 018\\ 1, 05\\ 1, 067\\ 1, 018\\ 1, 05\\ 1, 067\\ 1, 018\\ 0, 9962\\ 0, 9649\\ 0, 941\\ 0, 9196\\ 0, 9006\\ 0, 8831\\ 0, 8749\\ 0, 8695\\ 0, 9697\\ 0, 941\\ 0, 8718\\ 0, 8772\\ 0, 8858\\ 0, 8955\\ 0, 9017\\ 0, 9064\\ 0, 8718\\ 0, 8772\\ 0, 8858\\ 0, 8755\\ 0, 9017\\ 0, 9064\\ 0, 9071\\ 0, 9185\\ 0, 9222\\ 0, 9222\\ 0, 9222\\ 0, 9222\\ 0, 9222\\ 0, 9222\\ 0, 9222\\ 0, 92321\\ 0, 9282\\ 0, 9292\\ 0, 9309\\ 0, 941\\ 0, 9383\\ 0, 9371\\ 0, 9356\\ 0, 936\\ 0, 9366\\ 0, 9366\\ 0, 9366\\ 0, 9366\\ 0, 9366\\ 0, 9366\\ 0, 9366\\ 0, 9476\\ 0, 9566\\ 0, 9566\\ 0, 9566\\ 0, 9566\\ 0, 9566\\ 0, 9566\\ 0, 9566\\ 0, 9566\\ 0, 9566\\ 0, 9476\\ 0, 9566\\ 0, 9566\\ 0, 9566\\ 0, 9566\\ 0, 9566\\ 0, 9476\\ 0, 9566\\ 0, 9566\\ 0, 9476\\ 0, 9566\\ 0, 9566\\ 0, 95\\ 0, 95\\ 0, $	$\begin{array}{c} 0\\ 0, 002821\\ 0, 006913\\ 0, 011\\ 0, 01481\\ 0, 02271\\ 0, 02271\\ 0, 02271\\ 0, 0261\\ 0, 02963\\ 0, 0315\\ 0, 04246\\ 0, 05206\\ 0, 06193\\ 0, 07209\\ 0, 08196\\ 0, 07209\\ 0, 08196\\ 0, 07209\\ 0, 08196\\ 0, 09198\\ 0, 1021\\ 0, 1126\\ 0, 123\\ 0, 1333\\ 0, 1436\\ 0, 1754\\ 0, 1859\\ 0, 1964\\ 0, 2077\\ 0, 2378\\ 0, 248\\ 0, 2174\\ 0, 2277\\ 0, 2378\\ 0, 248\\ 0, 2174\\ 0, 2277\\ 0, 2378\\ 0, 248\\ 0, 2174\\ 0, 2277\\ 0, 2378\\ 0, 248\\ 0, 2772\\ 0, 2378\\ 0, 248\\ 0, 2772\\ 0, 2378\\ 0, 248\\ 0, 2777\\ 0, 2378\\ 0, 248\\ 0, 2577\\ 0, 2673\\ 0, 2769\\ 0, 2872\\ 0, 2769\\ 0, 2872\\ 0, 2769\\ 0, 2872\\ 0, 2769\\ 0, 2872\\ 0, 2769\\ 0, 2872\\ 0, 2769\\ 0, 2872\\ 0, 2769\\ 0, 2872\\ 0, 3074\\ 0, 3176\\ 0, 3578\\ 0, 3779\\ 0, 3884\\ 0, 399\\ 0, 4095\\ 0, 42\\ 0, 4723\\ 0, 4823\\ 0, 4823\\ 0, 4823\\ 0, 4823\\ 0, 4823\\ 0, 4823\\ 0, 000\\ 0,$	$\begin{array}{c} 0\\ 0, 002821\\ 0, 006913\\ 0, 011\\ 0, 01481\\ 0, 0189\\ 0, 02271\\ 0, 0263\\ 0, 03315\\ 0, 04246\\ 0, 05206\\ 0, 04193\\ 0, 07209\\ 0, 08196\\ 0, 07209\\ 0, 08196\\ 0, 07209\\ 0, 08196\\ 0, 07209\\ 0, 08196\\ 0, 07209\\ 0, 08196\\ 0, 07209\\ 0, 0121\\ 0, 1126\\ 0, 123\\ 0, 1333\\ 0, 1436\\ 0, 1542\\ 0, 1648\\ 0, 1754\\ 0, 1859\\ 0, 1964\\ 0, 2068\\ 0, 2174\\ 0, 2277\\ 0, 2378\\ 0, 2482\\ 0, 2777\\ 0, 2378\\ 0, 2482\\ 0, 2777\\ 0, 2378\\ 0, 2673\\ 0, 2769\\ 0, 2872\\ 0, 2776\\ 0, 2673\\ 0, 2769\\ 0, 2872\\ 0, 2776\\ 0, 2378\\ 0, 2769\\ 0, 2872\\ 0, 2776\\ 0, 2378\\ 0, 2769\\ 0, 2872\\ 0, 2776\\ 0, 2673\\ 0, 2769\\ 0, 2872\\ 0, 2776\\ 0, 2378\\ 0, 2769\\ 0, 2872\\ 0, 2776\\ 0, 2378\\ 0, 3776\\ 0, 3776\\ 0, 3776\\ 0, 3776\\ 0, 3779\\ 0, 3884\\ 0, 399\\ 0, 4095\\ 0, 422\\ 0, 4307\\ 0, 4413\\ 0, 4517\\ 0, 4623\\ 0, 4823\\ 0, $

Project: COLETO CREEK FACILITY Boring No.: B-1-1 Sample No.: S-16-18 Test No.: 1.75 TSF Project No.: 60225561 Checked By: WPQ Depth: ----Elevation: ----

Soil Description: CALICHE SOIL (CALSIUM CARBONATE) SOME F-C SAND TRACE F GRAVEL - WHITE Remarks: TEST PERFORMED AS PER ASTM D 3080. SPECIMEN REMOLDED TO 117.0 PCF@ 16.5 WC

Location: IPR-GDF SUEZ Tested By: BCM Test Date: 12/17/11 Sample Type: TRIMMED

Step: 1 of 1

	El apsed Ti me mi n	Vertical Stress tsf	Vertical Displacement in	Hori zontal Stress tsf	Horizontal Displacement in	Cumulative Displacement in
1	0.00	1.75	0.01256	0	0	0
2	4.00	1.75	0.01529	0. 1083	0. 001552	0.001552
3	6.00	1.75	0.0162	0. 107	0.00522	0.00522
4	8.00	1.75	0. 01687	0. 1474	0. 009311	0. 009311
5	10.00	1.75	0. 01767	0. 3553	0. 0127	0. 0127
6	12.00	1.75	0. 01877	0. 497	0. 01622	0. 01622
7	14.00	1.75	0.01979	0. 615	0. 01961	0. 01961
8	16.00	1. 75	0. 0207	0. 7159	0. 02328	0. 02328
9	18.00	1.75	0. 02152	0. 8062	0. 02694	0. 02694
10	20.00	1. 75	0. 02223	0. 904	0. 03061	0. 03061
11	22.00	1. 75	0. 02289	0. 9887	0. 03414	0. 03414
12	24.00	1.75	0. 02361	1.072	0. 03809	0. 03809
13	26.00	1. 75	0. 02409	1.144	0. 0419	0. 0419
14	28.00	1.75	0. 02466	1.209	0. 04585	0. 04585
15	98.00	1. 75	0. 0315	1.356	0. 1888	0. 1888
16	198.00	1. 75	0. 04639	1.405	0. 392	0. 392
17	243.36	1. 75	0. 0505	1. 298	0. 4572	0. 4572

APPENDIX C: SLIDE 7.0 STABILITY ANALYSIS MODELS

Coleto 1_A-A_design_maxstor_eff_noncir.slmd

Bullock, Bennett & Associates, LLC

Coleto 2_A-A_design_maxstor_eff_cir.slmd

Coleto 3_A-A_design_maxstor_tot_noncir.slmd

Coleto 4_A-A_design_maxstor_tot_cir.slmd

Case 5 250 Coleto Creek Primary Pond, Cross Section A-A' Design Section, Max Surcharge Pool, Effective Stress Analysis, Non-circular 200 50 W Elev 138.0 ▼ Primary Pond W G.S. ▼ Unit Weight Cohesio Phi Water Surface Material Name Strength Type Colo Ни Туре (lbs/ft3) (psf) (deg) Clayey Sand Fill Material 130 Mohr-Coulomb 150 29 Water Surface Automatically Calculated Natural Silty Clay or Clayey Sand 130 Mohr-Coulomb 150 27 Water Surface Automatically Calculated 36 Natural Sands 130 Mohr-Coulomb 0 Water Surface Automatically Calculated 50 100 150 200 250 300 350 400

Coleto 5_A-A_design_maxsur_eff_noncir.slmd

Coleto 6_A-A_design_maxsur_eff_cir.slmd

Coleto 7_A-A_design_maxsur_tot_noncir.slmd

Coleto 8_A-A_design_maxsur_tot_cir.slmd

Coleto 9_A-A_design_maxstor_seis_tot_noncir.slmd

Coleto 10_A-A_design_maxstor_seis_tot_cir.slmd

Coleto Creek Primary/Secondary Pond, Cross Section B-B' Design Section, Max Storage Pool, Effective Stress Analysis, Non-circular

Coleto 11_B-B Design_maxstor_effective_noncirc.slmd

300

Bullock, Bennett & Associates, LLC

Case 11

Coleto 12_B-B Design_maxstor_effective_circ.slmd

Coleto 13_B-B Design_maxstor_total_noncirc.slmd

Coleto 14_B-B Design_maxstor_total_circ.slmd

Coleto Creek Primary/Secondary Pond, Cross Section B-B' Design Section, Max Surcharge Pool, Rapid DD, Total Stress Analysis, Non-circular

Coleto 15_B-B Model_Maxsur_Rapid DD_total_noncirc.slmd

8

Coleto 16_B-B Model_Maxsur_Rapid DD_total_circ.slmd

Coleto 17_B-B Design_maxstor_total__seismic_noncirc.slmd

Coleto 18_B-B Design_maxstor_total__seismic_circ.slmd

Coleto 19_C-C_desgn_maxstor_eff_stat_noncirc.slmd

Coleto 20_C-C_design_maxstor_eff_stat_circ.slmd

Coleto 21_C-C_design_maxstor_tot_stat_noncirc.slmd

Coleto 22_C-C_design_maxstor_tot_stat_circ.slmd

Coleto 23_C-C_desgn_maxsur_eff_stat_noncirc.slmd

Coleto 24_C-C_design_maxsur_eff_stat_circ.slmd

Coleto 25_C-C_desgn_maxsur_total_stat_noncirc.slmd

Coleto 26_C-C_design_maxsur_total_stat_circ.slmd

Coleto 27_C-C_desgn_maxsur_rapidDD_total_stat_noncirc.slmd

Coleto 28_C-C_desgn_maxsur_rapidDD_total_stat_circ.slmd

Coleto 29_C-C_design_seism_maxstor_tot_stat_noncirc.slmd

Coleto 30_C-C_design_seism_maxstor_tot_stat_circ.slmd

APPENDIX D: LIQUEFACTION ASSESSMENT CALCULATIONS

APPENDIX D LIQUEFACTION FACTOR OF SAFETY ASSESSMENT METHODOLOGY Coleto Creek Power Plant

 Sources: Coduto, Donald P., Geotechnical Engineering Principles and Practices. Prentice-Hall.
 Rauch, Alan F., May 1997. EPOLLS: An Empiracle Method for Predicting Surface Displacements Due to Liquefaction-Induced Lateral Spreading in Earthquakes. Dissertation Submitted to Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for degree of Doctor of Philosophy in Civil Engineering.
 United States Environmental Protection Agency (USEPA), April 1995. RCRA Subtitle D (258) Seismic Design Guidance for Municipal Solid Waste Landfill Facilities. Office of Research and Development. Washington, DC. EPA/600/R-95/051

Methodology: Standard Penetration Test (SPT)

Step 1: Compute the standardized value of number of blow counts per foot normalized for overburden stress at the depth of the test

$$(N_1)_{60} = N_{SPT} \cdot C_N \cdot C_E \cdot C_B \cdot C_S \cdot C_R$$

where:

 $(N_1)_{60}$ = Measured blowcount normalized for overburden stress at the depth of the test C_N = Correction factor to normalize the measured blowcount to an equivalent value under one atmosphere of effective overburden stress

$$C_{N} = \sqrt{\frac{Pa}{\sigma'_{vo}}} \le 2.0$$

where:

 $Pa = one \ atmosphere \ of \ pressure \ (101.325 kPa) \ in \ the \ same \ units \ as \ \sigma'_{vo} \\ \sigma'_{vo} = vertical \ effective \ stress \ at \ depth \ of \ N_{SPT}$

 C_E =Correction factor of the measured SPT blowcount for level of energy delivered by the SPT hammer, 1.0 for safety hammer type with rope and pulley hammer release

 C_{B} = Correction factor for borehole diameters outside the recommended range of 2.5 to 4.5 inch, 1.0 for borehole inside range

C₅ = Correction factor for SPT samplers used without a sample liner, 1.0 for standard sampler

C_R = Correction factor for loss of energy through reflection in short lengths of drill rod:

where:
For z < 3 m;
$$C_R = 0.75$$

For 3 < z < 9 m; $C_R = (15+z)/24$
For z > 9 m; $C_R = 1.0$
where: z = length of drill rod in meters (approximately equal to depth of N_{SPT})

Step 2: Compute a clean-sand equivalent value of $(N_1)_{60}$

$$(N_1)_{60} - cs = (N_1)_{60} + \Delta(N_1)$$

where:

 $\Delta(N_1)_{60}$ = correction factor computed as follows:

For FC < 5%, $\Delta(N_1)_{60} = 0.0$ For 5 < FC < 35%, $\Delta(N_1)_{60} = 7^*(FC - 5)/30$ For FC > 35%, $\Delta(N_1)_{60} = 7.0$ where: FC = Fines content (percent finer than 0.075 mm)

Note: Where data was available, those FC were used. Otherwise, representative values from the USGS standard soil classification were used for the soil type observed during drilling.

Step 3: Compute the cyclic resistance ratio for a standardized magnitude 7.5 earthquake (CRR M7.5)

$$100 \cdot CRR_{M7,5} = \frac{95}{34 - (N_1)_{60} - cs} + \frac{(N_1)_{60} - cs}{1.3} - \frac{1}{2}$$

Note: A value of $(N_1)_{60}$ -cs > 30 indicates an unliquefiable soil with an infinite CRR. Designated as UL in the calculation tables.

Step 4: Adjust the standardized cyclic resistance ratio for the worst-case magnitude of earthquake for the area

$$CRR = CRR_{M75} MSF \cdot K\sigma \cdot K\alpha$$

where:

MSF = magnitude scaling factor computed as follows: For $M_w < 7.0$; MSF = $10^{3.00} * M_w^{-3.46}$

where:

 M_w = estimated worst-case magnitude eartquake, 6.1 taken from Figure 3.3 Seismic Source Zones in the Contiguous United States (USGS, 1982) and Table 3.1 Parameters for Seismic Source Zones (USGS, 2982) (USEPA, 1995)

Note: Two additional correction factors are potentially applicable for liquefiable soil deposits subject to significant overburden with a stress factor greater than 1 tsf (2000 psf) (K σ) or static shear stresses such as significant slopes (K α). K σ values were interpolated using Figure 5.7 Curves for Estimation of Correction Factor (Harder 1988, and Hynes 1988, as Quoted in Marcuson, et.al., 1990) (USEPA, 1998). No K α factor was applied due to the relatively flat ground surface in the area.

Step 5: Estimate the average cyclic shear stress (CSR)

$$CSR = 0.65 \cdot \frac{a_{max}}{g} \cdot \frac{\sigma_{vo}}{\sigma'_{vo}} \cdot rd$$

where:

 a_{max}/g = peak horizonal acceleration that would occur at the ground surface in the absence of excess pore pressures or liquefaction, 0.03 g taken from the 2014 United States Geological Survey National Seismic Hazard Maps found at

http://earthquake.usgs.gov/hazards/products/conterminous/2014/2014pga2pct.pdf).

 σ_{vo} = total vertical overburden stress

g = acceleration due to gravity, 9.81 m/s^2

r_d = stress reduction factor calculated as follows for depths up to 30 m:

$$r_d = 1.0 + 1.6*10^{-6}(z^4 - 42z^3 + 105z^2 - 4200z)$$

Step 6: Calculate the Factor of Safety against liquefaction (FS_{lig})

$$FS_{liq} = \frac{CRR}{CSR}$$

LIQUEFACTION FACTOR OF SAFETY ASSESSMENT TEST BORING B-1-1¹ Coleto Creek Power Plant Primary and Secondary Ash Ponds

Depth to Water =	12	ft
Average Unsaturated Soil Unit Weight, $\gamma_d =$	125	pcf
Average Saturated Soil Unit Weight, y, =	130	pcf
Average Water Unit Weight, y _w =	62.3	pcf
Earthquake Magnitude, M _w =	6.1	
Borehole Diameter =	4", to 50' bgs	
	3", 50' to end	l of boring

5ample	Depth	Depth		Soll	σ' _{*0}																		
Number	(ft)	(m)	Note	N _{set} Туре	(psf)	C _N	CE	CB	Cs	CR	(N1)60	FC	$\Delta \{N_1\}_{60}$	(N ₁) ₆₀ -cs	CRR _{M7.5}	MSF	Kσ	CRR	a _{mat} /g	σνο	r _d	CSR	FS _{lid}
1	2	0.61	Unsaturated	40 SC	250	2.00	1.0	1.00	1.0	0.75	60.0	35	7.0	67.0	UL	1,92	NA	UL	0.03	250	1.00	UL	UL
2	4	1.22	Unsaturated	13 SC	500	2.00	1.0	1.00	1.0	0.75	19.5	35	7.0	26.5	0.33	1.92	NA	0.62	0.03	500	0.99	0.019	32
з	6	1.83	Unsaturated	14 SC	750	1,68	1.0	1.00	1.0	0.75	17.6	35	7.0	24.6	0.29	1.92	NA	0,55	0.03	750	0.99	0.019	28
4	8	2.44	Unsaturated	15 SC	1000	1.45	1.0	1.00	1.0	0.75	16.4	90.6	7.0	23.4	0.26	1.92	NA	0.51	0.03	1000	0.98	0.019	26
7	14	4.27	Saturated	10 SC	1635.4	1.14	1.0	1.00	1.0	0.80	9.1	35	7.0	16.1	0.17	1.92	NA	0.33	0.03	1760	0.97	0.020	16
8	16	4.88	5aturated	13 SC	1770.8	1.09	1.0	1.00	1.0	0.83	11.8	35	7.0	18.8	0.20	1.92	NA	0.39	0.03	2020	0.96	0.021	18
9	18	5.49	Saturated	9 SC	1906.2	1.05	1.0	1.00	1.0	0,85	8.1	35	7,0	15.1	0.16	1.92	NA	0.31	0,03	Z280	0.96	0.022	14
10	20	6.10		15 SC	2041.6	1.02	1.0	1.00	1.0	0.88	13.4	39,5	7.0	20.4	0.22	1.92	0.93	0.40	0,03	z540	0.95	0.023	17
12	24	7,32		13 SC	2312.4	0.96	1.0	1.00	1.0	0,93	11.6	35	7.0	18.6	0.20	1.92	0.92	0.35	0.03	3060	0.94	0.024	15
13	26	7.92		21 SC	2447.8	0,93	1.0	1.00	1.0	0.96	18.7	35	7.0	25.7	0.31	1.92	0.92	0,54	0.03	3320	0.93	0.025	22
14	28	8.53		15 SC	2583.2	0.91	1.0	1.00	1.0	0.98	13.3	35	7.0	20.3	0.22	1.92	0.91	0.39	0,03	3580	0,92	0.025	16
15	30	9.14		28 SC	2718.6	0.88	1.0	1.00	1.0	1.0	24.7	35	7.0	31.7	UL	- 1.92	0.91	UL	0.03	3840	0.91	ՍԼ	UL
16	32	9.75		12 SC	2854	0.86	1.0	1.00	1,0	1.0	10.3	35	7.0	17.3	0,19	1.92	0.90	0.32	0.03	4100	0.90	0.025	13
18	34.7	10.58		6 SM	3036.79	0.83	1.0	1.00	1.0	1.0	5.0	15	2.3	7.3	0.09	1.92	0.90	0.15	0.03	4451	0.89	0.025	6
18A	36	10.97		15 SM	3124.8	0.82	1.0	1.00	1.0	1.0	12,3	15	2.3	14.7	0.16	1.92	0.90	0.27	0,03	4620	0.88	0.025	11
19	36,7	11.19		24 SP	3172.19	0.82	1.0	1.00	1.0	1.0	19.6	1	0.0	19.6	0.21	1,92	0,89	0.36	0.03	4711	0.88	0.025	14
19A 20	38 40	11.58 12.19		26 SP 39 SP	3260.2 3395.6	0.81	1,0	1.00	1.0	1.0	20.9	1	0.0	20.9	0.23	1,9Z	0,89	0.39	0.03	4880	0.87	0.025	15
20	40	12.19		27 SP	3531	0.79 0.77	1.0	1.00	1.0	1,0	30.8	1	0.0	30.8	UL	1.92	0.89	UL	0.03	5140	0.86	UL	UL
21	42	12.60		35 SM	3551	0.77 D.76	1.0 1.D	1,00 1,00	1.0 1.0	1.0	20.9	1	0,0	20.9	0.23	1.92	0.88	0.39	0.03	5400	0.84	0.025	15
22	44	14.02		34 SP	3801.8	0.75	1.0	1.00	1.0	1.0 1.0	26.6 25.4	15 1	2.3	28.9	0.40	1.92	0.88	0.68	0.03	5660	0,83	UL	ΨL
23	48	14.62		66 SP	3937.2	0.73	1.0	1.00	1.0	1.0	23.4 48.4	1	0.0 0.0	25.4 48.4	0.30 UL	1.92	0.87	0.50	0.03	5920	0.82	UL	UL
25	50	15.24		56 SP	4072.6	0.72	1.0	1.00	1.0	1.0	40.4	1	0.0	40.4	UL	1.92 1,92	0.87 0.86	UL	0.03 0.03	6180 6440	0.80 0.79	UL	UL
26	52	15.85		SO SP	4208	0,71	1.0	1.00	1.0	1.0	35.5	1	0.0	35.5	UL	1,92	0.86	UL	0.03	6700	0.79	ՍԼ ՍԼ	UL UL
27	57	17.37		50 SP	4546.5	0.68	1.0	1.00	1.0	1.0	34.1	1	0.0	34,1	UL	1.92	0.85	UL	0.03	7350	0.77	UL	UL
28	62	18.90		66 SP	4885	0.66	1.0	1,00	1.0	1.0	43.4	1	0,0	43.4	UL	1.92	0.84	UL	0.03	8000	0.68	UL	UL
29	67	20.42	Saturated	50 SC	5223.5	0,64	1.0	1.00	1.0	1.0	31.8	35	7.0	38,8	UL	1.92	0.83	UL	0.03	8650	0.64	UL	UL
30	72	21.95	Saturated	92 SC	5562	0.62	1.0	1.00	1.0	1.0	56.7	35	7.0	63.7	UL	1.92	0.81	UL.	0.03	9300	0.59	UL	UL
31	75	22.BE	Saturated	50 SC	5765.1	0.61	1.0	1.00	1.0	1.0	30.3	35	7.0	37.3	UL	1.92	0.81	UL	0.03	9690	0.57	UL	UL
32	81	24.69	Saturated	50 SP	6171.3	0,59	1.0	1.00	1.0	1,0	29.3	1	0.0	29.3	UL	1.92	0.79	UL	0.03	10470	0.52	UL	UL
33	86	26.21	5aturated	50 5M	6509.8	0.57	1.0	1.00	1.0	1.0	28.5	15	2,3	30.8	UL	1.92	0.78	UL	0,03	11120	0.48	UL,	UL
34	91	27.74	Saturated	50 CL	6848.3	0.56	1.0	1.00	1.0	1.0	27.8	77.9	7,0	34.8	UL	1.92	0.77	UL	0.03	11770	0.46	UL	UL
35	96	29.26	Saturated	50 CL	7186.8	0,54	1.0	1.00	1.0	1.0	27.1	90	7.0	34.1	UL	1.92	0,76	UL	0.03	12420	0,44	UL	UL
36	100	30.48	Saturated	50 SC	7457.6	0,53	1.0	1.00	1.0	1.0	26.6	35	7.0	33.6	UL	1.92	0.75	UL	0.03	12940	0,43	UL	UL
37	107	32,61	Saturated	93 CH	7931.5	0.52	1.0	1.00	1.0	1.0	48.0	90	7,0	55.0	UL	1.92	0.74	ՄԼ	0.03	13850	0,44	UL	UL
38	112	34.14	Saturated	51 CH	9516	0.47	1.0	1.00	1.0	1.0	24.1	90	7,0	31.1	UL	1.92	0.68	UL	0.03	14500	0.47	UL	UL
39	117	35.66	Saturated	38 CH	9854.5	0.46	1.0	1.00	1.0	1.0	17.6	90	7.0	24.5	0.29	1.92	0.67	0.37	0.03	15150	0.51	0.015	24

LIQUEFACTION FACTOR OF SAFETY ASSESSMENT TEST BORING B-2-1¹ Coleto Creek Power Plant Primary and Secondary Ash Ponds

Depth to Water =	32	ft
Average Unsaturated Soil Unit Weight, y _d =	125	pcf
Average Saturated Soil Unit Weight, γ_s =	130	pcf
Average Water Unit Weight, y _w =	62.3	pcf
Earthquake Magnitude, M _W =	6.1	
Borehole Diameter =	4", to 50' bgs	
	3", 50' to end	f of boring

Sample	Depth	Depth		Soil	ت' _{vo}																		
Number	(ft)	(m)	Note	N _{set} Type	{psf}	C _N	Cf	C ₈	Cs	C _R	(N1)60	FC	$\Delta(N_1)_{60}$	(N1)90-CS	CRR _{M7.5}	MSF	Ka	CRR	a _{max} /g	avo	۲ _d	CSR	FSIIa
1	2	0.61	Unsaturated	17 SC	250	2.00	1.0	1.00	1.0	0.75	25.5	35	7,0	32.5	UL	1.92	NA	UL	0.03	250	1.00	UL	UL
2	4	1.22	Unsaturated	21 SC	500	2.00	1.0	1.00	1.0	0.75	31.5	35	7.0	38,5	UL	1,92	NA	UL	0.03	500	0.99	UL	UL
3	6	1.83	Unsaturated	15 SC	750	1.68	1.0	1.00	1,0	0.75	18.9	35	7.0	25.9	0.31	1.92	NA	0.60	0.03	750	0,99	0.019	31
4	B	2.44	Unsaturated	13 SC	1000	1.45	1.0	1.00	1.0	0.75	14.2	35	7,0	21.2	0.23	1.92	NA	0,45	0.03	1000	0.98	0,019	23
5	10	3,05	Unsaturated	15 SC	1250	1.30	1.0	1.00	1.0	0.75	14.6	37.3	7,0	21.6	0.24	1.92	NA	0.46	0.03	1250	0.98	0.019	24
7	14	4.27	Unsaturated	12 SC	1750	1.10	1.0	1.00	1.0	0.80	10.6	35	7.0	17.6	0.19	1.92	NA	0.36	0.03	1750	0.97	0.019	19
8	16	4.88	Unsaturated	21 SC	2000	1.03	1.0	1.00	1,0	0.83	17.9	35	7.0	24.9	0.29	1.92	NA	0.56	0.03	2000	0.96	0.019	30
9	18	5.49	Unsaturated	9 SC	2250	0,97	1.0	1.00	1.0	0.85	7.4	42.3	7.0	14.4	0.15	1.92	NA	0.30	0.03	2250	0,96	0.019	15
11	22	6.71	Unsaturated	14 SC	2750	0.88	1,0	1.00	1.0	0,90	11.1	35	7.0	18.1	0.19	1.92	0.91	0.34	0.03	2750	0.95	0.018	18
12	24	7,32	Unsaturated	17 SC	3000	0.84	1.0	1.00	1.0	0.93	13.3	35	7.0	20.3	0.22	1.92	0.90	0.38	0.03	3000	0.94	0,018	21
13	26	7.92	Unsaturated	18 SC	3250	0.81	1.0	1.00	1.0	0.96	13.9	35.2	7,0	. 20.9	0.23	1.92	0.89	0.39	0.03	3250	0.93	0.018	22
15	30		Unsaturated	16 SC	3750	0.75	1.0	1.00	1.0	1.0	12.0	35	7.0	19.0	0.20	1.92	0,88	0.34	0.03	3750	0.91	0.018	19
16	32	9,75		22 SC	4000	0.73	1.0	1,00	1.0	1.0	16.0	38.4	7.0	23.0	0.26	1.92	0.87	0.43	0.03	4000	0.90	0.018	24
18	36	10.97	Saturated	15 SC	4270.8	0,70	1.0	1.00	1.0	1.0	10.6	35	7.0	17.6	0.19	1.92	0.86	0.31	0.03	4520	0.88	0.018	17
19	38	11,58	Saturated	8 SC	4406.2	0.69	1.0	1.00	1.0	1.0	5.5	35	7.0	12.5	0.14	1.92	0.85	0.22	0.03	4780	0.87	0.018	12
20	40	12.19	Saturated	16 SC	4541.6	0.68	1.0	1.00	1.0	1,0	10.9	35	7.0	17.9	0.19	1.92	0.85	0.31	0.03	5040	0.86	0.019	17
21A	42	12.80	Saturated	14 SP	4677	0.67	1.0	1.00	1.0	1.0	9.4	1	0.0	9,4	0.11	1.92	0.84	0.17	0.03	5300	0.84	0.019	9
22	44	13.41		27 SP	4812.4	0.66	1.0	1.00	1.0	1.0	17.9	1	0.0	17.9	0.19	1.92	0.84	0.31	0.03	5560	0,83	0.019	17
23	46	14.02		25 SP	4947.8	0.65	1.0	1.00	1.0	1,0	5.0	1	0.0	5.0	0.07	1.92	0.84	0.11	0.03	5820	0.82	0.019	6
24	48	14.63		37 SP	5083.2	0.65	1.0	1.00	1.0	1.0	23.9	1	0.0	23.9	0.27	1.92	0.83	0.43	0.03	6080	0,80	0.019	23
25	50	15.24		35 SP	5218.6	0.64	1.0	1.00	1.0	1.0	22.3	1	0,0	22.3	0.25	1.92	0.83	0.39	0.03	6340	0.79	0.019	21
26	52	15.85		33 SM	5354	0,63	1.0	1.00	1,0	1.0	20.7	35	7.0	27.7	0,36	1.92	0,82	0.57	0.03	6600	0.77	0.018	31
27	56	17.07	Saturated	39 SC	5624.8	0.61	1.0	1.00	1.0	1.0	23.9	45.7	7.0	30,9	UL	1.92	0.81	UL	0.03	7120	0.74	UL	UL
28	61	18.59	Saturated	43 SC	5963.3	0.60	1.0	1,00	1.0	1.0	25,6	35	7,0	32.6	UL	1.92	0.80	UL	0.03	7770	0.69	UL	UL
29	66	20.12		40 SP-SM	5301.8	0.58	1.0	1.00	1.0	1.0	23.2	10	1.2	24.3	0,28	1.92	0.79	0.43	0.03	8420	0.65	0.017	25
30	71	21.64	Saturated	39 SP	6640.3	0,56	1.0	1.00	1.0	1.0	22.0	1	0.0	22.0	0.24	1.92	0,78	0.36	0.03	9070	0.60	0.016	23
31	76	23.16		50 SM	6978.8	0.55	1.0	1.00	1.0	1.0	27.5	35	7.0	34.5	UL	1.92	0.77	UL	0.03	9720	0.56	UL	UL
32	81	24,69	Saturated	60 CL-ML-S	7317.3	0.54	1.0	1.00	1.0	1.0	32.3	50	0.0	32.3	UL	1.92	0,76	UL	0.03	10370	0.52	UL	UL
33 34	86	26.21	Saturated	34 CH	7655.8	0.53	1.0	1.00	1,0	1.0	17.9	92,4	7.0	24.9	0,29	1.92	0.74	0.41	0.03	11020	0.48	0.014	31
	91	27.74		41 CH	7994.3	0.51	1.0	1.00	1.0	1.0	21.1	90	7.0	28.1	0.37	1.92	0.73	0.52	0.03	11670	0.46	0.013	40
36	101	30.78	Saturated	50 SC	8671.3	0.49	1.0	1.00	1,0	1.0	24.7	35	7,0	31.7	UL	1.92	0.71	UL	0.03	12970	0.43	UL	υL
37 38	107	32.61		70 CH	9077,5	0.48	1.0	1.00	1.0	1.0	33.8	90	7.0	40.B	UL	1.92	0,70	UL	0.03	13750	0.44	UL,	UL
	111	33,83	Saturated	68 CH	9348,3	0.48	1.0	1,00	1.0	1.0	32.4	90	7.0	39.4	UL	1.92	0.69	UL	0.03	14270	0.46	UL	UL
39	116	35.36	Saturated	58 CH	9686.8	0.47	1.0	1.00	1.0	1.0	27.1	90	7.0	34.1	UL	1.92	0.68	UL	0.03	14920	0.50	UL	UL
40	119	36.27	Saturated	77 CH	9889,9	0.46	1.0	1.00	1.0	1,0	35.6	90	7,0	42.6	UL	1.92	0.67	UL	0.03	15310	0,54	UL	UL

LIQUEFACTION FACTOR OF SAFETY ASSESSMENT TEST BORING B-2-2¹ Coleto Creek Power Plant Primary and Secondary Ash Ponds

Depth to Water =	3.5	ft
Average Unsaturated Soil Unit Weight, y _d =	125	pcf
Average Saturated Soil Unit Weight, y, =	130	pcf
Average Water Unit Weight, γ _w =	62.3	pcf
Earthquake Magnitude, M _W =	6.1	
Borehole Diameter =	3", to end of	boring

Sample	Depth	Depth			Soil	σ'**																		
Number	{ft]	(m)	Note	N _{SPT}	Туре	(psf)	C _{fl}	C _E	CB	Cs	C _R	(N1)50	FC	$\Delta(N_1)_{60}$	(N ₁) ₅₀ -cs	CRR _{M7.5}	MSF	Kσ	CRR	a _{max} /g	σ _{vp}	٢ _d	CSR	FSag
1	1	0,30	Unsaturated	5	OL.	125	2.00	1.0	1.00	1.0	0,75	7.5	50	7.0	14.5	0.16	1.92	NA	0.30	0.03	125	1.00	0.019	UL
2	3	0.91	Unsaturated	16	OL	375	2.00	1.0	1.00	1.D	0.75	Z4.0	50	7.0	31.0	0.55	1.92	NA	1.05	0.03	375	0.99	0.019	UL
3	5	1.52	Saturated	15	SC	510.4	2.04	1.0	1.00	1.0	0.75	22.9	35	7,0	29.9	0.46	1.92	NA	0.88	0.03	635	0.99	0.024	37
4	7	2,13	Saturated	16	SP	645.8	1.81	1.0	1.00	1.0	0.75	21.7	1	0.0	21.7	0.24	1.92	NA	0.46	0.03	895	0.99	0.027	17
5	9	2.74	Saturated	15	SP	781.2	1.65	1.0	1.00	1.0	0.75	18.5	1	0.0	18.5	0.20	1,92	NA	0.38	0.03	1155	D.98	0.028	13
6	10	3.05	Saturated	18	SP	848,9	1.58	1.0	1.00	1.0	0,75	21.3	1	0.0	21.3	0.23	1.92	NA	0.45	0.03	1285	0.98	0.029	16
6A	11	3.35	Saturated	15		916.6	1,52	1,0	1.00	1.0	0.75	17.1	1	0.0	17.1	0.18	1.92	NA	0.35	0.03	1415	D.98	0.029	12
7	14	4.27	Saturated	26	ML	1119.7	1.37	1.0	1.00	1.0	0.80	28.6	50	7.0	35.6	UL	1.92	NA	UL	0.03	1805	0.97	UL	UL
7A	15	4.57	Saturated	32		1187.4	1.34	1.0	1.00	1.0	0.75	32.0	50	7.0	39,0	UL	1.92	NA	UL	0.03	1935	0.97	UL	UL
8	20	6.10		21		1525,9	1.18	1.0	1.00	1.0	0.88	21.8	50	7.0	28.8	0.40	1.92	NA	0.76	0,03	2585	0.95	0.031	24
9	25	7.62		35	SP	1864.4	1.07	1.0	1.00	1.0	0.94	35.1	1	0.0	35.1	UL	1.92	NA	UL	0.03	3235	0.93	UL	UL
10	31	9.45		41		2270.6	0.97	1.0	1.00	1.0	1.02	40.4	1	0.0	40.4	υL	1.92	0.92	UL	0,03	4015	0.91	UL	UL
11	35	10,67	Saturated	45		2541.4	0.91	1.0	1.00	1.0	1.07	43,9	35	7.0	50. 9	ՄԼ	1.92	0.92	UL	0.03	4535	0.89	UL	UL
12	39	11.89		50		2812.2	0.87	1,0	1.00	1.0	1.12	48.6	35	7.0	55.6	UL	1.92	0.91	UL	0.03	5055	0.86	UL	UL
13	45	13.72		42		3218.4	D.81	1.0	1,00	1.0	1.20	40.9	1	0.0	40,9	UL	1.92	0.89	UL	0.03	5835	0.82	UL	UL
14	50	15.24	Saturated	26		3556.9	0.77	1,0	1.00	1.0	1.0	20,1	50	7.0	27.1	0.34	1.92	0,88	0.57	0.03	6485	0.79	0.028	21
15	54	16.46		56	92 92	3827.7	0.74	1.0	1.00	1.0	1.0	41.6	1	0.0	41.6	UL	1.92	0,87	UL	0.03	7005	0.75	UL	ՍԼ
15A	55	16.76		120	SP	3895,4	0.74	1.0	1.00	1.0	1,0	88,4	1	0.0	88.4	UL	1.92	0.87	UL	0.03	7135	0,74	UL	UL
16	59	17.98	Saturated	83		4166.2	0.71	1.0	1.00	1.0	1.0	59.2	50	7.0	66.2	UL	1.92	0.86	UL	0,03	7655	0.71	UL	UL
17	65	19,81	Saturated	50		4572.4	0.68	1.0	1.00	1.0	1.0	34.0	35	7.0	41,0	սլ	1.92	0.85	UL	0,03	8435	0,66	UL	ՍԼ
18	70	21.34	Saturated	56	СН	4910.9	0.66	1,0	1.00	1.0	1.0	36.8	90	7.0	43.8	UL	1.92	0.84	UL	0.03	9085	0.61	UL	UL

LIQUEFACTION FACTOR OF SAFETY ASSESSMENT TEST BORING B-3-1¹ Coleto Creek Power Plant Primary and Secondary Ash Ponds

Depth to Wa	iter =		2	8	ft (Only sat	urated strata	was found b	etween 28.	0 and 28.5 f	t bgs)													
Average Uns	aturated Sc	oil Unit Weight, y _d =	12	5	pcf																		
Average Sati	urated Soil I	Unit Welght, γ, ≈	13	0	pcf																		
Average Wa	ter Unit We	ight, y _w =	62,	з	pcf																		
Earthquake	Magnitude,	M _w =	6.	1																			
Borehole Dia	-	.,	4", to 3																				
			3", to e	end of	boring																		
Sample	Depth	Depth		Ş	oi) a' _{vo}																		
Number	(ft)	(m) Note	NSPT	Ту	'pe (psf)	C ₁₁	C _E	C _S	C,	C _B	$(N_1)_{60}$	FC	$\Delta(N_1)_{60}$	(N₁);;;•cs	CRR _{M7.5}	MSF	Kα	CRR	a _{mar} /g	σνα	Г _{сі}	CSR	F5 _{lin}
1	1	0.30 Unsaturate	1 1	9 5	C 125	2.00	1.0	1.00	1.0	0.75	28.5	35	7.0	35.5	UL	1.92	NA	UL	0.03	125	1.00	UL	UL
2	3	0.91 Unsaturate	1 1	7 5	C 375	2.00	1.0	1.00	1.0	0,75	25.5	35	7,0	32.5	UL	1.92	NA	UL	D.03	375	0.99	UL	UL
3	5	1.52 Unsaturate	님 2	6 5			1.0	1.00	1.0	0.75	35.9	35	7.0	42.9	UL	1.92	NA	UL	0.03	625	0.99	UL	UL
4	7	2.13 Unsaturate	d 2	6 5	C 875	1.56	1.0	1.00	1.0	0.75	30.3	35	7.0	37.3	UL,	1.92	NA	UL	0.03	875	0.99	UL	UL
5	â	2.74 Unsaturate	d	9 5	C 1125	1.37	1.0	1.00	1.0	0.75	9.3	35	7.0	16.3	0.17	1,92	NA	0.33	0.03	1125	0.98	0.019	17
6	11	3.35 Unsaturate	d 1	5 9			1.0	1.00	1.0	0,75	14.0	35	7.0	21,0	0.23	1.92	NA	0,44	0.03	1375	0.98	0.019	23
7	13	3.96 Unsaturate		2 9			1.0	1.00	1.0	0.79	10.8	35	7.0	17.8	0.19	1.92	NA	0.37	0.03	1625	0.97	0.019	19
8	15	4,57 Unsaturate		1 5			1.0	1.00	1.0	0.75	8,8	35	7.0	15.B	0.17	1.92	NA	0.32	0.03	1875	0.97	0.019	17
8A	16	4.88 Unsaturate		4 5			1.0	1.00	1.0	0.83	20.5	40	7.0	27.5	0.35	1.92	NA	0.68	0,03	2000	0.96	0.019	36
11	21	6.40 Unsaturate		8 9			1.0	1.00	1.0	0.89	14.4	34.8	7.0	21.4	0.23	1.92	0.91	0.41	0.03	2625	0.95	0.019	22
12	23	7.01 Unsaturate		1 (1.0	1.00	1.0	0.92	16.6	50	7.0	23.6	0,27	1.92	0.90	0.46	0.03	2875	0,94	0.01B	25
14	27	8.23 Unsaturate		9 9			1.0	1.00	1.0	1.0	15.0	35	7.0	22.0	0.24	1.92	0,89	0.42	0.03	3375	0.93	0,018	23
15	28.5	8.69 Saturated		6 5			1.0	1.00	1.0	1.0	12.4	35	7.0	19.4	0.21	1.92	0.88	0.35	0.03	3565	0,92	0.018	20
15A	29	8.84 Unsaturate		05			1.0	1.00	1,0	1.0	15.3	35	7,0	22.3	0.25	1.92	0,88	0.42	0.03	3627,5	0.92	0.018	23
16	31	9.45 Unsaturate			M 3877.5		1.0	1.00	1.0	1.0	12.6	35	7.0	19.6	0.21	1.92	0.87	0.35	0.03	3877.5	0.91	0.018	20
17	36	10.97 Unsaturate	d 6	5 S	M 4502.5	0.69	1.0	1.00	1.0	1.0	44,6	35	7.0	51.6	ՍԼ	1.92	0.85	UL	0,03	4502.5	0,88	UL	UL

LIQUEFACTION FACTOR OF SAFETY ASSESSMENT TEST BORING B-3-2¹ Coleto Creek Power Plant Primary and Secondary Ash Ponds

.

Depth to Water =	14	ft
Average Unsaturated Soil Unit Weight, y _d =	125	pcf
Average Saturated Soil Unit Weight, y, =	130	pcf
Average Water Unit Weight, y _w =	62.3	pcf
Earthquake Magnitude, M _w =	6.1	
Borehole Diameter =	3", to end of	boring

Sample	Depth	Depth			Soil	σ' ₁₀																		
Number	(ft)	{m}	Note	N _{5PT}	Түре	(psf)	CN	CE	Ca	Cs.	CR	{N ₁ } ₆₀	FC	$\Delta(N_1)_{60}$	(N ₁) ₆₀ -cs	CRR _{M7.5}	MSF	Κσ	CRR	a _{max} /g	σ_{vo}	r _d	CSR	FSlig
1	1	0.30	Unsaturated	12	5M	125	2.00	1.0	1.00	1.0	0,75	18.0	35	7.0	25.0	0.29	1.92	NA	0.56	0.03	125	1.00	0.019	29
2	3	0.91	Unsaturated	14	CL	375	2,00	1.0	1.00	1.0	0.75	21.0	50	7.0	28.0	0.37	1.92	NA	0.71	0.03	375	0.99	0.019	36
2A	4	1.22	Unsaturated	18	CL	500	2.00	1.0	1,00	1.0	0.75	27.0	50	7.0	34,0	UL	1.92	NA	UL	0.03	500	0,99	UL	ՍԼ
з	5	1.52	Unsaturated	18	CL	625	1.84	1.0	1.00	1.0	0.75	24.8	50	7.0	31.8	UL	1.92	NA	UL	0.03	625	0.99	UL	UL
4	7	2.13	Unsaturated	18	CL.	875	1.56	1.0	1.00	1,0	0.75	21.0	50	7.0	ZB,0	0.37	1.92	NA	0,71	0,03	875	0,99	0.019	37
5	9	2.74	Unsaturated	19	CL	1125	1.37	1.0	1.00	1.D	0.75	19.5	50	7,0	26,5	0.33	1.92	NA	0.63	0.03	1125	0,98	0.019	33
6	11	3,35	Unsaturated	47	SM	1375	1.24	1.0	1.00	1.0	0,76	44.3	35	7.0	51.3	UL	1.92	NA	UL	0.03	1375	D.98	ՍԼ	UL
7	15	4.57	Saturated	23	SP	1817.7	1.08	1.0	1.00	1,0	0.82	20.3	1	0.0	20,3	0,22	1.92	NA	0.42	0.03	1880	0.97	0.020	22
8	20	6.10	Saturated	42	SM	2156,2	0.99	1.0	1.00	1.0	0.75	31.2	35	7.0	38.2	UL	1.92	NA	UL	0.03	2530	0.95	ԱԼ	UL
9	24	7.32	Saturated	50	SP	2427	0,93	1.0	1.00	1.0	0.93	43.4	1	0.0	43.4	UL	1.92	0,92	UL	0.03	3050	0.94	UL	UL
10	29	8.84	5aturated	52	SP	2765.5	0.87	1.0	1.00	1,0	0.99	45.0	1	0.0	45.0	UL	1.92	0.91	UL	0.03	3700	0.92	UL	UL

LIQUEFACTION FACTOR OF SAFETY ASSESSMENT TEST BORING B-4-1¹ Coleto Creek Power Plant Primary and Secondary Ash Ponds

Depth to Water =	35,6	ft
Average Unsaturated Soil Unit Weight, y _d =	125	pcf
Average Saturated Soil Unit Weight, y, =	130	pcf
Average Water Unit Weight, y _w =	62.3	pcf
Earthquake Magnitude, M _W =	5.1	
Borehole Diameter =	3°, to end of i	boring

Sample	Depth	Depth			Soli	ច [*] vo																		
Number	(ft)	(m)	Note	Nset	Type	(psf)	C _N	CE	C ₈	C5	C ₈	(N1)60	FC	$\Delta \{N_1\}_{60}$	(N1)60-C5	CRR _{M7.5}	MSF	Ko	CRR	a _{max} /g	σ _{«n}	τ_{d}	CSR	FStin
1	1	0.30	Unsaturated	17	SC	125	2.00	1.0	1,00	1.0	0.75	25,5	12.B	1.8	27.3	0.35	1.92	NA	0.67	0.03	125	1,00	0.019	34
2	3	0.91	Unsaturated	12	SC	375	2.00	1.0	1.00	1.0	0.75	18.0	12.8	1.8	19.8	0.21	1.92	NA	0.41	0.03	375	0.99	0.019	21
3	5	1.52	Unsaturated	12	SC	625	1.84	1.0	1.00	1.0	0,75	16.6	12.8	1.8	18.4	0.20	1.92	NA	0.38	0.03	625	0.99	0,019	20
6	11	3.35	Unsaturated	14	SC	1375	1.24	1.0	1.00	1.0	0,76	13.2	12.B	1.8	15.0	0.16	1.92	NA	0.31	0.03	1375	0,98	0.019	16
8	14	4.27	Unsaturated	21	SC	1750	1.10	1,0	1.00	1.0	0,80	18.5	12.8	1.8	20.3	D.22	1.92	NA	0.42	0.03	1750	0.97	0,019	22
9	17	5.18	Unsaturated	20	SC	2125	1.00	1.0	1.00	1.0	0.84	15,8	12.6	1.8	18,5	D.20	1.92	0,93	0.38	0.03	2125	0.96	0.019	20
10	19	5.79	Unsaturated	29	SC	2375	0.94	1.0	1.00	1.0	0.87	23.8	12.8	1.8	25.6	0.31	1.92	0.92	0.59	0.03	2375	0.96	0,019	31
11	20	6.10	Unsaturated	16	ĊL	2500	0.92	1.0	1.00	1.0	0.88	13.0	50	7.0	20,0	0.22	1.92	0.92	0.41	0.03	2500	0,95	0.019	22
11A	21	6.40	Unsaturated	23	CL	2625	0.90	1.0	1,00	1.0	0.89	18.4	50	7.0	25.4	0.30	1.92	0.91	0.58	0.03	2625	0.95	0.019	31
12	22	6.71	Unsaturated	24	CL	2750	0.88	1,0	1.00	1.0	0.90	18.9	50	7,0	25.9	0.31	1,92	0.91	0.60	0,03	2750	0.95	0.018	33
12A	23	7.01	Unsaturated	22	CL	2875	0.86	1.0	1.00	1.0	0.92	17.4	50	7,0	24.4	0.28	1.92	0,90	0.54	0.03	2875	0.94	0.018	29
14	27	8,23	Unsaturated	25	SC	3375	0,7 9	1.0	1.00	1.0	0.97	19.2	35	7.0	26.2	0.32	1.92	0.89	0.61	0.03	3375	0.93	0.018	34
15	29	8.84	Unsaturated	23	SC	3625	0,76	1.0	1.00	1,0	0.99	17.4	35	7.0	24.4	0,28	1.92	0.68	0.54	0.03	3625	0.92	0,018	30
15	31	9.45	Unsaturated	26	SM	3875	0,74	1.0	1.00	1.0	1.0	19.2	35	7.0	26.2	0.32	1.92	0.87	0.61	0.03	3875	0.91	0.018	35
17	34	10,36	Unsaturated	22	CL	4242	0.71	1.0	1.00	1.0	1.0	15.5	50	7.0	22.5	0.25	1.92	0.86	0,48	0.03	4242	0.89	0,017	28
17A	36	10.97	Saturated	28	SP	4477,08	0.69	1.0	1.00	1.0	1.0	19.3	1	0.0	19.3	0.21	1.92	0.85	0.40	0.03	4502	0.88	0.017	23
18	41	12.50	Saturated	35	SP	4815.58	0,66	1.0	1.00	1,0	1.0	23.2	1	0.0	23.2	0.26	1.92	0.84	0,50	0.03	5152	0.85	0.018	28
19	46	14,02	Saturated	35	SP	5154.08	0,64	1.0	1.00	1,0	1.0	22.4	1	0.0	22.4	0.25	1.92	D.83	0.48	D.03	5802	0.82	0.018	27
20	51	15,54	Unsaturated	60	SP	6427	0.57	1.0	1.00	1,0	1.0	34.4	1	0.0	34.4	UĻ	1.92	0.79	UL	0.03	6427	0.78	UL	UL

LIQUEFACTION FACTOR OF SAFETY ASSESSMENT TEST BORING B-4-2¹ Coleto Creek Power Plant Primary and Secondary Ash Ponds

Depth to Water =	14	ft
Average Unsaturated Soil Unit Weight, y _d =	125	pcf
Average Saturated Soil Unit Weight, y, =	130	pcf
Average Water Unit Welght, y _w =	62.3	pcf
Earthquake Magnitude, M _w =	5.1	
Borehole Diameter =	3°, to end of	boring

Sample	Depth	Depth			Soil	σ' _{vp}																		
Number	{ft}	(m)	Note	Nset	Түре	{psf}	C _N	$C_{\rm f}$	C ₀	Cs	CR	(N1)60	FC	$\Delta(N_1)_{60}$	(N1)80-CS	CRR _{M7.5}	MSF	Kor	CRR	a _{mas} /g	α _{vn}	г _{сі}	CSR	FS _{Hq}
1	1	0.30	Unsaturated	23	SM	125	2.00	1,0	1.00	1.0	0.75	34,5	35	7.0	41.5	UL	1.92	NA	UL	0.03	125	1.00	UL	UL
2	3	0.91	Unsaturated	33	SM	375	2.00	1.0	1.00	1.0	0.75	49.5	35	7.0	56.5	UL	1.92	NA	UL	0,03	375	0.99	UL	UL
З	5	1.52	Unsaturated	28	OL	625	1,84	1.0	1.00	1.0	0.75	38.6	50	7.0	45.6	UL	1.92	NA	UL	0.03	625	0.99	UL	UL
4	7	2.13	Unsaturated	22	5C	875	1.56	1.0	1.00	1.0	0.75	25.7	35	7.0	3Z.7	UL	1.92	NA	UL	0.03	875	0,99	UL	UL
6	11	3,35	Unsaturated	12	5M	1375	1.24	1.0	1.00	1.0	0.76	11.3	35	7.0	18.3	0.20	1.92	NA	0.38	0.03	1375	0.98	0.019	20
7	15	4.57	Saturated	13	SP	1817.7	1.08	1.0	1.00	1.0	0.82	11.5	1	0.0	11.5	0.13	1.92	NA	0.24	0.03	1880	0.97	0.020	12
8	20	6.10	Saturated	16	SP	2156.2	0.99	1.0	1.00	1.0	0.75	11.9	1	0,0	11.9	0.13	1.92	0.93	0.25	0.03	2530	0.95	0.022	11
9	25	7.62	Saturated	29	5P	2494.7	0.92	1.0	1.00	1.0	0.94	25.1	1	0.0	25.1	0.29	1.92	0,92	0.57	0.03	3180	0,93	0.023	24
10	29	8,84	Saturated	12	SM	2765.5	0.87	1.0	1.00	1.0	0.99	10.4	35	7.0	17.4	0.19	1.92	0.91	0,36	0.03	3700	0,92	0.024	15
10A	29.5	8,99	Saturated	43	5P	2799.35	0,87	1.0	1.00	1.0	1,00	37.4	1	0.0	37,4	UL.	1.92	0.91	UL	0,03	3765	0.91	UL	UL

LIQUEFACTION FACTOR OF SAFETY ASSESSMENT TEST BORING B-5-1¹ Coleto Creek Power Plant Primary and Secondary Ash Ponds

Depth to Water =	32	ft			
Average Unsaturated Soil Unit Weight, y _d =	125	pcf			
Average Saturated Soil Unit Weight, y, =	130	pef			
Average Water Unit Weight, y _w =	62.3	pcf			
Earthquake Magnitude, M _w =	6.1				
Borehole Diameter =	3", to end of boring				

Sample	Depth	Depth			Soil	σ'_{va}																		
Number	(ft)	(m)	Note	Nset	Туре	(psf)	C _N	CE	Ca	C ₅	C _{ft}	(N1)50	FC	$\Delta(N_1)_{60}$	{N1}90-C2	CRR _{M7.5}	MSF	Ko	CRR	a _{max} /g	σνη	rd	CSR	FStin
1	1	0.30	Unsaturated	34	SC	125	2.00	1.0	1.00	1.0	0.75	51.0	35	7.0	58.0	UL.	1.92	NA	UL	0.03	125	1.00	UL	UL
2	3	0.91	Unsaturated	26	SC	375	2.00	1,0	1.00	1.0	0.75	39.0	35	7,0	45.0	UL	1.92	NA	ՍԼ	0.03	375	0.99	UL	UL
3	5	1.52	Unsaturated	23	SC	625	1.84	1.0	1.00	1.0	0.75	31.7	35	7.0	38.7	UL	1.92	NA	UL	0.03	625	0,99	UL	UL
4	7		Unsaturated	17	5C	875	1,56	1.0	1.00	1.0	0.75	19.8	35	7.0	26.8	0.33	1.92	NA	0.64	0.03	875	0.99	0.019	33
5	9		Unsaturated	11	SC	1125	1.37	1.0	1,00	1.0	0.75	11,3	35	7.0	18.3	0.20	1.92	NA	0.38	0.03	1125	0.98	0.019	20
6	11		Unsaturated	17	5C	1375	1.24	1.0	1.00	1.0	0,75	15.8	35	7.0	22.8	0.26	1.92	NA	0.49	0.03	1375	0.98	0.019	26
7	12	3.66	Unsaturated	12	SC,	1500	1.19	1,0	1.00	1.0	0.75	10.7	35	7.0	17.7	D.19	1.92	NA	0,36	0.03	1500	0.97	0,019	19
7A	13		Unsaturated	18	5C	1625	1.14	1.0	1.00	1.0	0,75	15.4	35	7.0	22.4	0.25	1.92	NA	0.48	0.03	1625	0.97	0.019	25
8	15		Unsaturated	10	SC	1875	1.06	1.0	1.00	1.0	0,75	8.0	35	7.0	15.0	0.16	1.92	NA	0,31	0,03	1875	0.97	0.019	16
9	17		Unsaturated	15		2125	1.00	1.0	1.00	1.0	0.75	11.2	35	7.0	18.2	0.20	1.92	0.93	0.37	0.03	2125	0.96	0,019	20
10	19		Unsaturated	32		2375	0.94	1.0	1.00	1.0	0.75	22.7	35	7.0	29.7	0.44	1,92	0.92	0.85	0.03	2375	0.96	0.019	45
11	20		Unsaturated	20	5C	2500	0.92	1.0	1.00	1.0	0.75	13.8	35	7.0	20.8	0.23	1.92	0.92	0.44	0.03	2500	0.95	0.019	23
11A	21		Unsaturated	28	CL	2625	0.90	1.0	1,00	1.0	0,75	18,9	83.9	7.0	25.9	0.31	1.92	0.91	0.60	0,03	2625	0,95	0.019	32
16	31		Unsaturated	35		3875	D.74	1.0	1.00	1.0	0.75	19.4	50	7.0	26.4	0.32	1.92	0.87	0.62	E0,0	3875	0.91	0.018	35
17	33	10.06		33		4067.7	0.72	1.0	1.00	1,0	0.75	17.9	35	7.0	24.9	0.29	1.92	0,86	0.56	0.03	4130	0.90	0.018	31
18	36	10.97		80	SP	4270.8	0.70	1.0	1.00	1.0	0.75	42.2	1	0,0	42.2	UL	1.92	0.86	ՍԼ	0.03	4520	0.88	ՍԼ	UL
19	41	12.50		77	SP	4609,3	0.68	1.0	1.00	1.0	0.75	39.1	1	0.0	39,1	UL	1.92	0.85	UL	0.03	5170	0.85	UL	UL
20	46	14.02			SM	4947.8	0.65	1.D	1.00	1.0	0,75	20.6	35	7.0	27.6	0.35	1.92	0.84	0.68	0.03	5820	0.82	0.019	36
21	50	15,24	Saturated	50	SM	5218.6	0.64	1.0	1.00	1.0	0.75	23.9	35	7.0	30.9	UL	1.92	0.83	UL	0.03	6340	0.79	UL	UL

APPENDIX E: GUADALUPE-BLANCO RIVER AUTHORITY LAKE AREA-CAPACITY CURVES

ATTACHMENT 3-1

TABLE 1

COLETO CREEK RESERVOIR AREAS AND CAPACITIES INITIAL CONDITIONS*

Elev	. 0	1	2	3	4	5	6	7	8	9	
					AREA IN	ACRES					
50									0	9	
60	18	26	34	42	50	60	80	100	120	145	
70	170	200	239	277	314	351	397	442	495	547	
80	599	679	758	835	910	984	1087	1189	1299	1408	
90	1504	1650	1796	1940	2084	2230	2369	2514	2652	2787	
100	2918	3077	3255	3461	3698	3954	4207	4458	4706	4949	
110	5190	5531	5910	6324	6763	7234	7734	8229	8725	9223	
120	9723										
				(CAPACITY	IN ACRE	-FEET				
50			2			40			0	. 4	
60	18	40	70	108	154	209	279	369	479	611	
70	769	954	1174	1432	1727	2060	2434	2853	3322	3843	
80	4416	5055	5774	6570	7442	8389	9425	10,563	11,807	13,160	
90	14,617	16,194	17,917	19,786	21,798	23,955	26,254	28,695	31,277	33,996	
100	36,849	39,846	43,012	46,370	49,949	53,744	57,855	62,187	66,769	71,597	
110	76,667	82,027	87,747	93,863	100,406	107,409	114,807	122,878	131,354	140,328	
120	149,800		00000	and the second			0000000	which are a	Contract Contract	D. Martine	

*Areas and capacities of impoundments behind Dike Nos. 1 and 2 are not included in this tabulation.

ATTACHMENT 3-2

TABLE 2

COLETO CREEK PROJECT AREAS AND CAPACITIES SULPHUR CREEK BEHIND DIKE NO. 1 INCLUDING FLUME NO. 1

Elev	. 0	1	. 2	3	4	5	6	7	8	9				
				I										
70 80 90 100 110 120	3 49 151 329 770	56 164 358	7 64 178 388	10 73 193 419	14 82 207 455	18 90 223 499	22 101 240 540	0 26 113 259 590	1 31 126 279 641	2 36 138 303 699				
	CAPACITY IN ACRE-FEET													
70 80 90 100 110 120	4 199 1141 3429 8570	8 251 1299 3773	14 311 1470 4146	23 379 1656 4550	35 456 1856 4987	51 542 2071 5464	71 638 2303 5984	95 745 2553 6549	0 123 865 2822 7165	2 157 997 3113 7835				

1 XX

4

ATTACHMENT 3-3

TABLE 3

COLETO CREEK PROJECT AREAS AND CAPACITIES TURKEY CREEK BEHIND DIKE NO. 2 INCLUDING FLUME NO. 2

				11(0)	LODING		л.		1 A 4		
Elev	. 0	1	2	3	4	5	6	7	8	9	
14 1	an an Arian An Anna An An			· · ·	AREA II	N ACRES	. · · ·				
70 80 90 100 110 120	38 167 391 791 1537	184		506	76	250 583	101 270 623	293 663	130 322 705		
	· .			CAP	ACITY II	ACRE-1	FEET				
70 80 90 100 110 120	124 1048 3654 9513 20,819	4064	1416 4512		1850 5524	14 429 2092 6089 14,161	523 2352 6691	41 631 2634 7334 16,572	62 754 2942 8018 17,905	892 3281 8744	

5

CREATE AMAZING.

Burns & McDonnell World Headquarters 9400 Ward Parkway Kansas City, MO 64114 O 816-333-9400 F 816-333-3690 www.burnsmcd.com